
Chapter 4

The secret to walking on water is knowing where the rocks
are.

— Herb Cohen
Vail Symposium 14 poster

Efficient Solution Techniques

In the previous chapter, we introduced methods for implementing the differential ap-
proach. In this chapter, we now consider how to solve the differential optimization
problems efficiently.

4.1 The Demands of Interactive Systems

Interactive systems place a different set of demands on numerical techniques than more
traditional, batch computation applications might.

One unique demand of the numerical problems in interactive systems is that they
are dynamic. Because the equations are created in response to the users’ actions, they
are not known when the system is created. More significantly, the set of equations to
be solved is continually changing in response to the user. This dynamic nature of the
numerical problem means that we must be able to define equations at run time, which
will be addressed in Chapter 5. Solution methods that rely on extensive pre-analysis are
to be avoided as the problem being solved may change before the cost of the analysis
can be amortized.

A common practice in numerical computations is to adapt the solution methods on
a per problem basis. This ranges from experimenting with different algorithms to see
which best solves a given problem, to adjusting parameters to make solvers converge.
Such per problem tweaking is unacceptable in the setting of an interactive system. Not
only is the problem continually changing, but we would like to insulate the user from the
mathematics. We do not want the user to have to learn about constrained optimization
just to draw a picture.

Speed is an important consideration for numerical routines. For the differential
approach, it is critical. If the computations are not fast enough, the system will not
be able to provide the smooth motion which is demanded by direct manipulation. We
also must be concerned with scalability, that is how the methods will perform as the
problems grow larger.

65



66 CHAPTER 4. EFFICIENT SOLUTION TECHNIQUES

Accuracy, typically an important concern in numerical analysis, is less critical to
interactive systems. This is important since there is often a tradeoff between the time
a computation takes and how accurate it is. The accuracy required is typically limited
by factors such as device resolution. In the cases where users demand sub-pixel accu-
racy, for example when designing an object that is to be manufactured, the accuracy
demands are typically known. Even in applications where high accuracy is required,
fast, inaccurate methods are useful if these results can be refined.

While accuracy is not essential for interactive applications, stability is. Numerical
instabilities can cause such undesirable effects as objects wobbling or flying off the
screen. Stability is, therefore, an important concern for interactive systems.

For the purpose of this thesis, there is an additional goal for the numerical routines.
We would prefer techniques that are simple and widely available. For several of the
numerical problems we face, for example solving linear systems and ordinary differen-
tial equations, a vast array of sophisticated software packages are available, both from
public sources and commercial vendors. Development of such algorithms is beyond the
scope of this thesis. Similarly, relying on a particular software package would make
the approach harder to reproduce and port.1

4.1.1 Basic Methods for Achieving Performance

There are a few general strategies for improving the performance of the computations.
These will be applied in various ways throughout this chapter.

Trade Accuracy for Performance — As discussed earlier, in an interactive system,
we are often willing to trade accuracy for performance. Techniques for doing this
will be discussed in Section 4.5. It is generallynot acceptable to trade stability
for performance.

Trade Convergence for Iteration Rate — As a control moves towards a goal value,
it is more important that it moves with smooth motion than that it gets to its goal
in a minimum amount of time.

Exploit Sparsity — The matrices involved in the differential optimization problems
are filled mainly with zeros. It is crucial to exploit this fact, both for speed and
memory usage.

Reduce the Problem Size —In the next section, we will see that the computational
complexity of the differential methods is linear in the number of variables and
quadratic in the number of constraints. Therefore, to handle larger problems, the
size of the numerical problems actually solved must be reduced, while giving the
user the illusion that the system is solving the larger problem.

1The work of Mark Surles[Sur92a, Sur92b] has such a problem. Anyone wishing to reproduce the
results must purchase an expensive sparse matrix package on which the work relies.



4.2. SCALABILITY OF THE DIFFERENTIAL APPROACH 67

Reuse Previous Results —Many intermediate results are used by several later com-
putations. Caching such intermediate results can avoid redundant computation.
Caching will be discussed in the next chapter.

One other important method for speeding numerical computations is to exploit spe-
cial cases. For example, extremely efficient algorithms exist for solving n-body dy-
namics problems, finite elements, diagonal matrices, and the kinematics of articulated
chains. However, the goals of the differential approach demand general purpose solu-
tions. We therefore focus on general purpose methods for enhancing performance.

4.2 Scalability of the Differential Approach

With the differential approach, it is important that the redraw steps happen fast enough
to give the illusion of continuous motion. As the number of objects and controls grows,
so does the time required to make a step. In this section, we consider how the perfor-
mance of solving in the differential approach scales as problems get larger, and identify
the bottlenecks in performance. We are primarily concerned with parts of the compu-
tation that scale worse than linearly.

The problem size of the differential approach can grow in two ways: the number
of controls(n); and the number of variables or objects(m): For complexity analysis
purposes we consider variables and objects equivalent because each object will have a
small constant number of variables. For all interesting cases,m > n; otherwise there
will certainly be redundant or conflicting controls.

We consider only the complexity of solving the differential optimization problems.
Other parts of the system might scale badly: for example, an input technique might
need to examine all pairs of objects (requiringO(m2) time), or a rendering computation
might require solving for interactions among all objects. However, such issues would
need to be addressed in non-differential approaches as well. ODE solving, the other
part of the differential approach’s computation, will require a small constant number
of calls to the differential optimization solver for the kinds of ODE solvers we might
consider.

With arbitrary controls, the computation costs of the differential approach are al-
most unbounded. For example, we might have a control on the average center of each
combination of 4 objects, requiring a combinatorial explosion just to enumerate the
terms in the expression. However, for analysis we make some assumptions that are
rarely violated in practice:

1. Objects are independent, therefore, the addition of another object does not change
the number of variables an object has, or the amount of time that it takes to com-
pute attributes.



68 CHAPTER 4. EFFICIENT SOLUTION TECHNIQUES

2. Controls are independent, therefore, the addition of another control does not
change the number of variables a control depends on or adversely change the
amount of time to compute a control’s value. Some optimizations, such as no-
tably common subexpression sharing, may speed evaluations.

3. Controls depend on a fixed number of variables, independently of the total num-
ber of variables or controls in the system. This restriction eliminates controls on
the aggregate of all objects, for example the center of mass of all objects in the
world.

From these three assumptions, it follows thatn andm are independent. It also
follows that the time to compute the values for the controls isO(n); because computing
each ofn controls cannot depend on eithern orm: By a similar argument, the Jacobian
of the controls can also be computed inO(n) time.

The fact that the Jacobian of the controls(J) can be computed inO(n) time is
significant, and non-obvious.J is ann�m matrix, so it would takeO(nm) time just to
fill the matrix with 0s. The key observation is that we do not have to store all the values
in the matrix because many of them will be zero, that is, the matrix issparse.Each row
depends only on the variables that its control depends on, which is independent ofn or
m: Therefore, the entire matrix will contain onlyO(n) entries. By exploiting sparsity,
this can be stored and accessed inO(n) time. Exploiting sparsity is an important tool
in implementing the differential approach.

Computing the differential optimization requires solving a linear system with the
n � n matrix JJT: This matrix can be built inO(n2) time because each element is
computed by the dot product of two constant length vectors. Solving the linear system,
with a standard method such as Gaussian Elimination, would be anO(n3) process. This
unacceptable asymptotic performance can be improved by exploiting sparsity.

For certain classes of sparse matrices, linear systems can be solved in much less
thanO(n3) time. For example, if the matrix has constant bandwidth, solving time
is O(n): For certain configurations of controls, the matrices will have this structure.
Surles[Sur92a] describes why important problems in molecular biology and other do-
mains have this structure, and describes techniques for solving such constraint systems
using methods very similar to the differential approach [Sur92b]. Unfortunately, if we
permit constraints among arbitrary objects, as we must for the general differential ap-
proach, we do not know the structure of the matrix a priori. In fact, there is no guarantee
that the matrixJJT will be sparse.

The way to exploit sparsity without making restrictions on the way objects can be
connected is to avoid constructingJJT: Many types of iterative linear system solvers,
such as the Conjugate-Gradient techniques discussed later, access the matrices only by
multiplying them by a vector. Using the associativity of matrices, the multiplication
JJTx can be achieved by doing two matrix by vector multiplies. Each of these would
takeO(n) time because that is the number of entries are in the matrixJ. Technically,



4.2. SCALABILITY OF THE DIFFERENTIAL APPROACH 69

Figure 4.1: Sparsity patterns depicted by filling potentially non-zero elements with grey. Left:
Since each object defines a few functions to contribute to the metric, and these functions depend
only on the object’s variables, the Jacobian will beblock-sparsewith a rectangular region for
each object. Right: When the Jacobian is multiplied by its transpose, the blocks do not interact
with each other, leading to independent squares along the diagonal of the matrix. This form of
sparsity is calledblock-diagonal.

these multiplies will takeO(m) time because the intermediate resultJTx is a vector of
lengthm; andm > n: However, ifm� n; the vector will be sparse, so sparse vector
techniques reduce things back toO(n): Using a solver that requires onlyO(n) of these
matrix vector multiplies means that the linear system can be solved inO(n2) time.
Empirical results using a Conjugate-Gradient solver confirming this are discussed in
Appendix B.

4.2.1 Complexity of the Metric

The above discussion ignored the metric.M is anm � m matrix, so in the general
case, simply filling it or inverting it would dominate the asymptotic complexity of the
differential solving. This complexity prohibits using arbitrary metrics or using the op-
timization objective to find the soft controls as described in Section 3.5.1. With some
reasonable restrictions, metrics can be supported without adversely effecting the com-
putational complexity. To the restrictions of the previous section, we add

4. Each object defines its metric (e.g. its contributions tog) independently.

All of the arguments for evaluating the controls and their Jacobian apply tog as well.
However, since each row ofG can only depend on the variables of one object, we
know that the matrix must have a block structure, depicted in Figure 4.1. When this is
multiplied by its transpose to form the metric, the matrix will be block diagonal with a
block for each object, and block sizes equal to the number of variables that each object
has.

The block sparsity of the metric is important. It has onlyO(m) entries, and can
be inverted inO(m) time because each of the blocks is independent. Using the same
associativity argument as forJJTx; the matrix multiplicationJWJTx also will take
O(n2) time. The same arguments apply for the diagonal metric.



70 CHAPTER 4. EFFICIENT SOLUTION TECHNIQUES

4.3 Solving the Linear System

To compute the Lagrange multipliers, we must solve a linear system which can be
written in the standard form

A� = b; (4:1)

whereA is a square matrix of size equal to the number of constraints, and is determined
by the Jacobians of the control functions, andb is a vector computed from the control
values. For example, in the simplest form of the differential optimization,A is JJT ;
andb is _p.

In choosing a numerical algorithm to solve the linear system, we first must consider
the properties ofA: First, it will always be positive semi-definite, and in the cases with
damping, positive definite. It will also always be symmetric. These properties hold
because it is created by multiplying a matrix by its transpose and altering the diagonal.

The most important property ofA with regard to solving it efficiently is that it will
be sparse. Or, more precisely, it will be created by multiplying a set of sparse matrices.
This is significant because in this section we will show an algorithm which does not
actually ever buildA: The structure ofA relates to the constraint problem at hand. In
particular, an element ofA will be non-zero if the two constraints (one corresponding
to the row, one corresponding to the column) share a variable.

Solving a linear system is anO(n3) process in general. Exploiting the sparsity of
the matrices is important to achieving better performance. Sparse matrix techniques
generally fall into two categories: direct and iterative methods. Direct methods take
advantage of the structure of the matrix problem to solve the linear system as quickly as
possible. For matrices where the structure is unknown, the algorithms do a pre-analysis
to find the structure of the matrix so it can be solved quickly. Direct methods are not
well suited to the purposes of this thesis for several reasons. First, because the struc-
ture of the matrix is continually changing, the pre-analysis must be done often making
its cost difficult to amortize. Secondly, direct methods’ computational complexity is
proportional to the bandwidth of the matrix, so it is possible that even for an extremely
sparse matrix, the cost will still beO(n3): Finally, direct methods are complicated to
implement.

Iterative methods solve linear systems by repeatedly performing a calculation that
eventually converges on the solution. Such methods offer an opportunity to trade ac-
curacy for performance by controlling the tolerance to which the solver is required
to achieve. By setting a larger tolerance, the algorithm is permitted to stop before it
achieves an exact solution. In Section 4.2, an argument was given that with an iterative
solver that does only a constant number of matrix vector multiplies per iteration,O(n2)
performance could be achieved for the differential approach. The particular type of al-
gorithm suggested for use in the differential approach, Conjugate-Gradient methods,
offers this performance and several other advantages.



4.3. SOLVING THE LINEAR SYSTEM 71

4.3.1 Conjugate-Gradient Linear System Solving

Conjugate-Gradient is a class of iterative algorithms for solving linear systems, non-
linear systems, and optimization problems. Surveys of Conjugate-Gradient methods
for solving linear systems are provided in [PS82] and [She94]. [GL89] also provides a
good introduction to the techniques. The actual solver I have used is adapted from the
one presented in [PFTV86]. We briefly review some of the important attributes of the
algorithm here.

Conjugate-Gradient algorithms operate by repeatedly refining an estimate to the
solution of the system of equations. Consider the current estimate as a point inn-
dimensional space. At each iteration, the algorithm chooses a direction in which to
move the estimate, computes a distance to travel in this direction, and finally updates
the estimate accordingly. This process is repeated until the estimate is sufficiently close
to being a solution, which can be quickly checked by inserting the estimate into the
equation and measuring the error.

The key piece of a Conjugate-Gradient algorithm is how it selects directions to
move its estimate in. For each iteration, a direction is chosen that is conjugate (orthog-
onal) to the preceding directions. Since a set of mutually conjugate vectors inn-space
hasn elements, a conjugate gradient algorithm, under ideal situations, would require at
mostn iterations to get an exact solution. In practice, numerical inaccuracies may cause
the solver to require more iterations on ill-conditioned problems. Because we are not
as concerned with accuracy, we will settle for stopping the solver before it completely
converges in ill-conditioned cases, limiting it toO(n) iterations.

At each iteration, a conjugate gradient algorithm must compute a new direction,
find a step length in this direction, revise the estimate, and compute the error residual.
The only part of this which actually must access the matrix are the first and last step.
What is most significant for our purposes here is that in those steps, the only accesses
to the matrix are to multiply it by a vector.

The Conjugate-Gradient technique leads to a family of algorithms. Many of the
more sophisticated algorithms, such as LSQR algorithm introduced in [PS82], provide
greater precision and more tolerance of numerical errors. As discussed in the paper
introducing LSQR, the more sophisticated algorithms offer advantages only when high
accuracy is required and when the matrix is ill-conditioned. However, as discussed in
Section 4.1, the standard tradeoffs of numerical analysis do not apply to our applica-
tions. Since getting an answer quickly is more important than obtaining a high-accuracy
answer, the more traditional Conjugate-Gradient methods may be actually be more de-
sirable for our purposes.

4.3.2 Selection of a Linear System Solving Algorithm

Solving the linear system dominates the computational complexity of the differential
approach. Selecting the algorithm is, therefore, an important decision.



72 CHAPTER 4. EFFICIENT SOLUTION TECHNIQUES

From my experience, a Conjugate-Gradient solver is the best candidate for use in
the differential approach because:

1. It exploits sparsity irrespective of the form of the matrix to be solved, leading to
O(n2) performance in typical applications that meet the assumptions of Section
4.2.

2. It is simpler to implement than other general sparse matrix solvers such as direct
methods.

3. It does not need to form the actual matrix that defines the linear system, which
may not be sparse. Instead, it simply uses the Jacobian matrices that make it up,
avoiding multiplying the Jacobian by its transpose.

4. The only operations it requires from the Jacobian is the ability to multiply by it
and its transpose by a vector, providing freedom in choosing the representation
for J:

5. The stopping criteria can be adjusted to trade accuracy for performance by ac-
cepting solutions within a larger tolerance.

Most other approaches to solving the linear system in the differential optimiza-
tion problem fail to provide one of these advantages. Other solvers potentially offer
other advantages, for example lower overhead, more accuracy, or better tolerance of
numerical errors, however, these advantages are often outweighed by those listed for
Conjugate-Gradient. For example, a Cholesky factorization, as presented in [PFTV86],
is a very efficient way to solve linear systems with positive-definite symmetric matrices,
just what is needed for the differential approach. Such a solver hasO(n3) performance,
but with a very small constant, and is numerically stable. For small problems, the small
constants of the Cholesky algorithm might make it a faster method. However, even in
these cases, performing the matrix multiplyJJT is often expensive enough to outweigh
the performance gains in the linear system solver.

Other iterative solvers may compete with Conjugate-Gradient in some applications.
The performance of iterative solvers is very problem dependent. My experimentation
shows Conjugate-Gradient to be vastly superior than simpler Jacobi iterative solvers.
Implementing Gauss-Seidel iteration or Successive Over-Relaxation (SOR) is difficult
with the matrix representations used in my implementation (discussed in the next chap-
ter), as column operations cannot be implemented efficiently.

If the matrices to be solved have a known sparsity pattern for which an efficient,
special purpose solver exists, such a solver would probably be preferable to using
conjugate-gradient. For example, if the matrix is known to be banded with a narrow
bandwidth, linear time algorithms can be used. However, selective use of special pur-
pose solvers has not been explored in this thesis as I have tried to emphasize general
purpose techniques.



4.3. SOLVING THE LINEAR SYSTEM 73

4.3.3 Partitioning the matrix

One very important type of sparsity that will often be useful to exploit in the differential
approach is partitioning. In some cases, the rows of the linear system may not all depend
on one another, that is, they may be partitioned into separate, smaller pieces, similar to
those shown in Figure 4.1. With the differential approach, a partionable matrix occurs
whenever there are groups of objects that do not share any controls. Partitioning breaks
the large matrix into smaller pieces when they are independent.

The reasons for partitioning the matrix include:

1. Solving several smaller problems will be faster than a single large one if the
complexity is greater than linear.

2. If one of the partitions is ill-conditioned, it can have bad effects on the other
partitions.

3. Some of the partitions may be trivial to solve. This is especially true in cases like
constraint-based drawing where one partition will be receiving user input, and
the other partitions will be sitting idle.

Reason 1 is not as important with the conjugate-gradient method, described in Sec-
tion 4.3.1. In a sense, the Conjugate-Gradient algorithm solves the disconnected par-
titions in parallel. However, the solver must take the number of iterations required to
solve the largest block. The savings is, therefore, not as great as when a straightO(n2)
or O(n3) solver is used. However, the savings can be considerable when one block
requires many iterations, for example if it is large or ill-conditioned, and many other
blocks can be solved quickly, either by trivial checks or because they are small.

Reason 2 is particularly important with the conjugate gradient methods described
in Section 4.3.1. If any partition of the matrix is ill-conditioned, the steps the solver
will take will involve very small direction vectors and very large scaling factors. The
parts of the direction vector that correspond to the well-determined partitions of the
matrix will contain extremely small numbers, so the large steps should not have any
effect. However, because of floating point inaccuracy in representing the very large
and very small numbers, much error is introduced. The net effect of this in differential
manipulation is that if there are any controls which are ill-conditioned they will cause
completely disconnected graphical objects to jiggle.

An algorithm for partitioning

One of the features of partitioning is that it is simple and fast to implement. To partition
JJT; it is sufficient to orderJ:

We begin with each variable in a disjoint set. For each constraint, we union the dis-
joint sets that correspond to each variable that the constraint affects. When completed,
we can then gather each set together into the state vector.



74 CHAPTER 4. EFFICIENT SOLUTION TECHNIQUES

The key piece to performing the partitioning is that we can do the disjoint set union
and find operations very quickly. In fact, using an extremely simple algorithm, the
unions and finds can be performed in nearly linear time2. The disjoint set union and
find algorithms, along with a complexity analysis, are provided in [Cor89].

The partitioning algorithm runs in time linear with the number of variables and the
number of non-zero elements of the matrix. Since the algorithm must actually have
the matrix to partition, and filling the matrix takes time proportional to the number of
non-zero elements in it, computingJ is often the most expensive step in partitioning.

4.4 Reducing Problem Size

As described in Section 4.2, solving the linear system in the differential optimization
is the dominant factor in the computational complexity of the differential approach.
Without placing restrictions on the problems, it is unlikely that we can achieve better
thanO(n2) complexity for general constraint problems. We must find ways to keep
n small, without restricting the size of the problems that the user actually works on.
That is, to find methods which give the user the illusion that the system is working on
a larger problem, while in fact, the problem’s size has been reduced.

Partitioning, described in the previous section, is an example of a method for trans-
parently reducing the problem size by solving a set of smaller problems rather than the
larger problem.

If we know how some variables are going to change by some other means, the ex-
pense of solving the differential problem is not required. For example, If we know that
an object is frozen in place, we know that it will not move, and that the time deriva-
tives of its variables are simply zero. We can implement the constraints by removing
the object’s variables from the set of variables solved for, rather than by adding more
equations.

For complexity purposes,m andn are really the number ofactivevariables and
constraints, that is the number that might actually have an affect on the current step.
We can discount objects if there are no controls that may cause them to move or if there
is something else which requires that they do not change. We can forget a control if it
does not effect any changeable objects. We call the set of variables and constraints that
are actually participating theworking set.3

In general, adding a new control or constraint adds ton and therefore makes the
differential optimization more expensive to compute. However, constraints realized by
removing variables from the working set instead reducem rather than increasingn;
speeding computations. Such constraints are represented implicitly in the structure of

2Actually, it is inverse Ackerman worse than linear, but since the inverse Ackerman is a small constant
(< 5) for any quantity we are likely to encounter, we can consider it to be linear.

3The other obvious term, active set, already means something else.



4.4. REDUCING PROBLEM SIZE 75

the problem, rather than explicitly by an equation.
Freezing an object is a simple example of a constraint that can be implemented

implicitly. Specifying that an object is to be frozen, e.g. that it must not change, could
be represented by explicitly placing a control on each variable. However, the effects
of these controls are known: they will cause the variables not to change. Since the
variables will not change, they can be removed from the working set. Without variables
in the working set, the object is constrained not to move, however, this constraint is
represented implicitly in the structure of the problem.

Implicit constraints generalize to sets of individual variables. For example, a line
segment has four degrees of freedom. Freezing its length can be implemented by ex-
plicitly placing a controller on a length connector. However, if the line segment’s rep-
resentation included a separate independent variable for length, this variable could be
removed from the working set to implicitly represent the length constraint. This was
how the fixed length line segment of Section 3.7 was created.

Implicit constraints are representation dependent. In the example above, if the pro-
grammer had chosen a different representation for the line segment, for example to
represent it by the positions of its endpoints, the length constraint could not be imple-
mented as an implicit constraint.

Often, it is worthwhile to choose representations to maximize the number of implicit
constraints. For example, in a planar mechanisms simulator like the one described in
Section 9.2 most line segments represent rigid linkage rods. Therefore, a representation
is used that has length as a variable. This way the commonly needed constraint that the
line is a rigid length can be realized as an implicit constraint.

Finding new representations of objects is a difficult problem, especially when we
cannot anticipate the types of constraints and combinations that will be desired. In
fact, the whole differential approach is a response to the problem that representations
cannot simply be derived on demand. In terms of physical simulation methods, finding
new representations is equivalent to deriving new equations of motion with Lagrangian
dynamics techniques.

Finding new parameterizations is equivalent to symbolically solving the non-linear
systems of equations. This task is not automatable for any general class of problems.
Although it is not possible to create new representations either dynamically or in a
general, automatic way, it is possible to create multiple representations for important
cases of controls on objects.

It is conceivable to build a system that changes the representation of objects to
maximize the number of implicit constraints. This requires solving a combinatorial
optimization problem. Globally optimizing for the maximum number of constraints is
most likely difficult.4 Incremental methods might provide different results depending
on the order the controls are added, which may be a problem since the behavior of
implicit constraints and standard controls differ.

4I believe it to be NP-hard, although I do not have a proof.



76 CHAPTER 4. EFFICIENT SOLUTION TECHNIQUES

Another form of implicit constraint is merging, that is having multiple parameters
access the same variable, as seen in ThingLab [Bor81]. Merging is an implicit con-
straint for equating parameters. Because merged parameters share a single variable,
they have exactly the same value. A more general variant of merging views a variable
as an input. It can either be connected to a slot in the state vector, or connected to some
output. This effectively mixes local propagation into the numerical methods.

Implicit constraints are exact. If an object is frozen, it stays exactly fixed. Two
merged quantities are exactly equal. While this exact equality can be an asset, it can
also be a problem as it means the constraint behaves differently than its explicit coun-
terpart. This can be particularly troublesome in cases where the solver might break the
equality constraint slightly, for example to achieve a least squares solution to an over-
constrained problem. This distinction becomes significant when the system switches
between the two types of constraints.

4.5 Trading Accuracy for Performance

Trading accuracy for performance is an important method for improving the perfor-
mance of the differential approach.

Using simple ODE solvers with fixed step sizes is one way to trade accuracy for
performance. The simpler ODE solvers compute rough solutions quickly, and then
permit feedback terms to clean up the results in subsequent steps. This is useful because
it gives a rough answer quickly, but provides a more accurate answer over time. For
example, in dragging an object, the accuracy needed might be low. When the user
stops to examine a situation more closely, the solution has a moment to become more
accurate, and by the time the user has decided that a solution is acceptable enough to
print or render at high resolution, the constraints are fully converged.

Varying the step size of the ODE solver is another way to trade accuracy for per-
formance. Larger step sizes cause larger apparent velocities on the screen, assuming
that control velocities are constant. As discussed in Section 3.3, larger step sizes may
be less accurate.

The use of a Conjugate-Gradient linear system solver provides another way to trade
accuracy for performance. By using a larger tolerance for the stopping criterion, the
solver can accept an answer more quickly if it finds an approximate one.

Many aspects of the methods used to handle inequalities effectively trade accuracy
for performance as well. For example, the simple scheme for selecting active sets of
Section 6.4.4 trades accurate solutions for faster solving. Not backing up the ODE
solver when an inequality boundary is crossed, as will be discussed in Section 6.4.5,
may also be viewed as another method to achieve performance by giving up accuracy.


