Information and Control in Gray-Box Systems

Andrea C. Arpaci-Dusseau Remzi H. Arpaci-Dusseau

Department of Computer Science University of Wisconsin--Madison

Motivation

- Problem: Many OS ideas not promptly deployed
- Reason: Modifying OS is difficult or impossible
 - Open-source code
 - Large, complex body of code
 - Convince others to trust your modifications
 - Closed-source code
 - Convince others to implement functionality
 - Motivating applications do not exist
- How to disseminate OS research without any changes to OS?

Thesis

- Large class of "OS-like" services can be provided without modification
 - Can acquire information about internal state of OS
 - Can impose control on behavior of OS
- Key: Treat OS as gray-box component
 - Have knowledge of basic algorithms employed by OS
 - Infer state: Combine knowledge with observations
 - New control: Use knowledge for desired side-effects

Approach

Outline

- Motivation
- Gray-Box Techniques
- ICL Case Studies
 - File-Cache-Content Detector (FCCD)
 - File-Layout-Detector and Controller (FLDC)
 - Memory-based Admission Controller (MAC)
- Conclusions and Future Work

Gray-Box Techniques: Information

- Obtain knowledge of gray-box OS
 - Algorithmic: Code, documentation, or experience
 - Parametric: Micro-benchmark OS
- Monitor inputs and outputs of OS
 - Observe covert channels (e.g., time operation takes)
 - Insert probes (i.e., requests solely to observe output)
- Infer current OS state
 - Model or simulate OS given observations
 - Use simple statistics

Gray-Box Techniques: Control

- Move OS to known state
 - Difficult to infer current state
 - Easier to model given known initial state
- Reinforce behavior via feedback
 - Difficult given arbitrary application behavior
 - Use ICL to manage interactions

Outline

- Motivation
- Gray-Box Techniques
- Case Studies
 - File-Cache-Content Detector (FCCD)
 - File-Layout-Detector and Controller (FLDC)
 - Memory-based Admission Controller (MAC)
- Conclusions and Future Work

ICL #1: File-Cache Content Detector (FCCD)

- Goal
 - Reorder I/O requests to first use data in file cache
 - Similar to SLEDs
- Proposed interface and usage
 - Application specifies file or list of files to be accessed
 - ICL returns list of (offset, length) pairs for in-cache data
 - Application reorders accesses accordingly
- Desired OS state information
 - Which data blocks are in file cache?

FCCD Approach: Probe to infer cache state

- Read byte from each requested block
- Measure time of access
 - Fast probe --> Block in cache
 - Slow probe --> Block not in cache

- Probes to disk have high overhead
- Probes are destructive (Heisenberg effect)

File-Cache Probes: Low overhead, high accuracy

- Probe state must correlate w/ neighbors
- Algorithmic knowledge
 - Applications access files w/ temporal & spatial locality
 - Replacement policies are locality based

- Blocks of file replaced in contiguous regions
- A few probes predict state of entire region

FCCD Challenges

- #1: What is access unit of application?
 - Size of contiguous region access unit of application
- Solution: Reinforce behavior with feedback
 - ICL returns blocks in unit of access
- #2: How to differentiate file cache hit from miss?
 - Want platform independence
- Solution: Sort by probe time
 - Handles multiple levels of storage hierarchy

FCCD Evaluation: Single-File Scan on Linux

FCCD Evaluation: Multi-Platform Performance

FCCD Summary: Gray-Box Techniques

- Leverage algorithmic knowledge
 - State of block correlated with state of neighbors
- Insert probes
 - Measure time to read byte from page
 - Limit number due to Heisenberg effect
- Reinforce behavior with feedback
 - ICL determines access pattern of application

Works well on all 3 OSes

Limitation: Cannot predict very small files

Outline

- Motivation
- Gray-Box Techniques
- Case Studies
 - File-Cache-Content Detector (FCCD)
 - File-Layout-Detector and Controller (FLDC)
 - Memory-based Admission Controller (MAC)
- Conclusions and Future Work

ICL #2: File Layout Detector & Controller (FLDC)

- Goal: Reorder I/O requests to minimize seeks
 - Determine location of blocks on disk
- Gray-Box Techniques
 - Leverage detailed FFS algorithmic knowledge
 - Directory in cylinder group; Layout matches creation order
 - Insert probes
 - Call stat() to obtain I-node number, sort by I-node number
 - Move system to known state
 - Periodically refresh directory layout
- Z Works well on 3 OS's, Composes with FCCD
- z Limitations: FFS-specific, Overhead of control

ICL #3: Memory-based Admission Controller (MAC)

- Goal: Avoid thrashing memory system
 - Determine and allocate available memory
- Gray-Box Techniques
 - Leverage only high-level algorithmic knowledge
 - Page replaced when physical memory full
 - Insert probes
 - Measure time to write to increasing size
 - Move system to known state
 - Probe first to make pages resident, probe again to check
- Z Handles multiple memory and I/O-intensive apps
- z Limitations: Only Linux, High probe overhead

Conclusions and Future Work

- Gray-box approach
 - Migration path for new ideas
 - Combine gray-box knowledge with observations
 - Promising initial case studies
- Future Work
 - Understand limits of gray-box techniques
 - Evaluate more OS platforms and applications
 - Develop additional ICL case studies
 - Allow others to use gray-box techniques
 - Provide Gray Toolbox
 - Explore advanced gray-box techniques