Do not worry about your problems with mathematics. |
can assure you that mine are far greater.
— Albert Einstein

Chapter 5
Snap-Together Mathematics

The mathematical techniques of the previous chapters permit controlling graphical ob-
jects by specifying the derivatives of functions of their parameters. In this chapter, we
consider techniques for defining and evaluating these functions. The challenge stems
from the dynamic nature of interactive systems: objects change in response to system
actions as the system runs. This means that the functions that define controls must
be created on the fly, in response to user actions. In order to effectively implement the
mathematical calculations, we must evaluate the functions and their derivatives rapidly.
This chapter presentnap-Together Mathematics toolkit for dynamically defining
functions and rapidly evaluating them and their derivatives.

With the differential approach, objects provide their attributes as output connec-
tors for other objects to use, and as attachment points for controllers that will control
the objects. These connectors compute functions of the objects’ parameters and in-
put dependencies, and must support the operations of attaching other object inputs and
controllers. Snap-Together Mathematics provides a mechanism for realizing the con-
nectors.

“Wiring” connector outputs to inputs builds new, more complicated functions from
the elements being assembled. Building a new function may happen any time a new
object, constraint or control is defined. It would be unacceptable if building a function
required an extensive symbolic math computation or for the program to be recompiled
and re-linked. Snap-Together Mathematics explicitly represents the expression graph
of connected functional elements as C++ data structures. A connector is simply the
output of a node in the expression graph. We will call the ndulesks. To wire an
input, it merely needs to be given a reference to some output. Snap-Together Mathe-
maticshas efficient mechanisms for evaluating the values and derivatives of nodes by
traversing the graphs.

For example, consider an expression graph that represents connecting the endpoints
of two line segments together with an attachment constraint, as shown in schematically
Figure 5.1. In this figure, the line segments have a state vector to store their parameters
(z,y,0,1), and provide the positions of their endpoints as connectors. The inputs to
the attachment constraint are plugged into these output connectors. The output of the

77

78 CHAPTER 5. SNAP-TOGETHER MATHEMATICS

attach

Figure 5.1: An expression graph representing two line segments connected by an attachment
constraint. The outputs of the line segment objects, their attribute connector, serve as inputs to
the attachment constraints. Function composition is also used inside the objects to build up the
functions representing graphical object attributes.

constraint is a function of the variables of both line segments, built by composing the
two attribute outputs with its own function. Snap-Together Mathematics allows this
plugging to happen dynamically, for example if the user specified the constraint with a
mouse click.

Snap-Together Mathematics provides a common protocol for block outputs, per-
mitting any output to be wired to any input. This is important as it allows objects with
inputs and those with outputs to be designed independently and dynamically snapped
together at run time as needed.

Inside the graphical objects, blocks are wired together to compute the attribute func-
tions. While these object functions could have been explicitly programmed because
they would have been known ahead of time, constructing them by wiring together sim-
pler blocks can simplify programming as it allows the programmer to avoid writing the
code to evaluate the derivatives.

Several other systems, such as CONDOR [Kas92] and the SPAR Modeling Test-
bed [FW88], have explicitly represented expression graphs to the user. In contrast,

5.1. EVALUATING FUNCTIONS 79

Snap-Together Mathematics provides the graph data structures as a general purpose
tool for the programmer. The programmer could implement a graph viewer and permit
the user to have direct access to the data structures. However, such an interface has not
been implemented with Snap-Together Mathematics. The style of applications which it
has been used to support intend to hide the mathematics from the user. Snap-Together
Mathematics has been used for a number of purposes other than the differential ap-
proach including physical simulation and optimization-based motion planning.

The elements of Snap-Together Mathematics are not novel. Explicitly representing
data flow graphs has been around for decades, and the techniques of automatic differ-
entiation (AD), required to rapidly evaluate the derivatives, are becoming a common
practice in the numerical analysis community. Snap-Together Mathematics addresses
a very different need than previous AD systems have. Dynamic composition and eval-
uation of functions and their derivatives was introduced in a system by Witkin and
Kass [WK88]. Snap-Together Mathematics is refines these basic ideas in an a simple,
general purpose toolkit, allowing direct support for the abstractions of the differential
approach. Snap-Together Mathematics was originally developed to support work in in-
teractive physical simulation [WGW?90], but has evolved into a more general purpose
tool for encapsulating numerical computations.

5.1 Evaluating Functions

Evaluation is the most basic computation to be performed on expression graphs. In the
interactive applications which we are considering, expression graphs will be evaluated
many times per second, so performance is critical. The most efficient way to repeatedly
evaluate an expression is to compile itinto machine code. Unfortunately, compiling and
linking code for each dynamically created expression is prohibitively expensive in the
programming environments presently available.

Other approaches to evaluating the expression graph are interpretive: traverse the
graph for each evaluation. Each node of the graph computes its output value, given
the values of its inputs. A set of primitive function elements are predefined at compile
time to do this. Evaluation of a node involves asking its predecessors for their output
values then computing the “local” function of the node.

Performance can be enhanced using caching to exploit two types of redundancy:
within an evaluation, common subexpressions need be evaluated only once (these subex-
pressions may be shared within one expression or between different expressions); be-
tween evaluations, certain old values might still be correct if some of the inputs did not
change. Re-computation can be avoided by storing the results of a calculation and, for
a later request, deciding whether this stored value is still correct. There are many pos-
sible ways to implement this cache validation; elaborate schemes might avoid some
re-computation, but will require additional computation and storage to make the de-

80 CHAPTER 5. SNAP-TOGETHER MATHEMATICS

termination. The more expensive the evaluations become, the more effort should be
expended to avoid excess evaluations.

5.2 Evaluating Derivatives

We will need to evaluate the derivatives of expressions with respect to some subset
of their inputs. Although the techniques extend to higher derivatives, for this discus-
sion, we will consider computing first derivatives since this is what the differential
approach’s methods require. Derivatives are taken with respect to a set of variables
that we call thavorking set of variablesThe working set is a subset of the state vector.
We denote the concatenation of this set of variables into a vector. ijor a vector
expressiorf, the Jacobian, or first derivativé,is the matrixof /ow. In this matrix,

each row corresponds to an element,afhile each column corresponds to a variable
inw.

There are three basic approaches to computing derivatives: approximate them nu-
merically, derive a symbolic expression for the derivatives, or compose them using
a process calledutomatic differentiation.The latter approach has been shown to be
superior both in performance and precision of the results [Gri89].

To understand the process of automatic differentiation, consider how derivatives
are computed manually. The chain rule allows us to decompose complicated functions
into smaller pieces. For example, if our expressioffi is f(a,b,...), then the chain
rule yields

of _9foa 9f b
ow Odadw 0bow

Differentiation involves recursive applications of the chain rule. If we are able to
evaluate the derivative of each of the primitive functions with respect to their inputs
then we can apply Equation 5.1 recursively to build the compound expressions. The
recursion bottoms out at the constants, whose derivatives are 0, and at the variables,
whose derivatives are 1 with respect to themselves and 0 with respect to others.

Symbolic differentiation applies the chain rule to an expression graph to transform
it into a new expression graph that evaluates the derivative. The resulting expression
must then be simplified to take advantage of the sparsity of the derivatives. Even then,
the symbolic differentiation of a vector with respect to a vector yields a matrexeof
pressionsvhich is unwieldy to manage.

Automatic differentiation also applies the chain rule to expressions; however, rather
than symbolically composing more complicated expressions, the intermediate results
are combined numerically. For any node in the graph, if the inputs to equation 5.1 are
concatenated into a vector, the equation multiplies two matrices: the “local” Jacobian
of the outputs with respect to the inputs, and the derivatives of the inputs with respect
to the working set.

(5.1)

5.2. EVALUATING DERIVATIVES 81

s=35
os/ow= [7]o]5]o]

times of _ of ox
f(x)=x0*x1 ow ox ow
of _ = [7]5] [1]o]o]o
ax_[X1'XO] olo[1]o

s=5
os/ow= [1]oJo]o]

s=7
os/ow= [oJo]1]o]

State Vector

5]6]7]8]-

Figure 5.2: A simple example of derivative composition. Signals carry both valsgarid
their derivatives §s/0w). The function block computes its internal Jacobian and composes
the global Jacobian by multiplying the matrices.

We implement automatic differentiation by augmenting the expression graph with
the ability to pass derivatives as well as values along edges. In addition to comput-
ing its output values, each node of the expression graph must also be able to compute
the value of its local derivative, also a function of its inputs. The composition process
builds the “global” Jacobian by multiplying this matrix with intermediate result matri-
ces. By passing the entire intermediate result matrices along the edges of the graph,
the derivative matrix can be built in one traversal of the expression graph. The same
mechanisms for sharing intermediate results by caching as discussed in the previous
section apply.

A recursive descent of the expression graph computes the derivative matrix. Each
node in the graph is able to respond to requests for the derivative of its output with
respect to the current working set. Constants and variables not in the working set return
zero in response to this query. A state variable in the current working set returns a
vector with one in the position corresponding to the variable, and zeros elsewhere.
After determining that its cached value is not valid, a non-terminal node recursively
asks its children for their derivatives, computes its local Jacobian, and multiplies these
together to produce its derivative with respect to the current working set. Figure 5.2
demonstrates a simple example. Edges of the expression graph pass not only values,
but also their derivatives.

82 CHAPTER 5. SNAP-TOGETHER MATHEMATICS

This method of automatic differentiation assembles the Jacobian bottom-up, and is
called the forward-mode. The alternative reverse-mode, or top-down, approach is pre-
sented by [Gri89] and implemented for an interactive system by [Sap93]. This algo-
rithm reverses the order of the matrix multiplies, building the Jacobian matrix from the
top down. It has the advantage that the intermediate result matrices are of small, fixed
size. In the bottom-up approach, the size of intermediate matrices depends on the num-
ber of variables which contribute to that derivative. Because the intermediate results
are fixed-sized, the top-down approach can achieve linear asymptotic complexity in
places where the bottom-up approach fis?) complexity. However, this increased
worst-case performance on dense problems comes at the expense of considerable book-
keeping, inability to fully exploit sparsity, inability to share intermediate results, much
higher time constants, and difficulty in changing working sets.

It is important to recognize the generality of either of these derivative composition
processes. Each node of the expression graph need only to be able to compute its
local Jacobianthe derivative of its outputs with respect to its inputs. This matrix is
a function only of the input values, not their derivatives. Given the local Jacobians,
the composition process merely multiplies the matrices together to build the global
derivatives.

5.3 Sparse Representations

The critical performance issue in building the Jacobian matrix, as well as most calcu-
lations that use this result, is exploiting sparsity. Bottom-up matrix passing schemes
exploit sparsity by using sparse representations for the intermediate matrices. There
are many possible ways to represent a sparse matrix, with many tradeoffs to consider
in selecting a representation [DER86]. This decision is central to the design of an im-
plementation. One particular representation with which we have had success is the
half sparse matrix: a full vector of sparse vectors, as depicted in Figure 5.3. We call a
system based on these data structurgsaaise vectoscheme.

In the sparse vector scheme we consider every output in the expression as an inde-
pendent scalar, even if higher levels will interpret them as pieces of larger structures. A
function block can have multiple scalar outputs. The gradient of each scalar is a sparse
vector Qxz/0w).

Sparse vectors can be represented as a list of paitsx, value), taking space
linear in the number of non-zero elements. If thislistis sorted by index, we can perform
the essential vector operations in time linear in the number of non-zero elements. For
single vector operations, such as multiplying by a scalar or finding the magnitude, the
algorithms simply run through the list. For multi-vector operations, such as addition,
linear combination, or dot product, we exploit the sorted order of the lists and step
through both in parallel, advancing which ever has the least index. These algorithms

5.3. SPARSE REPRESENTATIONS 83

[T TTTTT

eie(®(®|?|?

Figure 5.3: A half-sparsematrix representation store the matrix as a full vector of sparse
vectors. Each entry in an array points to a sparse vector, depicted here by a sparsity pattern.

maintain the representation invariant so re-sorting is not needed.

Each derivative in the expression graph is represented as a sparse vector, the deriva-
tive of a scalar with respect to a set of variables. For each graph, one set of variables is
denoted as the current working set: all derivatives are with respect to this set. For each
variable, we must know an index to the corresponding column of the Jacobian.

Sparse vectors are collected into matrices which are half-sparse. While this is a
non-standard representation, it does permit the operations required by the numerical
methods we employ. In particular, half-sparse matrices can be multiplied by a vector
or by its transpose rapidly. These methods are the essential computations in iterative
linear system solvers like conjugate gradient [PFTV86]. The multiplication routines
are among the most important in the entire implementation of the differential approach
as they form the inner loop @¥(n?) portion of the computation. However, the routines
are very simple and can be coded efficiently. The algorithms are:

v = HX
multiply HalfSparseMatrix H, Vector x = Vector v
v=020

for i=0...H.rows
for j=0...H.row[i].elements
V[i]l+ = H.rowli].valuelj] * X[H.row(i).index[j]]

84 CHAPTER 5. SNAP-TOGETHER MATHEMATICS

v=HTx
multiplyTranspose HalfSparseMatrix H, Vector x = Vector v
v=20

for i=0...H.rows
for j=0...H.row[i].elements
V[H.row(i].index[j]]+ = X][i] * H.rowl[i].value[j]

5.4 The Snap-Together Math Library

The machinery of the differential approach is encapsulated into a C++ toolkit called
Snap-Together Math. The library implements the function composition and evaluation
discussed in this chapter, as well as the differential solver.

5.4.1 The Protocol for Function Outputs

One of the essential elements to implement the differential approach is the standard
protocol for connectors, the outputs of objects. Connectors correspond directly to Snap-
Together Math block outputs. When a controller or object “plugs in” to a connector, it
merely stores a reference to a Snap-Together Math output.

In order to be a Snap-Together Mathematics output, and object merely must provide
two functions: one that computes its output value, and one that computes the derivatives
of its values with respect to the current working set. In my implementation, the class of
objects that have Snap-Together Mathematics outputs is theRtaiss EachPort
may provide a number of scalar outputs. The two methods thd&aatl subclasses
must provide take an index that specifies which scalar value is being referred to, and
return either the real number value of the output, or a pointer to a sparse vector (class
SpVec) containing the derivative of the value with respect to the current working set.
The signature for the minimum set of methods is:

class Port {
public:
virtual Real o(const int);
virtual SpVec* grad(const int);

In order to be a mathematical output, an object is required to provide only these two
methods. The protocol supports many optional methods and fields such as the width

5.4. THE SNAP-TOGETHER MATH LIBRARY 85

(the number of scalar values the object provides), strings that provide names for the
signals, and nominal value ranges. To identify a particular scalar output, a pairing of a
Port and an integer index is required. This is referred to &gaal. Signals are
constructed by pairing a pointer tdPrt and an integer index.

Graphical objects could be subclassedoft so that they could provide con-
nectors for their attributes. However, this gives little structure when there are many
outputs on a single objects. Instead, a graphical object will typically define other sur-
rogatePort objects which provide smaller numbers of scalar outputs. For example,

a polygon object might keep a list of vertices, each of which would Berd object.

This is important because these surrogate objects can be standardized. For example,
all polygons could use the same vertex objects, so attaching to a vertex could be done
independently of the polygon type.

StandardizingPort types adds further modularity. Snap-Together Mathematics
permits connecting any scalar input and output. However, often such connections are
most useful when they are grouped together and typed. For example, A 2D distance
object has 4 scalar inputs, however these are most meaningful when they are thought
of as two 2D point inputs. Graphical objects would provide specialReds which
meet this standard.

Several standard types Bbrts will be discussed in the following sections.

5.4.2 Functional Elements

The most basic element of Snap-Together Mathematics are objects which can be used
in function composition. As explained in Section 5.4.1, these objects are subclasses of
Port and must provide a few basic methods. Part of the beauty of the Snap-Together
Mathematics scheme is thiort class is minimal enough that its functionality can

be added to application classes. However, the Snap-Together Mathematics toolkit pro-
vides a variety of types d?orts for general mathematical elements that can be com-
bined to build more complex structures.

The most fundamentdtort subclass i$=Block, the class of function blocks.
These objects compute mathematical functions of their inputs. The standard library
includes various primitive functions, including almost all of the functionality of a sci-
entific calculator. The clagsBlock isimplemented to have a fixed number of inputs
for each subclass. Other special subclass®odf can do things such as sum a vari-
able number of inputs or take the magnitude of a vector of inputs. This permits creating
controls on aggregate collections of objects, as in Garnet [VZMGS94].

Wiring functions together simply requires inserting an outfignal into the
input field of a function block. The clagsBlock stores its inputs as an array of
Signals . Connecting the output of one function block to the input of another looks
like

block1->ins[0] = Signal(block2,0);

86 CHAPTER 5. SNAP-TOGETHER MATHEMATICS

whereblockl is a pointer to a function blockFBlock*), butblock2 can be a
pointer to any subclass &fort. This code fragment connects the first output of the
object pointed to bylock2 into the first input of the function block pointed to by
blockl. Notice that this wire is not explicitly represented, nor does the output port
receive any indication that it is being attached to.

Defining a new function block requires specifying two methods. One that computes
the function, and another that computes its internal Jacobian. Itis important to note that
this is really the only place where a programmer might have to take a derivative.

Writing the derivative routines is a simple matter of mechanically applying the rules
of freshman calculus. However, this can be tedious as the functions get complicated,
especially since we have a strong desire to have optimized code. Because the process
is mechanical, it can be automated.

The BlockMaker tool automatically generates code for new function block types
from mathematical expression. The tool, is written within the Mathematica symbolic
algebra system [Wol88]. The tool takes as input an expression that describes the func-
tion block to be created, and a small amount of auxiliary information such as the number
of inputs to the block and the name for the C++ class for the function block. The out-
put of the tool is a C++ program file that contains the code for the block’s methods, as
well as a C++ header file describing the new class. The generated code is optimized
using Mathematica’s simplification tools as well as a common subexpression remover
that | developed with Stephen Schwab. Because the tool runs within Mathematica, the
full power of the symbolic algebra system is available to define the expressions used
to create blocks.

New function block types are not often required. The Snap-Together Mathematics
library includes many basic functions, such as those found on a scientific calculator,
and more complicated functions can be created by composing these elements together.
The main reason to create new blocks is efficiency. Composing a function out of other
function blocks is more expensive than compiled code if the compiled code is optimized
to exploit internal sparsity within the block and to share common subexpressions. For
derivative evaluations, properly optimized code will perform the same evaluations as
done by automatic differentiation. However, because it is explicitly compiled, there
is less overhead. Automatic differentiation works better for more complex functions
whose symbolic derivatives would be difficult to optimize.

5.4.3 Representing State Variables

The leaves of the expression graphs are constants and variables. The two are distin-
guished from one another in that the derivatives for the variables are not zero when
taken with respect to itself, while the derivatives for the constants are always 0. Im-
plementing a class to represent constant values is, therefore, simple; its methods just
return constant values. The derivative of a variable must have a 1 in the column of the

5.4. THE SNAP-TOGETHER MATH LIBRARY 87

gradient that corresponds to that variable.

The simple protocol for Snap-Together Mathematics does not address the issue of
defining the working set of variables and the mapping of its members to columns of
the Jacobian. This is indicative of the larger issue of managing collections of variables.
On one hand, building systems in an object-oriented manner requires the state of the
system to be distributed into the objects themselves. But, mathematical algorithms typ-
ically require this state in the form of contiguous vectors, which are gathered, ordered
collections. This ordering also gives meaning to the columns of the Jacobian matrices.

There are many potential schemes for representing variables in a Snap-Together
Math implementation ranging from having objects allocate space in a global state vec-
tor to modifying our numerical algorithms so that they operate on distributed, non-
contiguous, vectors. Several of these were explored in earlier tools. The Snap-Together
Mathematics library uses a combination of centralized and distributed representation.
Objects each have their own state, however these variables are “gathered” into a cen-
tralized state vector for numerical computations. When an object’s variable has been
gathered, it knows where in the global vector to find it so it can still retrieve its value
as well as index it for creating derivatives. In the context of Snap-Together Mathemat-
ics, derivatives can be taken only when variables are gathered, as this is the only time
when variables correspond to matrix columns. When the numerical computations are
complete, the values are scattered back into the corresponding smaller vectors.

The ability to scatter and gather variables has an important advantage over always
keeping the variables centralized. It allows for the set of variables to be changed rapidly.
This not only simplifies adding and deleting objects from the working set, but also
makes it easy and efficient to operate on subsets of the variables. Techniques that make
use of this latter feature are discussed in Section 4.4.

The scatter/gather scheme uses two main data structures: one to represent the smaller
individual state vectors, and one to store the gathered global state vector. In Snap-
Together Mathematics these classes are c8t@bj andStVec respectively. Each
of these classes is a subclas$Poiit, althoughStVec objects rarely have connec-
tions made to them.

StObjs are objects that store a number of state variables. Each graphical object
would have one that stores its configurati®@Objs are also used to store constants
by marking their variables so that they are never gathered.

The gathering operation takes a list®fObjs and assigns designated variables
in them to elements in aBtVec, as depicted in Figure 5.4. Variables store their
assigned location. If their value or derivative is requested when they are in an assigned
state, they forward the request on to 8®&/ec. If they are not assigned, they return
the value stored internally and O for their derivative. A scatter operation returns each
variable in theStVec to its correspondingtObj, updating theStObj ’s internal
value, and removing the assignment.

TheStVec provides a contiguous vector for mathematical computations. Routines

88 CHAPTER 5. SNAP-TOGETHER MATHEMATICS

1]2[3]4] [5]6] [7]8]2]stObjs

[2]4]6[8] | | StVec

Figure 5.4: Selected variables fror§tObj objects are gathered into tt&Vec object.
Variables in the working set point to slots in tB¢Vec object.

such as ODE solvers look at the data stored here. The indices St¥ee define the
columns of the Jacobian: requests for derivatives ofvéec return vectors with a 1
value in the corresponding column.

An important part of the scheme for storing state variables is the ability to dather
selectively. This provides the ability to switch a variable off, or turn it into a constant.
Uses for disabling variables are described in Section 4.4.

During a gather operation, a function is provided that decides if a variable is to
be gathered or not. Typically, the default function is used. This function makes its
decisions based on a bit vector stored with each variable. The bit vector and function
provide the following mechanisms for selection:

e Each variable belongs toaastethat identifies its type. Whether or not a given
caste is to be gathered can be decided independently. This permits operations
like “gather only the variables that affect lighting.”

e Each variable has several type bits, which permit denoting the expected use of
the variable. For example, if a variable is denoted as a constant, it will not be
gathered.

e Each variable has a counter that freezes it whenever the count is non-zero. A
problem with using a single bit for this purpose is that it is impossible to deter-
mine how many constraints are freezing a variable. If two constraints freeze the
same variable, deleting one of the constraints would re-enable the variable. A
counter re-enables the variable only when all freezes have been removed.

Selective gathering also provides a mechanism for merges, or equating two vari-
ables. During a gather, two variables can be made to share one spac&ivdre
This will effectively merge them, constraining them to have the same value. A sim-
ilar technique can be use to constrain a variable to have the same value as any other
Signal . Such features are not used much in the Snap-Together Mathematics imple-
mentation, because they make the optimization of the next paragraph impossible.

IThe corresponding scatter operations always scatter what was last gathered, so there is no selection
involved in them.

5.4. THE SNAP-TOGETHER MATH LIBRARY 89

An important special case of a function block is one that has each of its inputs
connected to the san®Obj. This is a very common case, used often for graphical
objects where the function blocks each compute some attribute. Because all of the
inputs are connected to variables, the Jacobian of the inputs of the block is the identity
matrix, possibly with some columns missing. By exploiting this, the matrix multiply
to compute the block’s Jacobian can be considerably faster. This leads to substantial
speedups in many applications, as these direct-connected blocks are very common,
and very often constitute the majority of the “wide” input blocks, which are the most
expensive to compute.

Partitioning, as introduced in Section 4.3.3, reorders the elements 8f¥ee so
that variables in a common partition are next to one another, facilitating solving each
subset independently. Partitioning is done only when a gather operation is performed,
not each time the linear system is solved. This is done because re-ordering the state
vector would confuse the process of differential equation solving.

Because the partitioning algorithm does not actually look at the valués tifey
do not need to be computed when finding the initial matrix to partition. In fact, rather
than using the real values of the matrix, it can be better to use binary values which
represent that the matrix element might be non-zero, rather than that it is non-zero for
the current value of the state vector. This is easily achieved by havingRath
provide a method which works like thgrad(int) method, but does a logical or
instead of a linear combination of its input vectors. For objects that do not provide this
optional method, the gradient may be used instead.

5.4.4 Caching in Snap-Together Math

As hinted at in Section 5.4.1, caching is an important tool for enhancing performance in
Snap-Together Mathematics evaluations. Whenever a value or derivative is computed
by a function block, or othePort type that implements caching, it is stored inside
the block in case the result is used again. Each time a value or derivative is requested,
the block first decides if its cached value is valid; if it is, it avoids re-computation and
simply returns the cached value.

The Snap-Together Mathematics toolkit employs a simple cache validation scheme.
A single global timestamp is used. Whenever any of the inputs (state variables) are
changed, this timestamp is incremented. A block must recompute if its internal times-
tamp is older than the global timestamp. This scheme is very simple but has the obvious
problem that it invalidates much more than needs to be. Changing a single value inval-
idates all caches in the entire system.

In the context of the differential approach, invalidating all the caches simultane-
ously is not as catastrophic as it might seem since the variables are all updated simul-
taneously with each ODE solver call for evaluation of the differential optimization.
Schemes that do substantially better require some combination of substantial amounts

90 CHAPTER 5. SNAP-TOGETHER MATHEMATICS

of graph traversal, explicitly representing links bidirectionally, doing numerical and
sparse data structure comparisons, or exploiting knowledge about the particular prob-
lem. For most applications, such complication is not warranted as, at best, it serves only
to reduce the constants on the linear complexity portions of the differential approach.

5.45 The Differential Solver

The Snap-Together Mathematics toolkit encapsulates the abstractions of the differential
approach in a set of classes that implement the techniques of the previous chapters. An
object is used to represent the differential optimization problem, storing information
about the controls and the variables they effect. This objectis called a constraint engine
or ConstEngine.

The ConstEngine class has fields that contain &\Vec and a list ofStODbj
that are to be gathered for computationsCAnstEngine object also stores infor-
mation to define the objective function for the differential optimization, such as a list
of Signals that make um.

The controls for the differential optimization problem are stored@oastEngine
by a list of Controller objects. Controllers are objects that specify desired
derivatives for connectors, as discussed in the next chapter. The Snap-Together Math-
ematics class for a controller specifieSmnal to control, a controller type, and
several parameters.

Solving the differential optimization problem, e.g. using the techniques of Chapter
3 and Chapter 4, is executed by a method of @mmstEngine class. This is the
only part of the system in which constraint solving needs to be done. This method
is implemented in a manner that interfaces with the ODE solver implementations of
the underlying mathematics toolkit. THgonstEngine class also interfaces with
non-linear iterative solvers.

Snap-Together Mathematics is built on top of an object-oriented mathematics toolkit
that | wrote. The toolkit includes an object-oriented framework for defining ODE prob-
lems and solvers. The clatstegrand represents an ODE problem by defining a
single method that defines a function to compgtgivenq and¢. An ODESolver
object stores an integrand and an initial condition and offers a method to step time
forward. TheConstEngine class is a subtype dhtegrand

When used as aimtegrand to solve a differential optimization problem, a
ConstEngine must first load theq vector provided by the ODE solver into its
StVec. Loading the state allows the solver to try different values for the state in
the process of taking an ODE step. T@enstEngine keeps all of the intermediate
results of the solving process, such as the Lagrange multipliers, as internal fields.

5.4. THE SNAP-TOGETHER MATH LIBRARY 91

5.4.6 The Whisper/Snap-Together Math Interface

While Snap-Together Mathematics is a C++ toolkit, an interface is provided to it as
an extension to the Whisper interpreter described in Appendix A. The extension adds
several new data types to Whisper, as well as many new primitive functivh&TM
provides a convenient way to access to the functionality of the Snap-Together Mathe-
matics, and can be used on its own to develop simple applications completely in Whis-
per. The Whisper/Snap-Together Mathematics interface, cele8 TM,shows how

the functionality of Snap-Together Mathematicscan be provided in a more convenient
form, and will be used in later portions of the thesis.

WhSTNMrovides primitive Whisper data types for most the Snap-Together Mathe-
matics classeRBort , FBlock , StObj , Signal , andConst . Other classes, gener-
ated by primitives written in C++ are generally treated by the more generic class that
is appropriate. For example, a summation block, which is ndtBlock because it
allows variable numbers of inputs, simply appears Bod in Whisper. No facility
for defining new subtypes of Snap-Together Mathematics classes is provided in Whis-
per. WhSTMilefines 88 primitives, including creation functions for 30 different types
of function blocks.

WhSTMupports automatic promotion of types as needed. Any function requiring
aPort can take anything that is a subtype, includifBlock andStObj types,
even though Whisper has no subtyping mechanism. Real numbers are also promoted
to Port where necessary; a constant valued port object is automatically created.

The constructor foBignal takes &ort and anindex. It permits specifying the
index either as an integer or as a string name if the block being connected to supplied
the optional names for its outputs. If the index is omitted, it is assumed to be 0. This
allows aPort to be promoted to &ignal when needed.

Function block creation routines all optionally take initial values for the signal in-
put. The convenience of this, coupled with the automatic promotions, is demonstrated
in this simple example

(set b (plus-block (times-block (signal point-port 2) 5)
(signal point-port 'y)))

that computes the sum of 5 times thealue of a 3 output port representing a Cartesian
coordinate and itg value. The ease with which functions can be built in Whisper will
be used in the Bramble toolkit, described in Chapter 7. A more extensive example of
usingWhSTMo build function graphs is described in Section A.2.

The Whisper interface does not provide constraint engines or ODE solvers as basic
types. HoweveWhSTMoes have defaultinstances of these objects, so that commands
like

92 CHAPTER 5. SNAP-TOGETHER MATHEMATICS

(add-const (controller sig '= 2.0))
implies the use of the “built-in” constraint engine, and
(rk4-step .1)

uses the built-in 4th order Runge-Kutta solver instance to step the default constraint
engine forward a time step. Other packages further extending Whisper can alter the
defaults. This will be used extensively in Bramble.

