Using Condor Glide-ins and GCB to run in a grid environment

Elliot Lipeles, Matthew Norman, Frank Würthwein, University of California, San Diego

Subir Sarkar, Igor Sfiligoi, INFN
Single Point of Submission system
- CAF Daemons accept and authenticate user jobs, handle output.
- Condor Schedd does the real job
Need to move to the Grid

- HEP moving to the Grid
- Nobody wants to finance dedicated nodes
- Need to move
- Want to preserve user interface

“The Grid”

Open Science Grid
Works, but...
- No central matchmaking
- No control over priorities
- Site selection problem
- Black holes can eat most of the user jobs
Condor Glide-Ins

Turn shared Grid resources into temporary private condor resources:
• Submit as a standard Grid job.
• Advertise themselves as a Condor batch slot.
• Run a user job

1) Submit glidein to the Grid
2) Glide-in starts running on a batch slot
3) Startd advertises itself to Collector
4) User job sent to startd
CDF use of Glide-Ins

- **Submitter Daemons**
- **Monitoring Daemons**
- **Glidekeeper Daemon**
- **Glide-in Schedd**
- **Main Schedd**
- **Collector**
- **Negotiator**

- **GlideCAF (Portal)**
- **Startds registering**
 - Condor allows single point of submission to Grid sites.
 - Matchmaking done globally under CDF control.
 - Users are presented with a familiar interface.
 - Jobs run as Condor jobs with all features (such as Condor on Demand) regardless of underlying site batch system.
 - Black holes eat glide-ins, not user jobs

Checks to see if jobs are queued.

- (1) Glidekepper Daemon
- (2) Glide-in Schedd
- (3) If jobs are queued, a glide-in is submitted to a second schedd.
- (4) Glide-ins to Grid
- (5) (6)
Glide-Ins are just regular Startds

```condor_config
DAEMON_LIST = MASTER,STARTD
NEGOTIATOR_HOST = $(HEAD_NODE)
COLLECTOR_HOST = $(HEAD_NODE)

MaxJobRetirementTime=$(SHUTDOWN_GRACEFUL_TIMEOUT)
SHUTDOWN_GRACEFUL_TIMEOUT=288000

# How long will it wait in an unclaimed state before exiting
STARTD_NOCLAIM_SHUTDOWN = 1200

HEAD_NODE = cdfhead.fnal.gov
```

```glidein_startup.sh
validate_node()
local_config()
./condor_master -r $retmins -dyn -f
```
glidein.submit

Universe = Globus
GlobusScheduler = mysite/jobmanager-mybatch

Executable = glidein_startup.sh
transfer_Input_files = condor.tgz

Queue

Cannot use Condor-G transfer mechanism!

Open Science Grid

Only the executable guaranteed to be transferred on EGEE.
Use a Web server for file delivery

```
validate_node()
wget http://cdfhead.fnal.gov/condor.tgz
sha1sum knownSHA1 condor.tgz
if [ $? -eq 0 ]; then
tar -xzf condor.tgz
local_config()
./condor_master -r $retmins -dyn -f
fi
```
HTTP Proxy can reduce traffic to head node

```
validate_node()
env http_proxy=cdfsquid1.fnal.gov
wget http://cdfhead.fnal.gov/condor.tgz
sha1sum knownSHA1 condor.tgz
if [ $? -eq 0 ]; then
tar -xzf condor.tgz
local_config()
./condor_master -r $retmins -dyn -f
fi
```
Several GlideCAFs deployed

CNAF (Bologna, Italy)

CNAF six month history plot: Note over a thousand VMs used for long period of time.

SDSC (San Diego, CA, USA)

SDSC History Plot showing number of VMs run.

Fermilab (Batavia, IL, USA)

IN2P3 (Lyon, France)

MIT (Boston, MA, USA)
Several GlideCAFs deployed

CNAF (Bologna, Italy)
SDSC (San Diego, CA, USA)
Fermilab (Batavia, IL, USA)
IN2P3 (Lyon, France)
MIT (Boston, MA, USA)

CNAF six-month history plot: Note over a thousand VMs used for a long period of time.

SDSC History Plot showing number of VMs run.

CDF head node near the worker nodes
Gliding to multiple sites a problem

UDP packets often lost over WAN

Firewalls and NATs make it impossible
The Solution? GCB and TCP

With GCB, firewalls are no longer a problem.
Generic Connection Brokering (GCB)

GCB
• Now shipped with current Condor development versions
• Designed to allow connections to pass over firewalls
• Part of Condor – No software to install on Grid site

1) Establish a persistent TCP connection to a GCB
2) Advertise itself and the GCB connection
3) To communicate, schedd sends own address to GCB
4) Schedd address forwarded
5) Establish a TCP connection to the schedd
6) A job can be sent to the startd

GCB must be on a public network
Enabling GCB just a matter of configuration

```bash
condor_config

DAEMON_LIST = MASTER,STARTD
NEGOTIATOR_HOST = $(HEAD_NODE)
COLLECTOR_HOST = $(HEAD_NODE)

MaxJobRetirementTime=$(SHUTDOWN_GRACEFUL_TIMEOUT)
SHUTDOWN_GRACEFUL_TIMEOUT=288000

# How long will it wait in an unclaimed state before exiting
STARTD_NOCLAIM_SHUTDOWN = 1200

HEAD_NODE = cdfhead.fnal.gov

# GCB configuration
NET_REMAP_ENABLE = true
NET_REMAP_SERVICE = GCB
NET_REMAP_INAGENT = cdfgcb1.fnal.gov
```

```
# glidein_startup.sh

wget http://cdfhead.fnal.gov/condor.tgz
sha1sum knownSHA1 condor.tgz
if [ $? -eq 0 ]; then
tar -xzf condor.tgz
local_config()
./condor_master -r $retmins -dyn -f
fi
```

Status of the GCB-based Condor pool

GCB Performance is currently being tested:

- Can coordinate up to 400-500 VMs from a single modified GCB node
- Functions well at all sites that allow outbound connectivity

Future plans
- Latest official version had scaling problems: we are testing a pre-release
- Attempts will be made to scale past several hundred VMs

Scaling test: ~600 VMs running on multiple grid sites
Future Development

We would like to use condor to combine our current clusters into one super-cluster.

This means testing to confirm that Condor scales to the appropriate level.
Summary

Using Condor took CDF to the Grid

• Switching to glide-ins was easy

• **Matchmaking done globally under CDF control**
 • Late binding removes the necessity to choose between sites

• **No need for any add-ons at the Grid site**

• We could preserve our interface

• We look forward to working with Condor in the future