Co-Scheduling Data and Computation using Condor and SRM

A collaboration by UW-Madison and Lawrence Berkeley National Labs
Presented by Derek Wright, Paradyn/Condor Week 2005, Madison, WI

What problem are we solving?

Many computational problems require access to
extremely large (and rapidly growing) datasets.
This data is often housed in mass storage tape
libraries, where the cost of retrieval is high.
During analysis, users typically extract subsets
of the data and perform computations on them.
It is a well-known difficult problem to build
systems that execute the computations and data
movement in a coordinated manner. Our
solution is an attempt to create such a system
using existing mature technologies: Condor and
SRM.

What is Condor?

What a silly question at a conference like this.
You haven’t been paying close enough attention.
Read www.cs.wisc.edu/condor if you must.

What is SRM?

SRM stands for “Storage Resource Manager”. It
is a system developed at Lawrence Berkeley
Labs under the guidance of Arie Shoshani to
manage and provide a consistent interface to
many types of data storage devices. An SRM
can manage free space, file lifetimes, file
sharing, caching policies, garbage collection,
access to remote file locations, and other
functionality. There are different kinds of SRMs
that interface with various types of storage. For
example, there are DRMs (“Disk Resource
Managers”) to manage disks, TRMs (“Tape
Resouce Managers”) to manage tertiary storage
systems, and HRMs (“Heirarchal Resource
Manager”) to manage staging files from tape
library to a disk cache (a combination of a DRM
and a TRM).

How will these solve the problem?

Our solution to the co-scheduling problem is to
start with a compute cluster where each node
only has a local disk cache (no shared file
system for the data). We use a DRM to manage
the local disk cache on each node, and give
Condor access to information about the files in
the cache for scheduling the computational jobs.
The DRM handles all of the problems of the disk
cache itself: garbage collection, staging files,
managing file lifetimes, file sharing, etc.

Condor uses matchmaking to schedule jobs on
compute nodes that have the data the job is
looking for, and handles all the work to spawn,
monitor, and manage the computational tasks.
The contribution of our work is to allow Condor
to use knowledge of the state of the disk cache
for matching computation with data.

How does Condor talk to the DRM?

The Condor daemon that manages compute
nodes is the startd, which generates a ClassAd to
describe the machine. There is a hook in the
startd for generating dynamic data that can be
inserted into these ClassAds. This hook was
added to support the Hawkeye monitoring tool,
but is present in every startd as the
“STARTD_CRON_JOBS” config file setting.
Using this hook, we wrote a simple script to
query the DRM for the files in the cache and
publish those in the ClassAd for that node.
However, since the number of files in the cache
can be enormous, we only query for files that are
requested by a job currently in the system and
publish information about those files. This
keeps the size of the ClassAds much smaller,
and therefore, easier to use.

Did you have to modify Condor or SRM?

We didn’t modify Condor at all. Everything in
our system uses the stock Condor distribution
off the web site. SRM was only modified to
provide a query interface so that the startd’s
monitoring script could get a list of files in the
DRM’s file cache.

How does it work?

An end user submits an analysis task and a
description of the necessary data subset to a
component called a “Job Decomposition
Module” or “JDM”. The JDM breaks up the
task into individual Condor jobs, each one with a
requirement for a specific file in the data set.
The JDM gives a list of files and data requests to
the “File Scheduling Module”, or “FSM”.

The FSM maintains a list of the files required by
all jobs in the system and how many jobs require
each file (the file’s “popularity”). The FSM
provides this list of files to the script the startd

uses to query the DRMs. The FSM submits all
tasks as individual Condor jobs monitors their
progress by reading the UserLog written by
Condor (just like DAGMan does). Each job has
its own requirements expression to match a
machine with the right file(s).

The startd publishes its usual machine ClassAd
but also includes the information about files in
the disk cache on each node. The regular
Condor negotiation cycle matches idles jobs in
the queue with available machine slots where a
required data file already exists. If the FSM
notices files that are needed by jobs but do not
exist in the system, it schedules a file staging
request from the HRM controlling the mass
storage device. If a large number of jobs require
the same file and that file is only on a small
number of nodes, the FSM can also schedule the
file to be replicated onto other compute nodes,
either from the HRM or a neighboring DRM.

Who makes scheduling decisions (and how)?
The main scheduling decisions are made by the
FSM. Since the cost of moving files from

tertiary storage is high, the important decisions
are when and where to stage files. The trick is
to find the right algorithms for staging files to
optimize the behavior of the system in various
dimensions. Do you want to minimize the total
number of transfers from tape? Do you want to
maximize the total utilization of the cluster? Do
you want to minimize the aggregate time jobs
wait in the queue? Currently, we are
experimenting with different file staging
algorithms and measuring these metrics. We are
hoping to present our results at the SSDBM’05
conference.

One of the most promising algorithms so far
involves maintaining the notion of the total file
popularity of any disk cache. Here, we add the
total popularities of all the active files in each
cache. All file staging and replication decisions
are made based on this total popularity. If a disk
cache’s popularity reaches 0, there are no jobs in
the system that want any of its files, and we need
to start staging new files there. When we decide
to replicate a hot file, we find the machine with
the lowest total popularity.

Head Node
Jobs, data
End User Wy JDM schedd ‘gb
: 3 ueue
¢ Task and = Submit job‘sv
 file list © to Cofidor | heootiator
' AA o . .
File staging requests =~ [~ |, " and monitor Matching jobs
FSM |& results with compute
: collector
. —y—————— nodes that have
7 required files
b el ClassAds w/
List of ! File Data
: data files
. requested startd
startd S~ * /ﬂ Stal’td
File query script |} File Staging or Replication g
..... » DRM + / I DRM
----- > -* File data HRM
— DRM ‘ .
Disc Disc
Cache Disc Cache
Cache
Compute Node Compute Node

Compute Node (Detail)

Tape Library

