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Motivation

 Binary tools are increasingly common
 Two categories of operation

• Analysis : Derive semantic meaning from the binary
code
– Symbol tables (if present)
– Decode (disassemble) instructions
– Control-flow information: basic blocks, loops, functions
– Data-flow information: from basic register information to highly

sophisticated (and expensive) analyses.
• Modification

– Insert, remove, or change the binary code, producing a new binary.
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Wide Use of Binary Tools

• Binary Modification
– Eel, Vulcan, Etch, Atom,

Diablo, Diota
• Binary Matching

– BMT
• Forensics

– Fenris
• Reverse engineering

– IDA Pro
• Binary Translation

– Objcopy, UQBT

• Program tracing
– QPT

• Program debugging
– Total view, gdb, STAT

• Program testing
– Eraser

• Performance modeling
– METRIC

• Performance profiling
– Paradyn, Valgrind, TAU,

OSS

Analysis and Modification are used in a wide variety
 of applications
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Lack of Code Sharing

 Some tools do analysis and some tools do
modification
• Only a few do both

 Tools usually depend on
• Similar analysis
• Similar modification techniques

 Too many different interfaces
• Usually too low level

 Developers are forced to reinvent the wheel
rather than use existing code
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Lack of Portability

 Myriad number of differences between
• File formats
• Architectures
• Operating systems
•  Compilers
• …

 Building a portable binary tool is highly
expensive
• Many platforms in common use
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High-level goals

 To build a toolkit that
• Has components for analysis
• Has components for modification
• Is portable & extensible
• Has an abstract interfaces
• Encourage sharing of functionality

 Deconstruct Dyninst into a toolkit that can
achieve these goals
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DyninstAPI

 Library that provides a platform-independent
interface to dynamic binary analysis and
modification

 Goal
• Simplify binary tool development

 Why is Dyninst successful?
• Analysis and modification capabilities
• Portability
• Abstract interface
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Drawbacks of Dyninst

 Dyninst is complex
 Dyninst internal components are portable but

not sharable
 Sometimes Dyninst is not a perfect match for

user requirements
 Dyninst is feature-rich in some cases

• Provides unnecessary extra functionality
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Example Scenarios

 Hidden functionality
• Statically parse and analyze a binary without

executing it
• Just perform stackwalking  on a binary compiled

without frame pointer information
 Build new tools

• Static binary rewriter
• Tool to add a symbol table to stripped binaries



– 10 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Our Approach

 Deconstruct the monolithic Dyninst into a
suite of components

 Each component provides a platform-
independent interface to a core piece of
Dyninst functionality
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Goals of Deconstruction

 Separate the key capabilities of Dyninst
 Each Component

• Is responsible for a  specific functionality
• Provides a general solution

 Encourage sharing
• Share our functionality when building new tools
• Share functionality of other tools
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Benefits of Deconstruction

 Access to the hidden features of Dyninst

 Interoperability with other tools
• Standardized interfaces and sharing of

components

 Finer grain testing of Dyninst
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Benefits of Deconstruction [contd.]

 Code reuse among the tool community

 Make tools more portable

 Unexpected benefits with new application of
components
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Our Plan

Identify the key functionality
Refine and generalize the abstract

interfaces to these components
Extract and separate the functionality from

Dyninst
Rebuild Dyninst on top of these components
Create new tools

• Multi-platform static binary rewriter
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SymtabAPI

 The first component of the deconstructed
Dyninst

 Multi platform library for parsing symbol table
information from object files

 Leverages the experience and implementation
gained from building the DyninstAPI
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SymtabAPI Goals

 Abstraction
• Be file format-independent

 Interactivity
• Update data incrementally

 Extensibility
• User-extensible data structures

 Generality
• Parse ELF/XCOFF/PE object files
• On-Disk/In-Memory parsing
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SymtabAPI Abstractions

 Represents an object file in a canonical format
 Hides the multi-platform dependences
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SymtabAPI Extensibility

 Abstractions are designed to be extensible

 Can annotate particular abstractions with tool
specific data
• e.g. : Store type information for every symbol in

the symbol table
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Interactivity/Extensibility

Symbol Address

func1

func2 0x0804cd1d

variable1

0x0804cc84

0x0804cd00

YesR4
YesR3
NoR2
YesR1

Is Live?Register

... ...

Type Information
int

Size

100

4

050
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SymtabAPI Interface

 Information from a parsed-binary is kept in
run time data structures

 Intuitive query-based interface
• e.g. findSymbolByType(name,type)
• Returns matching symbols

 Data can then be updated by the user
 Modifications available for future queries
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Summary of Operations

 Parse the symbols in a binary
 Query for symbols
 Update existing symbol information
 Add new symbols
 Export/Emit symbols

 More details/operations in the SymtabAPI
programmer’s guide
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Current Status

 Released the initial version of SymtabAPI with
the 5.1 release of Dyninst

 Dyninst on top of SymtabAPI
 XML export
 Emit on Linux and AIX
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Ongoing & Future Work

 Import XML
 Emit a new binary on windows
 Debugging information for symbols
 Interfaces for the remaining components
 Multi-platform static binary rewriter
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Demo
 Please stop by and see our demo of stripped

binary parsing with the SymtabAPI’s emit
functionality on Linux

Tuesday, May 1, 2007
Room No – 206

2:00 PM – 3:00 PM
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Downloads

 SymtabAPI
• http://www.paradyn.org/html/downloads.html

 SymtabAPI Programmer’s guide
• http://www.paradyn.org/html/symtabAPI.html

 Ravipati, G., Bernat, A., Miller, B.P. and
Hollingsworth, J.K., "Toward the
Deconstruction of Dyninst", Technical Report


