
Appendix B

The real purpose of scientific method is to make sure Na-
ture hasn’t misled you into thinking you know something
you don’t actually know.
If you get careless or go romanticizing scientific informa-
tion, Nature will soon make a complete fool out of you.
It does it often enough anyway when you don’t give it op-
portunities.

— Robert Pirsig
Zen and the Art of Motorcycle Maintenance,p. 94

Performance of the Implementations

This appendix provides some empirical tests measuring the performance of the proto-
type implementation. The absolute performance numbers are, in a sense, not important
as the hardware and the implementation are continually changing. These benchmarks
are provided to:

� Provide empirical evidence of the scaling properties of the techniques, as ana-
lyzed in Section 4.2.

� Give some idea of the scale of problems solvable with currently (circa 1993)
available hardware.

� Provide some intuition for where the performance bottlenecks are.

Understanding the performance of a program running on a modern, high-performance
workstation is a difficult task. Complicated factors such as memory hierarchy orga-
nization interact in complex ways. For example, different problems may distribute
themselves differently along the lines of the data cache. Although we have attempted
to design benchmarks that reduce these types of effects, any numbers must be viewed
with some caution.

The benchmarks were run on a Silicon Graphics Indigo 2 workstation, except where
noted. The machine had a 150MHz R4400 processor and 32 megabytes of main mem-
ory. All of the problems fit into main memory on the machine, so no paging occurred.
The clock accuracy on the workstation is 10 milliseconds. Where greater precision is
reported, it was found by averaging over enough trials that the extra digit remains stable
as more trials are run. Some of the simpler benchmarks were run on a Silicon Graphics
Personal Iris 4D/25, with a 20MHz R3000 processor, 16 megabytes of main memory,

225



226 APPENDIX B. PERFORMANCE OF THE IMPLEMENTATIONS

Figure B.1: A sample run of the synthetic benchmark withm = 50 andn = 25: Lines are
used to denote pairs of points with a control placed between them. Each step, the controls push
the points closer to one another.

and small instruction and data caches. Current generation personal computers provide
significantly better performance than this older machine. Where figures are provided
for this machine, they will be explicitly noted.

B.1 A Synthetic Benchmark

In order to evaluate the performance and scalability of the solver, a contrived problem
was developed that can be arbitrarily scaled. The problem is designed to mimic real-
istic problems in which the constraints may have random structure. An instance of the
problem can be defined for any number of variablesm and constraintsn: The problem
placesm=2 points on the plane and placesn controls, each connecting 2 points. A
control computes the distance between the points and has aGoTowards controller
placed on it.

A synthetic workload generator creates instances of the problem. It randomly dis-
tributes the points in a 10x10 square. Pairs of points are selected to have the distance
controls placed on them. The workload generator insures that there are no duplicate
controls, but makes no other checks on the distribution of the constraints. An example
run is shown in Figure B.1.

Generating arbitrarily sized synthetic workloads for the solver that are reliable mea-
sures of performance is difficult. The speed of the solver depends almost as much on the
structure of the constraint problem as it does on its size. This can create a bias based
on the density of constraints in variables. For example, consider an example with 2
constraints. If there are only 3 variables, no matter how the 2 constraints are placed,
the constraints will be in a single partition. However, if there are 4 variables, the con-
straints might not access any common variables, so the solver will partition the matrix.
As the number of variables goes up, the probability of this goes up as well. This can
lead to the counterintuitive result that for a fixed number of constraints, larger numbers
of variables might actually be faster to solve. For randomly generated problems of the
same size, there can be substantial differences in solving time based on how “hard” the
system is to solve: if one set of constraints is more tightly connected than another.



B.1. A SYNTHETIC BENCHMARK 227

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250 300 350

ti
m

e
 p

e
r 

tr
ia

l 
(s

e
c
o

n
d

s
)

number of constraints n

Figure B.2: Results of the synthetic benchmark. The ordinate enumerates the number of
controls, the abscissa is the time required to run 5 4th order Runge-Kutta steps. Error bars
represent the range of time for each value. The central ticks mark the mean values for the
trials.m = 400 variables were used in all trials.

To run the trials, 5 constraint configurations and 5 initial positions were generated
for each problem size. This leads to 25 different trials per problem size. Each trial
was run for 5 Runge-Kutta 4 steps (that is, the differential optimization was solved 20
times). Each trial was duplicated a small number of times.

Graphing the results of running the trials for a fixed number of variables and varying
number of constraints yields an expected result, as shown in Figure B.2. The error bars
represent the range of time for each problem, while the ticks and line graph show the
mean value. The graph shows the expected quadratic performance, but also shows a
wide variance of times for a given problem size. Some of this variance can be attributed
to how different randomly generated constraint sets can be partitioned.

A similar experiment fixed the number of constraints, but varied the number of
variables. The results shown in Figure B.3 are inconclusive: the effects of problem
“hardness” are more significant than the number of variables. This is sensible because
there are very few parts of the algorithm that areO(m); and all of these have very small
constants. While theO(n2) is able to dominate the problem hardness, theO(m) terms
are not.



228 APPENDIX B. PERFORMANCE OF THE IMPLEMENTATIONS

0.3

0.4

0.5

0.6

0.7

0.8

300 320 340 360 380 400 420 440 460 480 500
number of variables n

ti
m

e
 p

e
r 

tr
ia

l 
(s

e
c
o

n
d

s
)

Figure B.3: Results of the synthetic benchmark for 150 constraints and a varying number of
variables.

In absolute terms, if we require 5 Runge-Kutta steps per second, an Indigo 2 can
handle approximately 200 point distance constraints on 400 variables. This, of course,
leaves no time for redraw. More realistically, if we wanted to leave half of the time for
drawing and other system functions, the benchmarks could handle approximately 150
constraints. The absolute performance numbers are not really what is important here
as they depend heavily on the implementation, the machine, and the problem.

To understand the performance of the benchmarks, a number of trials were run with
a version of the benchmark driver compiled with thepixie profiling tool available on
the Iris. Pixie provides detailed information about where a program spends it time by
instrumenting the code. Pixie’s output is not hierarchical, so only low level procedures
can be accurately monitored.

Table B.1 shows the results of running a number of trials through pixie. The table
displays the time in percent that the program spent in the most used basic blocks. The
top two lines of the table are important: a very large part of the program’s running
time is spent in two lines of code. These two lines of code are the half-sparse matrix
times vector and half-sparse matrix transpose time vector inner loops. This is not sur-
prising because these form the inner loops of theO(n2) part of the algorithm, so as
the number of constraints grow, the percentage of time in these loops also grows. The
linComb function computes the linear combination of vectors, and is used to com-
pute the gradients of function blocks. ThecgradI procedure actually executes the
conjugate-gradient solver, but its time does not include time spent in the procedures
it calls, including the matrix vector multiply functions, anddot , a function that com-
putes the dot product of two vectors. All calls todot in this program occur inside of



B.2. APPLICATION BENCHMARKS 229

procedure % time,n = 150 % time,n = 200 % timen = 250

HSpMat::multT 27.01 28.66 29.96
HSpMat::mult 18.62 21.21 23.04
linComb 8.39 6.49 4.84
cgradI 5.08 6.49 6.58
dot 4.16 4.76 5.22

Table B.1: Profiling results for the synthetic constraint benchmark. Numbers represent the
percent of total running time spent in the basic procedure blocks. A few of the most time
consuming parts of the program are shown.

the conjugate-gradient solver.

B.2 Application Benchmarks

To provide a more realistic evaluation of the absolute performance of the prototypes
running on the Iris, the performance of various Bramble applications was measured
on a number of examples. In each case, the example object was created beforehand.
The timings are measured only while the solver is running with all of the controls, for
example during dragging or while a mechanism is being driven by motors.

B.2.1 Direct Manipulation Interaction Techniques

Traditional direct manipulation interaction techniques involve a small number of con-
trols, usually the same number as the degrees of freedom of the input device. When
implemented in the differential approach, these direct manipulation techniques usually
require some slightly larger number of controls, but still a small constant.

Table B.2 describes the performance of Bramble while executing some of the direct
manipulation methods discussed this thesis. All of the techniques require short enough
periods of time such that solving will not be the bottleneck in interactive performance.
Redraw, which must be done in a conventional direct manipulation implementation as
well, is more likely to limit the frame rate. Statistics are also provided for the Personal
Iris.

B.2.2 Constrained Models

One use of the differential approach is to permit the user to specify an arbitrary num-
ber of controls, in order to provide a constraint-based interface. Here we discuss the
performance for constraint benchmarks using Bramble applications with constraint-
based interfaces. The important concern here is how large a model can the user create



230 APPENDIX B. PERFORMANCE OF THE IMPLEMENTATIONS

Indigo 2 times per Personal Iris times per
controls RK4 step redraw RK4 step redraw

dragging a spiralSection 8.1.1 2 .001 .01 .01 .05
3D Jack WidgetSection 8.3.6 2 .003 .02 .03 .11
Image AlignmentSection 8.2.4 8 .009 .02 .06 .07

Table B.2: Performance of various direct manipulation techniques on two different comput-
ers. Time is in seconds per 4th order Runge-Kutta step, and for complete redraw of the view
window.

before performance becomes unacceptable. The frame rate at which direct manipula-
tion becomes unacceptable seems to vary by application, task, and user. However, the
experiments here show that the prototype implementations can permit the direct ma-
nipulation of models with dozens of interactive controls, and this number can be raised
substantially using the methods of Section 4.4.

A set of benchmarks was run with the MechToy application. For the first set of
tests, a number of 5 bar linkages were animated by enabling their motors. An example
is shown in Figure B.4. Because the mechanisms are all independent, we would expect
that the performance would be linear. Even though the MechToy program does not
use partitioning, the conjugate-gradient solver does partitioning automatically for this
problem. The expected linear behavior is evidenced in the performance of the system,
plotted in Figure B.5. For the case of 9 mechanisms (the most that fit easily on the
screen), the Runge-Kutta 4 steps averaged 56 milliseconds, each call to the conjugate-
gradient solver averaged 8 milliseconds, and each Jacobian construction averaged 3
milliseconds. Redrawing averaged 46 milliseconds.

The next mechanism example is more tightly coupled: all the pieces are intercon-
nected to form a single 4 bar linkage. As the motor rotates, each “truss” rocks back
and forth. No matter how big the mechanism, it only has a single degree of freedom.
As more parallel trusses are added, the number of variables and constraints grow. A
picture of the mechanism with 5 trusses is shown in Figure B.6. Performance figures
are given in Table B.3, and graphed in Figure B.7 This example shows that even with
completely connected constraints, models with around 100 constraints are practical on
a machine such as the Indigo 2.



B.2. APPLICATION BENCHMARKS 231

Figure B.4: MechToy animating 9 5-bar linkage mechanisms. Each mechanism is indepen-
dent of the others, although mechtoy simulates them simultaneously.
.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

1 3 5 7 9 11 13 15
Number of Linkages (1/8 # constraints)

S
ec

on
ds

 p
er

 4
th

 O
rd

er
 S

ol
ve

r 
S

te
p

Figure B.5: Performance of MechToy simulating a number of 5 bar linkages simultaneously.
The number of constraints is 8 times the number of linkages.



232 APPENDIX B. PERFORMANCE OF THE IMPLEMENTATIONS

Figure B.6: A 4-bar linkage with 5 parallel trusses.

number of seconds per frames/sec
trusses vars consts step cgrad jac draw 1 step 2 steps

1 19 18 .013 .002 .001 .015 35.4 25.1
2 37 36 .029 .005 .002 .022 19.8 12.9
3 55 54 .048 .008 .002 .029 12.9 8
4 73 72 .068 .012 .003 .038 9.6 5.8
5 91 90 .093 .017 .004 .044 7.3 4.3
6 109 108 .121 .023 .005 .051 5.5 3.4
7 127 126 .159 .031 .005 .062 4.7 2.6

Table B.3: Performance figures for MechToy simulating a mechanism with varying numbers
of parallel trusses. Columns denote the time for an average 4th order Runge-Kutta step, solving
the linear system with conjugate-gradient, forming the Jacobian, and redrawing the entire view.
4 calls tocgrad and Jacobian formation are required for each step. The rightmost columns
show the frame rates using 1 and 2 solver steps per redraw.



B.2. APPLICATION BENCHMARKS 233

0.00

0.05

0.10

0.15

0.20

1 2 3 4 5 6 7
number of trusses

tim
e 

(s
ec

on
ds

)

step
redraw

Figure B.7: Performance running the simulation of the truss mechanism.O(n2) solving time
quickly grows to dominate theO(m) drawing time.



234 APPENDIX B. PERFORMANCE OF THE IMPLEMENTATIONS


