
Information and Control
in Gray-Box Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau
Department of Computer Science
University of Wisconsin--Madison

Motivation

z Problem: Many OS ideas not promptly deployed
z Reason: Modifying OS is difficult or impossible

y Open-source code
x Large, complex body of code
x Convince others to trust your modifications

y Closed-source code
x Convince others to implement functionality
x Motivating applications do not exist

z How to disseminate OS research without any
changes to OS?

Thesis

z Large class of “OS-like” services can be
provided without modification
y Can acquire information about internal state of OS

y Can impose control on behavior of OS

z Key: Treat OS as gray-box component
y Have knowledge of basic algorithms employed by OS

y Infer state: Combine knowledge with observations

y New control: Use knowledge for desired side-effects

Approach

z Information and Control Layers (ICLs)

Operating System

Application

ICL

Application
Unmodified
Application

ICL

Probe

In
pu

ts

O
ut

pu
ts

In
pu

ts

O
ut

pu
ts

In
pu

ts

O
ut

pu
ts

Outline

z Motivation

z Gray-Box Techniques

z ICL Case Studies
y File-Cache-Content Detector (FCCD)

y File-Layout-Detector and Controller (FLDC)

y Memory-based Admission Controller (MAC)

z Conclusions and Future Work

Gray-Box Techniques:
Information

z Obtain knowledge of gray-box OS
y Algorithmic: Code, documentation, or experience
y Parametric: Micro-benchmark OS

z Monitor inputs and outputs of OS
y Observe covert channels (e.g., time operation takes)
y Insert probes (i.e., requests solely to observe output)

z Infer current OS state
y Model or simulate OS given observations
y Use simple statistics

Gray-Box Techniques:
Control

z Move OS to known state
y Difficult to infer current state
y Easier to model given known initial state

z Reinforce behavior via feedback
y Difficult given arbitrary application behavior
y Use ICL to manage interactions

Outline

z Motivation

z Gray-Box Techniques

z Case Studies
y File-Cache-Content Detector (FCCD)

y File-Layout-Detector and Controller (FLDC)

y Memory-based Admission Controller (MAC)

z Conclusions and Future Work

ICL #1: File-Cache Content
Detector (FCCD)
z Goal

y Reorder I/O requests to first use data in file cache
y Similar to SLEDs

z Proposed interface and usage
y Application specifies file or list of files to be accessed
y ICL returns list of (offset, length) pairs for in-cache data
y Application reorders accesses accordingly

z Desired OS state information
y Which data blocks are in file cache?

FCCD Approach:
Probe to infer cache state

z Read byte from each requested block
z Measure time of access

y Fast probe --> Block in cache
y Slow probe --> Block not in cache

§ Probes to disk have high overhead
§ Probes are destructive (Heisenberg effect)

File A

File cache

Fast
Slow

File-Cache Probes:
Low overhead, high accuracy

z Probe state must correlate w/ neighbors
z Algorithmic knowledge

y Applications access files w/ temporal & spatial locality
y Replacement policies are locality based

y Blocks of file replaced in contiguous regions
y A few probes predict state of entire region

File cache

File

FCCD Challenges

z #1: What is access unit of application?
y Size of contiguous region ≈ access unit of application

z Solution: Reinforce behavior with feedback
y ICL returns blocks in unit of access

z #2: How to differentiate file cache hit from miss?
y Want platform independence

z Solution: Sort by probe time
y Handles multiple levels of storage hierarchy

FCCD Evaluation:
Single-File Scan on Linux

File Size (GB)

Traditional
Gray-box

Worst-case (disk)

Best-case (m
emory)T

im
e

(s
)

20

40

60

80

100

120

0.2 0.60.4 0.8 1.0 1.2 1.4 1.6 1.8

FCCD Evaluation:
Multi-Platform Performance

Linux BSD Solaris Linux BSD Solaris

0.2

0.4

0.6

0.8

1.0

1.2

Scan Search

Traditional (Cold cache)
Traditional (Warm cache)

Gray-box (Warm cache)

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

FCCD Summary:
Gray-Box Techniques

z Leverage algorithmic knowledge
y State of block correlated with state of neighbors

z Insert probes
y Measure time to read byte from page

y Limit number due to Heisenberg effect

z Reinforce behavior with feedback
y ICL determines access pattern of application

Works well on all 3 OSes

Limitation: Cannot predict very small files

Outline

z Motivation

z Gray-Box Techniques

z Case Studies
y File-Cache-Content Detector (FCCD)

y File-Layout-Detector and Controller (FLDC)

y Memory-based Admission Controller (MAC)

z Conclusions and Future Work

ICL #2: File Layout Detector
& Controller (FLDC)
z Goal: Reorder I/O requests to minimize seeks

y Determine location of blocks on disk

z Gray-Box Techniques
y Leverage detailed FFS algorithmic knowledge

x Directory in cylinder group; Layout matches creation order

y Insert probes
x Call stat() to obtain I-node number, sort by I-node number

y Move system to known state
x Periodically refresh directory layout

z Works well on 3 OS’s, Composes with FCCD
z Limitations: FFS-specific, Overhead of control

ICL #3: Memory-based
Admission Controller (MAC)

z Goal: Avoid thrashing memory system
y Determine and allocate available memory

z Gray-Box Techniques
y Leverage only high-level algorithmic knowledge

x Page replaced when physical memory full

y Insert probes
x Measure time to write to increasing size

y Move system to known state
x Probe first to make pages resident, probe again to check

z Handles multiple memory and I/O-intensive
apps

z Limitations: Only Linux, High probe overhead

Conclusions and
Future Work

z Gray-box approach
y Migration path for new ideas
y Combine gray-box knowledge with observations
y Promising initial case studies

z Future Work
y Understand limits of gray-box techniques

x Evaluate more OS platforms and applications
x Develop additional ICL case studies

y Allow others to use gray-box techniques
x Provide Gray Toolbox
x Explore advanced gray-box techniques

