
Appendix A

The world is your exercise book, the pages on which you
do your sums. It is not reality, although you can express
reality there if you wish.
You are also free to write nonsense, or lies, or to tear the
pages.

— Richard Bach
Illusions,p. 127

The Whisper Programming Language

An important tool in the development of the differential approach has been a simple
interpreter for a language calledWhisper.Whisper serves four main purposes in this
work:

1. An embedded interpreter is important for interactive systems to realize features
such as saving and loading of models and configuration files.

2. The language runtime provides useful tools for system construction, such as a
dynamic object system and dynamic function definition.

3. The language provides a convenient notation for describing interaction tech-
niques in this thesis.

4. The interpreter permitted avoiding many of the problems with the programming
environment available to develop this work, such as slow turnaround and bad
debuggers.

Whisper is not directly connected to the differential approach. However, it is dis-
cussed here for several reasons. Foremost, the language is discussed enough so that a
reader can understand the examples written in Whisper in various sections of the thesis.

The Whisper interpreter is specifically designed for being embedded into applica-
tions. The primary design goal were simplicity and extensibility, even at the expense of
performance. Although performance of the interpreter is poor, the ease of extensibility
allows adding speed critical code as new primitives written in the host language, C++.
New data types can also be added easily to the interpreter. Once the core interpretive
language was built, extensions were created to provide access to the Iris GL graphics
library, Snap-Together Mathematics, an image processing library (that is not used in
this thesis), and Bramble.

217

218 APPENDIX A. THE WHISPER PROGRAMMING LANGUAGE

A.1 Whisper Basics

Whisper is a lexically scoped variant of LISP, like scheme. Whisper is very similar to
other languages in this family. A basic introduction to programming in such a language
is provided by Friedman and Felleisen [FF87]. Rather than providing yet another tuto-
rial for such languages, we instead look at the differences between Whisper and more
common dialects that are relevant to the code examples in the thesis.

Like other LISP dialects, Whisper has dynamic types. All data are tagged with their
type, and the types can be determined for any object. Whisper’s type system is extensi-
ble at compile time only. The basic set of types provided by Whisper includes integers,
floating point numbers, strings, pairs, points (3 floating point numbers), closures, built-
in primitive functions, clocks (special objects for timing) and environments. Types for
basic Snap-Together Mathematics classes are provided, as well as for Bramble objects.
Almost all Bramble objects have the Whisper typeIDObj , but the subtypes can easily
be determined.

Whisper’s special forms for setting variable values are different from most LISP
dialects. Whisper provides aset function that sets the value of a variable. If the
variable is defined in the current scope, it is simply rebound to the new value. If the
variable is not defined, it is created as aglobal variable. Thedefun function used to
define a function is simply shorthand forset. Thebind function acts like set, but it
always sets a variable in the most local scope.

Whisper is lexically scoped. Variable bindings are determined by the code that
surrounds them in the program text. For example,

(let ((a 5))
(defun f (x) (+ x a)))

defines a function that adds 5 to its argument. Anenvironmentis the object that em-
bodies a scope, that is, it is a pairing of variable names and values. Environments are
hierarchical, that is, each environment refers to the environment it was defined in. Un-
bound references are deferred up the chain of environments until the global scope is
reached.

One important feature of Whisper is that it permits treating environments as first
class objects. Many dialects of Scheme, such as MIT Scheme [HtM93], do this as well,
and the introductory programming text by Abelson and Sussman [AS85] provides an
introduction to the use of first-class environments. Whisper’s syntax and operations for
first-class environments is different from Scheme’s.

Theenvironment special function returns a reference to the current environment
that can be passed around as any other data element. For example,

A.1. WHISPER BASICS 219

(set e (let ((a 5)
(b 6))

(environment)))

sets the variablee to an environment that bindsa andb. Various operations can be
performed on environments, including adding additional bindings, inquiring as to their
contents, combining two environments, and printing the contents of an environment.

The two most important operations that can be performed are to evaluate an expres-
sion within an environment, and to bind a value in an environment. To add a binding
to an environment, a special version of thebind primitive function is used that takes
an extra argument for environment, for example,

(bind-in e c 10)

which would add the bindingc = 10 to the environment defined in the previous exam-
ple. A similar version ofeval is provided,

(eval-in e (+ a b))

which for the example would return 11. Whisper provides the syntax

(env expr1 expr2 : : : exprn)

to evaluate expressionsexpr1 throughexprn in succession inside of the scope of en-
vironmentenv: The value of the evaluation of the last expression is returned. This
construction violates lexical scoping, for example,

(let ((a 1)
(b 2))

(e (+ a b)))

with e defined as in the above example evaluates to 11, not 3. This can cause an im-
portant distinction between the use ofbind andbind-in . For example,

(let ((a 10))
(bind-in e f a)
(e (bind g a))

creates bindings forf andg inside ofe, however,f will be bound to 10, whileg will
be bound to 5, because its binding statement was evaluated inside ofe.

First class environments function as Whisper’s object system. Fields and methods
are stored as bindings in the environment. The object creator makes an environment
and binds variables to their initial configurations. While there is no explicit mechanism

220 APPENDIX A. THE WHISPER PROGRAMMING LANGUAGE

to provide inheritance or delegation, such functionality can be provided in the creator
functions.

A BrambleIDObj is not an environment, however each object carries an environ-
ment around. Theget-env function returns the environment carried by anIDObj .
Whisper syntax permits using the evaluation notation for Bramble objects as environ-
ments, so

(IDObj expr)

is a shorthand notation for

((get-env IDObj) expr).

A.2 Some Examples

In this section, we take a few examples of code fragments from Whisper programs to
explain various features of the language, and how they are used with Snap-Together
Mathematics and Bramble.

This first example defines a function that builds the function block graph for the
line segments shown in Figure 5.1. The line segment is returned as a Whisper object,
that is, as an environment. Notice that an environment is made first and then the in-
termediate values are defined in a different environment. This way the environment
that will represent the line segment does not contain the intermediate values, only the
connectors.
(defun make-line ()
 (let* ((q (make-stobj 3))
 (e (environment)))

 (let* ((c (cos-block (signal q 2)))
 (s (sin-block (signal q 2)))
 (lc (times-block c (signal q 3)))
 (ls (times-block s (signal q 3))))

 (bind-in e left-x (plus-block lc (signal q 0)))
 (bind-in e left-y (plus-block ls (signal q 1)))
 (bind-in e right-x (plus-block lc (signal q 0)))
 (bind-in e right-y (plus-block ls (signal q 1))))
 e))

;
;state vector w/3 spaces
;empty "object" to put things in
;make blocks to compute
; intermediate results

;make connectors
; put the blocks directly into
; the object

Calling this procedure returns an environment that contains 6 bindings: 4 for the
connectors, 1 for the state vector and an extra binding that is a reference to itself. To
use these objects to create the wiring of Figure 5.1, given a function to perform the

A.2. SOME EXAMPLES 221

attach operation which would take 4 connectors as inputs and create the function block
tree:

(set rod1 (make-line))
(set rod2 (make-line))
(set nail (attach (rod1 left-x) (rod1 left-y)

(rod1 right-x) (rod1 right-y)))

Attach would return an object (a Whisper Environment) that contained two connectors.
It might be defined as follows:

(defun attach (x1 y1 x2 y2)
(let ((c1 (minus-block x1 x2))

(c2 (minus-block y2 y2)))
(environment)))

The following code fragment is a more expanded example of constraint inferencing
using Bramble’s snapping than the one given in Section 7.7.3. It is a Bramble event
handler that is used to draw lines with rubber banding and automatic inference of con-
straints.
(1) (add-key dev-rightmouse k-none k-down
(2) (lambda (v)
(3) (let* ((s (snapdp))
(4) (p (if s (where s) (cursor-mapw view)))
(5) (l (make-2d-line (p-x p) (p-y p)
(6) (p-x p) (p-y p)))
(7) (d (pt-eq-2d (l end1) (v mouse-port))))
(8) (if s (pt-eq-2d (l end2) s))
(9) (add-key dev-rightmouse k-any k-up
(10) (lambda (v)
(11) (let ((s (snapdp)))
(12) (delete d)
(13) (if s (pt-eq-2d (l end1) s))))))))

; define button down handler
;
; get snap point
; start drag at snap or mouse
; create object at start
;
; connect one end to mouse
; if snap, infer constraint
; define button up handler
;
; get snapped point
; delete drag constraint
; if snap, infer constraint

This fragment is a call toadd-key , the Bramble primitive for defining key han-
dling events. The first three arguments specify that this call is to define the right mouse
button press (down) event with no modifier keys. The last argument to the call is a
closure that is to be called with one argument when the event occurs. The argument
specifies the view that the event occurs in.

Lines 2-12 define the procedure that is called when the right mouse button is pressed.
First, a number of local variables are bound to various quantities useful in the operation:
s is bound to the current state of the snap-server;p is bound to either the position of
s , if there is a point snapped to, or to the position of the cursor;l is bound to a newly

222 APPENDIX A. THE WHISPER PROGRAMMING LANGUAGE

created line segment, created with both endpoints atp; and a constraint is created con-
necting one endpoint ofp to the position of the mouse in the current view and stored
in d.

Line 7 performs a constraint inference. If the cursor is snapped to a point when
the line is created, the end of the line is connected to that point with a point equality
constraint.

Lines 8-12 redefine the event handler that is called when the right mouse button is
released. Because of Whisper’s lexical scoping, this code is executed in the environ-
ment created by the key down handler and has access to those local variables. It first
deletes the constraint that was connecting the line segment to the cursor. If the cursor
was snapped to a point when the button release occurs, the line segment is attached to
this point in line 12.

A.2.1 The Define-Shape Syntax

A special facility is provided in Bramble to facilitate the creation of 2D shapes. The
process is inspired by the shape spreadsheets in the Visio drawing program [Sha93],
but has greater utility because it permits placing constraints inside objects and using
any point as a handle. Thedefine-shape special function takes a description of
a shape and automatically generates two functions: one that creates instances of the
object, and another that draws a prototype version of the shape suitable for displaying
in an icon. Thedefine-shape primitive is special because it does not evaluate its
arguments in the standard way.

The syntax ofdefine-shape are as follows:

(define-shape name variables defaul ts l ets command1 command2 : : :)

where:

name is a string that names the type;

variables is a list of state variable names;

defaults is a list of initial values for each variable;

let is a list of let pairs to define internal variables;

command is a pairing of commands and data.

For example, a simple rectangle can be defined by:

A.2. SOME EXAMPLES 223

(define-shape rectangle (w h) (.5 .25)
((w2 (/ w 2))

(h2 (/ h 2))
(mw (- 0 w2))
(mh (- 0 h2)))

(spath ((w2 h2) (mw h2) (mw mh) (w2 mh))))

All shapes are defined in their local coordinates, so the rectangle only has 2 state vari-
ables, width and height. Default values for these are provided. The let list defines 4
local variables. Thespath command defines a list of vertices that are connected to
draw a polygon, with handle points placed at each vertex. The command is equivalent
to separate commands to define a drawing function and handle points. Literally, the
definition used for drawing is also used for manipulation.

Thedefine-shape mechanism makes extensive use of Whisper first-class en-
vironments to make the concise specification possible. Each variable declaration and
let list clause defines a new symbol in the objects local environment. Each of these is
bound to a signal: when thedefine-shape is executed, it is run in a special envi-
ronment that shadows all of the basic arithmetic operations with their Snap-Together
Mathematics block generating counterparts. Because the drawing routines do not exe-
cute during thedefine-shape , they can do normal arithmetic.

Other commands permit more general drawing commands, explicit specification of
handle points, and generation of constraints on the object. The fuel-gauge widget of
page 162 demonstrates many of the features ofdefine-shape . Here we present a
more complete version:

224 APPENDIX A. THE WHISPER PROGRAMMING LANGUAGE

(1) (define-shape gas-gauge (sz theta) (.35 0)

(2) ((l (* (one-way sz) .9))
(3) (t (+ .2 (* 2.7 theta)))
(4) (x (- 0 (* l (cos t))))
(5) (y (* l (sin t))))

(6) (drawf (prog (color gl-white) (arcf 0 0 sz 0 1800)
(7) (color gl-black) (linewidth 3)
(8) (arc 0 0 sz 0 1800)
(9) (move (- 0 sz) 0) (draw sz 0)
(10) (icon-font)
(11) (cmov (* l -.9) (* l .2)) (fmprstr 'E)
(12) (cmov (* l .8) (* l .2)) (fmprstr 'F)
(13) (move 0 0) (draw x y)))

(14) (> theta 0)
(15) (< theta 1)
(16) (handle x y))

; draw function
; white arc for back
; black border
; arc border
; bottom border
; set text font
; place labels
; for E and F
; draw needle
;
; limit to legal values
;
; create handle on needle

; 2 params
; local variables
; size
; angle (in radians)
; positon of needle

The gas gauge has 2 parameters, one for the size of the gauge, and one for its current
value. The let clause of thedefine-shape defines a number of intermediate vari-
ables using arithmetic operations. One special operation isone-way that defines that
controls on its output should not effect its input. Theone-way function block returns
the value of its input, but always returns a zero derivative. For the gas gauge, the one-
way is used so that dragging the needle of the gas gauge does not change the size of the
gauge. Thedrawf command defines a code fragment that is used to draw the gauge.
The list of statements are calls to the GL graphics library. The> and< commands
define constraints, and thehandle command creates aDistinguishedPoint
connector at the specified position on the object, which in the example is the tip of the
gauge’s needle.

Theinstall-shape function is defined by certain applications to automatically
install an icon for creating shapes defined withdefine-shape . It simplifies using
define-shape in an application. Theinstall-shape function takes the values
returned bydefine-shape and creates an icon and the proper handlers for creating
new instances of the shape.

