
A MW Framework for Solving

Recursive Economic Models

Kenneth L. Judd Che-Lin Su

Hoover Institution Kellogg, Northwestern Univ.

Greg Thain Stephen J. Wright

UW-Madison UW-Madison

Condor Week 2006

April 25, 2006

– p.1/10

Wealth Accumulation Example

Given initial capital stock x0, find V (x0)

V (x0) =







max
(ct,lt)

∑

∞

t=0 βtu(ct, lt)

s.t. xt+1 = xt + f(xt, lt) − ct

• ct and lt are consumption and labor supply at time t

• capital evolves according to xt+1 = xt + f(xt, lt) − ct

• β is the discount factor and u(ct, lt) is the utility given

consumption ct and labor supply lt

• V (x) is the value function for x0 = x

– p.2/10

Dynamic Programming
As written, this is an optimization problem with infinitely
many variables: ct, lt, xt, t = 0, 1, 2, . . . , so as written it is
impossible to solve.
But we can make use of the dynamic programming principle,
based on the observation that the optimal objective V (x0)
depends only on x0. Also note by the form of the objective
and constraints, we have at the optimal values of xt, ct, lt
that

V (x0) = u(c0, l0) + β

∞
∑

t=0

βtu(ct+1, lt+1)

= u(c0, l0) + βV (x1)

= u(c0, l0) + βV (x0 + f(x0, l0) − c0).

We can use this formula involving V to solve for the entire
function V , not just find its value at a given x0.

– p.3/10

Bellman Equation for V (x)

V (x) = max
(c,l)

u(c, l) + βV (x + f(x, l) − c) (1)

• The function V is unknown

• Parametric dynamic programming: Approximate V (x) by

V̂ (x; a), and solve for the parameters a using the

information in the Bellman equation.

◦ e.g., V̂ (x; a) =

p
∑

j=0

ajx
j

◦ find a ∈ Rp such that V̂ (x; a)“approximately”satisfies

the Bellman equation (1), on a finite grid of x values:

x1, x2, . . . , xn.

– p.4/10

Value Function Iteration

Step 0. Initialization. Choose functional form for V̂ (x; a) and

approximation grid X = {x1, . . . , xn}.

Make initial guess V̂ (x; a0) and choose ε > 0.

Step 1. Maximization step. Fix ak = (ak
j)

p
j=1.

For i = 1, . . . , n, compute

vi = T V̂ k(xi, a
k) = max

(ci,li)
u(ci, li) + βV̂ (x+

i , ak)

where x+
i = xi + f(xi, li) − ci

Step 2. Fitting step. Fix c, l. Find ak+1 s.t.

ak+1 = argmin a‖V̂ (x, a) − v‖2

Step 3. Convergence. If ‖V̂ (x, ak+1) − V̂ (x, ak)‖∞ > ε, go to

Step 1; otherwise stop and report solution.

– p.5/10

Value Function Iteration in MW

Objective: Solve the Bellman equation (1)

MASTER: Initialization. Choose functional form for V̂ (x; a) and

approximation grid X = {x1, . . . , xn}.

Make initial guess V̂ (x; a0) and choose ε > 0.

WORKER: Maximization step. Fix ak = (ak
j)

p
j=1.

For i = 1, . . . , n, compute (in parallel)

vi = T V̂ k(xi, a
k) = max

(ci,li)
u(ci, li) + βV̂ (x+

i , ak)

MASTER: Fitting step. Fix c, l. Find ak+1 s.t.

ak+1 = argmin a‖V̂ (x, a) − v‖2

MASTER: Convergence. If ‖V̂ (x, ak+1) − V̂ (x, ak)‖∞ > ε, go to

Step 1; otherwise stop and report solution.

– p.6/10

MW Implementation Notes
• Each task finds the optimal (ci, li) for a batch of xi’s.

◦ Calls a FORTRAN code (to demonstrate that we
can!) to do minimizations.

◦ Hot starting - the optimal (ci, li) is usually a great
starting point for (ci+1, li+1).

◦ The task“wrapper”and the FORTRAN code
communicate via files.

– p.7/10

MW Implementation Notes
• act_on_complete_task() on the Master stores the

vi’s as they arrive from the workers. When all workers
have reported, it solves the least-squares problem (fitting

step) to find ak+1.

◦ Could still take a fitting step without waiting for all
tasks to report, to avoid hangups if some workers go
down.

◦ Could adapt size of task (number of xi’s in the
batch) to accommodate workers of different speeds.

– p.8/10

How Big Can These Get?

Judd: These models can get very Big!!!

• Investment Portfolio

◦ d assets in the portfolio

◦ Xj = {xj1, . . . , xjn} represents j-th asset’s position

◦ state space: X = X1 × X2 × · · · × Xd

◦ transaction cost occurs when adjusting asset positions

• Dynamic Principal-Agent Problem

◦ the CEO’s performance is evaluated by multiple

measures, e.g. stock price, annual profits, etc.

◦ the company decides the CEO’s compensation package

• Many other economic applications

– p.9/10

Current and Future Work
• Adapting a Fortran90 code with a more complex

representation for V̂ (x, a), multidimensional x, “legacy”
minimization routine.

• Dynamic Programming is

◦ ubiquitous

◦ compute-intensive,

◦ algorithmically well suited to the master-worker
paradigm supported by MW.

• We are investigating a suitable abstracted
implementation of dynamic programming in MW:
MW-DP.

– p.10/10

	�lue {}
	�lue {Wealth Accumulation Example}
	�lue {Dynamic Programming}
	�lue {Bellman Equation for $V(x)$}
	�lue {Value Function Iteration}
	�lue {Value Function Iteration in MW}
	�lue {MW Implementation Notes}
	�lue {MW Implementation Notes}
	�lue {How Big Can These Get?}
	�lue {Current and Future Work}

