Information and Control
In Gray-Box Systems

Andrea C. Arpaci-Dusseau

Remzi H. Arpaci-Dusseau

Department of Computer Science
University of Wisconsin--Madison



Motivation

Problem: Many OS ideas not promptly deployed

Reason: Modifying OS is difficult or impossible

Open-source code
Large, complex body of code
Convince others to trust your modifications

Closed-source code
Convince others to implement functionality
Motivating applications do not exist
I How to disseminate OS research without any
changes to OS?



Thesis

Large class of “OS-like” services can be
provided without modification
Can acquire information about internal state of OS
Can impose control on behavior of OS

Key: Treat OS as gray-box component
Have knowledge of basic algorithms employed by OS
Infer state: Combine knowledge with observations
New control: Use knowledge for desired side-effects



Approach

Information and Control Layers (ICLS)

. . Unmodified
Appllaon Application




Outline

Motivation
Gray-Box Technigues

ICL Case Studies
File-Cache-Content Detector (FCCD)
File-Layout-Detector and Controller (FLDC)
Memory-based Admission Controller (MAC)

Conclusions and Future Work



Gray-Box Techniques:
Information

Obtain knowledge of gray-box OS
Algorithmic: Code, documentation, or experience
Parametric: Micro-benchmark OS

Monitor inputs and outputs of OS
Observe covert channels (e.g., time operation takes)
Insert probes (i.e., requests solely to observe output)

Infer current OS state
Model or simulate OS given observations
Use simple statistics



Gray-Box Techniques:
Control

Move OS to known state
Difficult to infer current state
Easier to model given known initial state

Reinforce behavior via feedback
Difficult given arbitrary application behavior
Use ICL to manage interactions



Outline

Motivation
Gray-Box Technigues

Case Studies
File-Cache-Content Detector (FCCD)
File-Layout-Detector and Controller (FLDC)
Memory-based Admission Controller (MAC)

Conclusions and Future Work



ICL #1: File-Cache Content
Detector (FCCD)

Goal

Reorder I/O requests to first use data in file cache
Similar to SLEDs

Proposed interface and usage
Application specifies file or list of files to be accessed
ICL returns list of (offset, length) pairs for in-cache data
Application reorders accesses accordingly

Desired OS state information
Which data blocks are In file cache?



FCCD Approach:
Probe to infer cache state

Read byte from each requested block

Measure time of access
Fast probe --> Block in cache
Slow probe --> Block not in cache

File A

Fast

File cache

~ 8

Probes to disk have high overhead
Probes are destructive (Heisenberg effect)



File-Cache Probes:
Low overhead, high accuracy

Probe state must correlate w/ neighbors

Algorithmic knowledge
Applications access files w/ temporal & spatial locality
Replacement policies are locality based

File

File cache @

Blocks of file replaced in contiguous regions
A few probes predict state of entire region




FCCD Challenges

#1: What Is access unit of application?
Size of contiguous region » access unit of application

Solution: Reinforce behavior with feedback
ICL returns blocks in unit of access

#2: How to differentiate file cache hit from miss?
Want platform independence

Solution: Sort by probe time
Handles multiple levels of storage hierarchy



FCCD Evaluation:
Single-File Scan on Linux

Traditional ——

120 Gray-box—s—

100

02 04 06 0810 12 14 16 1.8
File Size (GB)



FCCD Evaluation:
Multi-Platform Performance

J TraditionaT (Cold ca'che) ]
Traditional (Warm cache) R
Gray-box (Warm cache)

sl
O N

o ©
o 00

O
I

O
N

Normalized execution time

]
3
Linux BSD Solaris Linux BSD Solaris
Scan Search



FCCD Summary:
Gray-Box Techniques

Leverage algorithmic knowledge
State of block correlated with state of neighbors

Insert probes
Measure time to read byte from page
Limit number due to Heisenberg effect

Reinforce behavior with feedback
ICL determines access pattern of application

Works well on all 3 OSes
Limitation: Cannot predict very small files



Outline

Motivation
Gray-Box Technigues

Case Studies
File-Cache-Content Detector (FCCD)
File-Layout-Detector and Controller (FLDC)
Memory-based Admission Controller (MAC)

Conclusions and Future Work



ICL #2: File Layout Detector
& Controller (FLDC)

Goal: Reorder I/O requests to minimize seeks
Determine location of blocks on disk

Gray-Box Techniques
Leverage detailed FFS algorithmic knowledge
Directory in cylinder group; Layout matches creation order

Insert probes
Call stat() to obtain I-node number, sort by I-node number

Move system to known state
Periodically refresh directory layout

Works well on 3 OS’s, Composes with FCCD
Limitations: FFS-specific, Overhead of control



ICL #3: Memory-based
Admission Controller (MAC)

Goal: Avoid thrashing memory system
Determine and allocate available memory

Gray-Box Techniques

Leverage only high-level algorithmic knowledge
Page replaced when physical memory full

Insert probes
Measure time to write to increasing size

Move system to known state
Probe first to make pages resident, probe again to check
Handles multiple memory and I/O-intensive
apps
Limitations: Only Linux, High probe overhead



Conclusions and
Future Work

Gray-box approach
Migration path for new ideas
Combine gray-box knowledge with observations
Promising initial case studies

Future Work

Understand limits of gray-box techniques
Evaluate more OS platforms and applications
Develop additional ICL case studies

Allow others to use gray-box techniques

Provide Gray Toolbox
Explore advanced gray-box techniques



