
April 2007The Deconstruction of Dyninst: Part 1- the SymtabAPI

The Deconstruction of Dyninst
Part 1: The SymtabAPI

Giridhar Ravipati
University of Wisconsin, Madison

– 2 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Motivation

 Binary tools are increasingly common
 Two categories of operation

• Analysis : Derive semantic meaning from the binary
code
– Symbol tables (if present)
– Decode (disassemble) instructions
– Control-flow information: basic blocks, loops, functions
– Data-flow information: from basic register information to highly

sophisticated (and expensive) analyses.
• Modification

– Insert, remove, or change the binary code, producing a new binary.

– 3 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Wide Use of Binary Tools

• Binary Modification
– Eel, Vulcan, Etch, Atom,

Diablo, Diota
• Binary Matching

– BMT
• Forensics

– Fenris
• Reverse engineering

– IDA Pro
• Binary Translation

– Objcopy, UQBT

• Program tracing
– QPT

• Program debugging
– Total view, gdb, STAT

• Program testing
– Eraser

• Performance modeling
– METRIC

• Performance profiling
– Paradyn, Valgrind, TAU,

OSS

Analysis and Modification are used in a wide variety
 of applications

– 4 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Lack of Code Sharing

 Some tools do analysis and some tools do
modification
• Only a few do both

 Tools usually depend on
• Similar analysis
• Similar modification techniques

 Too many different interfaces
• Usually too low level

 Developers are forced to reinvent the wheel
rather than use existing code

– 5 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Lack of Portability

 Myriad number of differences between
• File formats
• Architectures
• Operating systems
• Compilers
• …

 Building a portable binary tool is highly
expensive
• Many platforms in common use

– 6 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

High-level goals

 To build a toolkit that
• Has components for analysis
• Has components for modification
• Is portable & extensible
• Has an abstract interfaces
• Encourage sharing of functionality

 Deconstruct Dyninst into a toolkit that can
achieve these goals

– 7 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

DyninstAPI

 Library that provides a platform-independent
interface to dynamic binary analysis and
modification

 Goal
• Simplify binary tool development

 Why is Dyninst successful?
• Analysis and modification capabilities
• Portability
• Abstract interface

– 8 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Drawbacks of Dyninst

 Dyninst is complex
 Dyninst internal components are portable but

not sharable
 Sometimes Dyninst is not a perfect match for

user requirements
 Dyninst is feature-rich in some cases

• Provides unnecessary extra functionality

– 9 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Example Scenarios

 Hidden functionality
• Statically parse and analyze a binary without

executing it
• Just perform stackwalking on a binary compiled

without frame pointer information
 Build new tools

• Static binary rewriter
• Tool to add a symbol table to stripped binaries

– 10 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Our Approach

 Deconstruct the monolithic Dyninst into a
suite of components

 Each component provides a platform-
independent interface to a core piece of
Dyninst functionality

April 2007The Deconstruction of Dyninst: Part 1- the SymtabAPI

AST

Binary
Code

Instrumentation
Requests

Monolithic
Dyninst

April 2007The Deconstruction of Dyninst: Part 1- the SymtabAPI

Binary
Code

Code Gen Stack
Walker

Process
Control

SymtabAPI
Code

Parser

Idiom
Detector

Instrumentation
Requests

Instruction
Decoder

Instrumenter

AST

April 2007The Deconstruction of Dyninst: Part 1- the SymtabAPI

SymtabAPI

Instruction
Decoder

AST

Binary
Code

Code
Parser

Idiom
Detector

IA32

AMD64

POWER

IA64

SPARC

Instrumentation
Requests Process

ControlInstrumenter

IA32

AMD64

POWER

IA64

SPARC

Code Gen

IA32

AMD64

POWER

IA64

SPARC

Stack
Walker

Linux

AIX

Solaris

Windows

PE

ELF

XCOFF

IA32

AMD64

POWER

IA64

SPARC

April 2007The Deconstruction of Dyninst: Part 1- the SymtabAPI

SymtabAPI

PE

Instruction
Decoder

AST

Binary
Code

ELF

XCOFF

Code
Parser

Idiom
Detector

IA32

AMD64

POWER

IA64

SPARC

Symbol
Table

Disassembly

Function
Objects

Call
Graph

Intra Proc
CFGs

Idiom
Signatures

Instrumentation
Requests Process

ControlInstrumenter

IA32

AMD64

POWER

IA64

SPARC

Code Gen

IA32

AMD64

POWER

IA64

SPARC

Stack
Walker

Linux

AIX

Solaris

Windows

IA32

AMD64

POWER

IA64

SPARC

– 15 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Goals of Deconstruction

 Separate the key capabilities of Dyninst
 Each Component

• Is responsible for a specific functionality
• Provides a general solution

 Encourage sharing
• Share our functionality when building new tools
• Share functionality of other tools

– 16 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Benefits of Deconstruction

 Access to the hidden features of Dyninst

 Interoperability with other tools
• Standardized interfaces and sharing of

components

 Finer grain testing of Dyninst

– 17 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Benefits of Deconstruction [contd.]

 Code reuse among the tool community

 Make tools more portable

 Unexpected benefits with new application of
components

– 18 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Our Plan

Identify the key functionality
Refine and generalize the abstract

interfaces to these components
Extract and separate the functionality from

Dyninst
Rebuild Dyninst on top of these components
Create new tools

• Multi-platform static binary rewriter

– 19 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

SymtabAPI

 The first component of the deconstructed
Dyninst

 Multi platform library for parsing symbol table
information from object files

 Leverages the experience and implementation
gained from building the DyninstAPI

– 20 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

SymtabAPI Goals

 Abstraction
• Be file format-independent

 Interactivity
• Update data incrementally

 Extensibility
• User-extensible data structures

 Generality
• Parse ELF/XCOFF/PE object files
• On-Disk/In-Memory parsing

– 21 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

SymtabAPI Abstractions

 Represents an object file in a canonical format
 Hides the multi-platform dependences

Header

Modules

Symbols

Relocation
sExcp Blocks

Archive

Debug Info

Header

Modules

Symbols

Relocation
sExcp Blocks

Debug Info

– 22 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

SymtabAPI Extensibility

 Abstractions are designed to be extensible

 Can annotate particular abstractions with tool
specific data
• e.g. : Store type information for every symbol in

the symbol table

– 23 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Interactivity/Extensibility

Symbol Address

func1

func2 0x0804cd1d

variable1

0x0804cc84

0x0804cd00

YesR4
YesR3
NoR2
YesR1

Is Live?Register

... ...

Type Information
int

Size

100

4

050

– 24 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

SymtabAPI Interface

 Information from a parsed-binary is kept in
run time data structures

 Intuitive query-based interface
• e.g. findSymbolByType(name,type)
• Returns matching symbols

 Data can then be updated by the user
 Modifications available for future queries

– 25 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Query/Update/Export/Emit

SymtabAPI

Parse

Binary Tool

Query

Response

Update Export/Emit

Binary
Code

XML

New
Binary

– 26 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Summary of Operations

 Parse the symbols in a binary
 Query for symbols
 Update existing symbol information
 Add new symbols
 Export/Emit symbols

 More details/operations in the SymtabAPI
programmer’s guide

– 27 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Current Status

 Released the initial version of SymtabAPI with
the 5.1 release of Dyninst

 Dyninst on top of SymtabAPI
 XML export
 Emit on Linux and AIX

– 28 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Ongoing & Future Work

 Import XML
 Emit a new binary on windows
 Debugging information for symbols
 Interfaces for the remaining components
 Multi-platform static binary rewriter

– 29 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Demo
 Please stop by and see our demo of stripped

binary parsing with the SymtabAPI’s emit
functionality on Linux

Tuesday, May 1, 2007
Room No – 206

2:00 PM – 3:00 PM

– 30 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Downloads

 SymtabAPI
• http://www.paradyn.org/html/downloads.html

 SymtabAPI Programmer’s guide
• http://www.paradyn.org/html/symtabAPI.html

 Ravipati, G., Bernat, A., Miller, B.P. and
Hollingsworth, J.K., "Toward the
Deconstruction of Dyninst", Technical Report

