
Automated Adaptive Bug
Isolation using Dyninst

Piramanayagam Arumuga Nainar,
Prof. Ben Liblit

University of Wisconsin-Madison

Cooperative Bug Isolation (CBI)

Program
Source

Compiler

Sampler

Predicates
Shipping

Application

Counts
& /

€ƒƒ€ ‚Statistical
Debugging

Top bugs with
likely causes

++branch_17[p != 0];
if (p) …
else …

• Problem with static instrumentation
– Predicates are fixed for entire lifetime
– Three problems

1. Worst case assumption
2. Cannot stop counting predicates

– After collecting enough data
3. Cannot add predicates we missed

• Current infrastructure supports only C
programs

Issues

user

CBI for Binaries

Program
Source

Compile
r

Shipping
Application

Counts
& /

Statistical
Debugging

Top bugs with
likely causes

Executable

Predicates

New
Executable

Binary editor

developer

Compile
r

Adaptive Bug Isolation

• Strategy:
– Adaptively add/remove predicates

• Based on feedback reports

• Retain existing statistical analysis
– Goal is to guide CBI to its best bug predictor

• Reduce the number of predicates instrumented

Adaptive Bug Isolation (contd.)

Program
Source

Compile
r

Shipping
Application

Counts
& /

Statistical
Debugging
(with adaptivity)

Top bugs with
likely causes

Executable

New
Executable

Binary editorPredicates

Compile
r

Dyninst Instrumentor - Features

• Counters in shared segment
• Removes snippets

– After they execute once
• Call graph, CFG, dominator graphs
• Snippets are feather weight

– Don’t save/restore FPRs
• More…

– Better overheads
– Expose data dependencies

Technique

• Control Dependence Graph (CDG)
• Algorithm:

– For each suspect branch edge:
• Enable all predicates in

– basic blocks control dependent on that edge

• How to identify suspect edges?
– Pessimistic - all edges are suspect

A

B

Simple strategy: BFS

• All branch predicates are suspicious

if

if

if

if

Can we do better?

• Assign scores to each predicate
• Edges with high scores are suspect

– Many options
• Top 10
• Top 10%
• Score > threshold

– For our experiments, only the topmost predicate
– Other predicates: may be revisited in future

• Key property: If no bug is found, no predicate is
left unexplored

• Many possibilities. We evaluate five
• For a branch predicate p,

– F (p) = no. of failed runs in which p was true
– S (p) = no. of successful runs in which p was true

1. Failure count: F (p)
2. Failure probability: F (p) / (F (p) + S (p))
3. T-Test

Pr (p being true affects program outcome in a
statistically significant manner)

Scores – heuristics 1,2,3

50%50%p false

70%30%p true

Fail.Succ

Scores - heuristic 4
4. Importance (p)

– CBI’s ranking heuristic [PLDI ’05]
– Harmonic mean of two values
– For a branch predicate ‘p’:

• Sensitivity
– log (F (p)) / log (total failures observed)

• Increase
– Pr (Failure) at P2 – Pr (Failure) at P1

P2

P1

Scores - heuristic 5
5. Maximum possible Importance score

• Problem: sometimes, Importance (p) mirrors p’s properties and
says nothing about the branch’s targets

• score (p) = Maximum possible Importance score in p’s targets

0/0s/f

s/f

0/f

s/f

s/0

Edge label a/b means
• Predicate was true in ‘a’ successful runs
• Predicate was true in ‘b’ failed runs

• Oracle
– points in the direction of the target (the top bug

predictor)
– Used for evaluation of the results
– Shortest path in CDG

Optimal heuristic

Evaluation
• Binary Instrumentor: using DynInst
• Heuristics:

– 5 global ranking heuristics
– simplest approach: BFS
– optimal approach: Oracle

• Bug benchmarks
– siemens test suite

• Goal: identify the best predicate efficiently
– Best predicate: as per the PLDI ’05 algo.
– efficiency: no. of predicates examined

Evaluation (cont.)

Conclusion

• Use binary instrumentation to
– Skip bug free regions

more data from interesting sites

• Fairly general
– Can be applied to any CBI-like tool

• Backward search – in progress

Questions?

• Using DynInst
• Large slowdowns
• Reduce no. of branch predicates

• Gathering true/false values instead of counts
1. No increment. Just store 1 (true)
2. Self-removing instrumentation

– Removes itself after executing
– Applies only to dynamic instrumentation

• Better performance: 2-3 times slowdown for go
– But not enough

Binary Instrumentor
25 times for go (SPEC)

If program crashes between p1 and p2
c1 = c2 + c3 + 1

else
c1 = c2 + c3

if

if

c1

c2 c3

Branch predicate inference

• c1 can inferred if
– P1 dominates P2

– P2 or P5 have an
instrumentation site

(in general, any block
equivalent to P2)

P1

P2

P3 P4

P5

c1

P2

P5

• Choose one branch over the other

– Strategy:
• if Pr (statistically significant difference) > 95%:

– Only then path is interesting
• else both then and else paths are interesting

Can we do better?

50%50%else
path

70%30%then
path

Fail.Succ

Program fails more often in the then path

Pr (there is a significant difference in the two directions) use T-Test
(paired)

Simple strategy: BFS

• All branch predicates are suspicious

if

if

if

if

