Optimizing Your Dyninst
Program

Matthew LeGendre
legendre@cs.wisc.edu




Optimizing Dyninst

» Dyninst is being used to insert more
instrumentation into bigger programs. For
example:

- Instrumenting every memory instruction

- Working with binaries 200MB in size

* Performance is a big consideration

* What can we do, and what can you do to
help?

Optimizing Your Dyninst Program




Performance Problem Areas

* Parsing: Analyzing the binary and reading
debug information.

» Instrumenting: Rewriting the binary to
insert instrumentation.

- Runtime: Instrumentation slows down a
mutatee at runtime.

Optimizing Your Dyninst Program




Optimizing Dyninst

* Programmer Optimizations
- Telling Dyninst not to output tramp guards.

* Dyninst Optimizations
- Reducing the number of registers saved around
instrumentation.

Optimizing Your Dyninst Program




Parsing Overview

» Control Flow
- Identifies executable regions
* Data Flow
- Analyzes code prior to instrumentation
+ Debug
- Reads debugging information, e.qg. line info
» Symbol
- Reads from the symbol table

* Lazy Parsing: Not parsed until it is needed

Optimizing Your Dyninst Program




Control Flow

* Dyninst needs to analyze a binary before
It can instrument it.

- Tdentifies functions and basic blocks

* Granularity

- Parses all of a module at once.

- Triggers
- Operating on a BPatch_function
- Requesting BPatch_instPoint objects
- Performing Stackwalks (on x86)

-6- Optimizing Your Dyninst Program




Data Flow

» Dyninst analyzes a function before
instrumenting it.
- Live register analysis
- Reaching allocs on TA-64

* Granularity
- Analyzes a function at a time.

- Triggers
- The first time a function is instrumented

Optimizing Your Dyninst Program




Debug Information
* Reads debug information from a binary.

* Granularity
- Parses all of a module at once.

- Triggers
- Line number information
- Type information
- Local variable information

Optimizing Your Dyninst Program




Symbol Table

- Extracts function and data information
from the symbol

* Granularity
- Parses all of a module at once.

- Triggers
- Not done lazily. At module load.

Optimizing Your Dyninst Program




Lazy Parsing Overview
Granularity | Triggered By

Control Flow | Module BPatch_function
Queries

Data Flow Function Instrumentation

Debug Module Debug Info
Queries

Symbol Module Automatically

Lazy parsing allows you to avoid or defer
costs.

Optimizing Your Dyninst Program




foo:

0x1000:
0x1001:
0x1002:
0x1004:
0x1005:
0x1006:

Inserting Instrumentation

* What happens when we re-instrument a
function?

push ebp
movl esp,ebp
push S1

call bar
leave

ret

=)

foo:

0x4000:
0x4005:
0x4006:
0x4007:
0x4009:
0x400F:
0x4014:
0x4015:
0x401A:

jmp entry instr
push ebp

movl esp,ebp
push S1

jmp call instr
call bar

leave

jmp exit instr
ret

Optimizing Your Dyninst Program




Inserting Instrumentation

* Bracket instrumentation requests with:

beginInsertionSet ()

endInsertionSet ()

- Batches instrumentation
- Allows for transactional instrumentation
- Improves efficiency (rewrite)

Optimizing Your Dyninst Program




Runtime Overhead

- Two factors determine how
instrumentation slows down a program.
- What does the instrumentation cost?

- Tncrement a variable
- Call a cache simulator

- How often does instrumentation run?
» Every time read/write are called
» Every memory instruction

» Additional Dyninst overhead on each
iInstrumentation point.

-13- Optimizing Your Dyninst Program




Runtime Overhead - Basetramps
A Basetramp

save all GPR .
save all FPR - égl\é:eu a$g|STerS

t = DYNINSTthreadIndex()

guards[t] = true r
p—

jump to minitramps

guards[t] = false MiniTr'ClmpS

}
restore all FPR

restore all GPR - RZSTOI"Q RegiSTer'S

Optimizing Your Dyninst Program




Runtime Overhead - Registers
A Basetramp

save all GPR ‘AﬂGlYZZS mini’rramps
save all FPR .
for register usage.

= DYNINSTthreadIndex()

if (!guards[t]) { .
guards[t] = true *Analyzes functions for

jump to minitramps register liveness.
guards[t] = false

g *Only saves what is live

restore all FPR
restore all GPR Clnd Used.

Optimizing Your Dyninst Program




Runtime Overhead - Registers
A Basetramp

*Called functions are
save all GPR .
save all FPR recurs'vely analyzed TO

= DYNINSTthreadIndex() (@A MAX call depTh Of 2.
if (!guards[t]) {

jump to minitramps
guards[t] = false

}
restore all FPR 5l
restore all GPR .

Optimizing Your Dyninst Program




Runtime Overhead - Registers
A Basetramp

save live GPR
= DYNINSTthreadIndex()
if (!guards[t]) {
guards[t] = true
jump to minitramps
guards[t] = false
}

restore live GPR

-Use shallow function
call chains under
iInstrumentation, so
Dyninst can analyze all
reachable code.

‘Use
BPatch: :setSaveFPR()

to disable all floating
point saves.

Optimizing Your Dyninst Program




Runtime Overhead - Tramp Guards
A Basetramp

‘Prevents recursive
iInstrumentation.

save live GPR

= DYNINSTthreadIindex() «Needs to be thread
if (!guards[t]) {
aware.

guards[t] = true

jump to minitramps

guards[t] = false
}

Restore live GPR

Optimizing Your Dyninst Program




Runtime Overhead - Tramp Guards

A Basetramp
*Build instrumentation

that doesn't make
save live GPR

t = DYNINSTthreadIndex() funCTlOn CGHS (no
BPatch funcCallExpr

shippets)

jump to minitramps

‘Use
setTrampRecursive( )

if you're sure
instrumentation won't
recurse.

restore live GPR

Optimizing Your Dyninst Program




Runtime Overhead - Threads

A Basetramp
-Returns an index value

(0..N) unique to the
current thread.

save live GPR
t = DYNINSTthreadIndex ()

Used by tramp guards

jump to minitramps and fOr' thread local
storage by
Instrumentation

restore live GPR

Expensive

Optimizing Your Dyninst Program




Runtime Overhead - Threads

A Basetramp
‘Not needed if there

are no tramp guards.

save live GPR

*Only used on mutatees
linked with a threading
library (e.q. libpthread)

jump to minitramps

restore live GPR

Optimizing Your Dyninst Program




Runtime Overhead - Minitramps
A Basetramp

*Minitramps contain
the actual
iInstrumentation.

save live GPR

jump to minitramps

-What can we do with
minitramps?

restore live GPR

Optimizing Your Dyninst Program




Runtime Overhead - Minitramps

Minitramp A
//Increment var by 1 -Cr'ea‘red by our Code
oRSREE generator, which
reg = reg + 1 .
- assumes a RISC like
jmp Minitramp B architecture.

Minitramp B
//Call foo(argl)
push argl *Instrumentation

call foo linked by jumps.

jmp BaseTramp

Optimizing Your Dyninst Program




Runtime Overhead - Minitramps
Minitramp A
//Increment var by 1 ‘New code generator
recognizes common
instrumentation

jmp Minitramp B SnlppeTS Gnd OUTPUTS
CISC instructions.

inc var

Minitramp B
//Call foo(argl)
push argl

call foo * Works on simple

jmp BaseTramp

arithmetic, and stores.

Optimizing Your Dyninst Program




Runtime Overhead - Minitramps
Meanidedmpnp

//Increment var by 1 ’NZW mer'ge TPGmPS
combine minitramps
together with

jmp Minitramp B basetramp.

Minitramp B -Faster execution,

//call foo(argl) slower re-
push argl

call foo iInstrumentation.

jmp BaseTramp

inc var

*Change behavior with

BPatch: :setMergeTramp

Optimizing Your Dyninst Program




Runtime Overhead

* Where does the Dyninst's runtime
overhead go?
- 87% Calculating thread indexes
- 12% Saving registers
- 1% Trampoline Guards

* Dyninst allows inexpensive instrumentation
to be inexpensive.

Optimizing Your Dyninst Program




Summary

* Make use of lazy parsing

» Use insertion sets when inserting
instrumentation.

- Small, easy to understand snippets are
easier for Dyninst to optimize.

- Try to avoid function calls in instrumentation.

Optimizing Your Dyninst Program




Questions?

Optimizing Your Dyninst Program




