A MW Framework for Solving

Recursive Economic Models

Kenneth L. Judd Che-Lin Su

Hoover Institution Kellogg, Northwestern Univ.
Greg Thain Stephen J. Wright
UW-Madison UW-Madison

Condor Week 2006
April 25, 2006

— p.1/10

Wealth Accumulation Example

Given initial capital stock xg, find V' (xg)

/

max Zoi ﬁtU(Ct,lt)
Vi(xg) = ¢ (enlt) =

st w1 = a0+ f2, 1) — ¢

\

e ¢; and [; are consumption and labor supply at time ¢
e capital evolves according to xy1 1 = xy + f(x4, ;) — ¢

e (3 is the discount factor and u(cy,l;) is the utility given

consumption ¢; and labor supply [;

e V(x) is the value function for oy = x

- p.2/10

Dynamic Programming

As written, this is an optimization problem with infinitely
many variables: ¢, Iy, x4, t =0,1,2,..., so as written it is
iImpossible to solve.

But we can make use of the dynamic programming principle,
based on the observation that the optimal objective V' (zq)
depends only on xy. Also note by the form of the objective
and constraints, we have at the optimal values of x;, ¢, [}
that

V(zo) = ulco,lo) + 525 u(ctt1, let1)

(Co, Z()) -+ ﬁV(SIJl)
u(co, lo) + BV (xo + f(x0,lo) — co).

We can use this formula involving V' to solve for the entire
function V, not just find its value at a given xg.

- p.3/10

Bellman Equation for V (z)

Vi) = n(%a})x u(c,l) + BV (x + f(x,l) — ¢ (1)

e The function V is unknown

e Parametric dynamic programming: Approximate V' (x) by
V(x; a), and solve for the parameters a using the

information in the Bellman equation.
p

o e.g., V(x;a)= Za,jwj

j=0

o find @ € RP such that V(w, a) “approximately” satisfies
the Bellman equation (1), on a finite grid of x values:
L1y L2y ..y Lp.

— p.4/10

Step O.

Step 1.

Step 2.

Step 3.

Value Function lteration

Initialization. Choose functional form for V(z;) and
approximation grid X = {x1,...,2,}.
Make initial guess V' (z;a") and choose € > 0.

Mazimization step. Fix a® = (af)?_;.

For:=1,...,n, compute

V; = T\A/k(xi, a®) = {né}y): u(ci, i) + ﬁ\A/(wj, a”)
where 77 = x; + f(x;,1;) — ¢

Fitting step. Fix ¢,l. Find a"*! s.t.

k+1

a"*! = argmin, ||V (z, a) — v|?

Convergence. If |V (z,a*t) — V(z,d")||o > €, go to

Step 1; otherwise stop and report solution.

- p.5/10

Value Function lteration in MW

Objective: Solve the Bellman equation (1)

MASTER: TInitialization. Choose functional form for V(z;a) and
approximation grid X = {xy,...,x,}.

Make initial guess V' (z;a") and choose € > 0.

WORKER: Mazimization step. Fix a* = (a%)"_,.
For i =1,...,n, compute (in parallel)
v; = TVF(x;, a") = {naﬁ w(ci, ;) + BV (zF, a®)

MASTER: Fitting step. Fix c,l. Find "' s.t.

htl — argmina||V($,a) —||?

MASTER: Convergence. If |V (z,a") — V(z, a*)||s > €, go to
Step 1; otherwise stop and report solution.

a

— p.6/10

MW Implementation Notes

e Each task finds the optimal (¢;,1;) for a batch of z;'s.

o Calls a FORTRAN code (to demonstrate that we
can!) to do minimizations.

o Hot starting - the optimal (¢;,1;) is usually a great
starting point for (c¢jy1,li+1).

o The task “wrapper’ and the FORTRAN code
communicate via files.

— p.7/10

MW Implementation Notes

e act_on_complete_task() on the Master stores the
v;'s as they arrive from the workers. When all workers
have reported, it solves the least-squares problem (fitting

step) to find a**1.

o Could still take a fitting step without waiting for all
tasks to report, to avoid hangups if some workers go
down.

o Could adapt size of task (number of x;'s in the
batch) to accommodate workers of different speeds.

— p.8/10

How Big Can These Get?

Judd: These models can get very Big!!!

e Investment Portfolio

o d assets in the portfolio

o X;={x;1,...,T,} represents j-th asset’s position

o state space: X = X7 X X9 X -+ X Xy

o transaction cost occurs when adjusting asset positions
e Dynamic Principal-Agent Problem

o the CEQ's performance is evaluated by multiple
measures, e.g. stock price, annual profits, etc.

o the company decides the CEQO's compensation package

e Many other economic applications

- p.9/10

Current and Future Work

e Adapting a Fortran90 code with a more complex
representation for V(z, a), multidimensional z, “legacy”
minimization routine.

e Dynamic Programming is

o ubiquitous

o compute-intensive,

o algorithmically well suited to the master-worker
paradigm supported by MW.

e We are investigating a suitable abstracted

implementation of dynamic programming in MW:
MW-DP.

— p.10/10

	�lue {}
	�lue {Wealth Accumulation Example}
	�lue {Dynamic Programming}
	�lue {Bellman Equation for $V(x)$}
	�lue {Value Function Iteration}
	�lue {Value Function Iteration in MW}
	�lue {MW Implementation Notes}
	�lue {MW Implementation Notes}
	�lue {How Big Can These Get?}
	�lue {Current and Future Work}

