The science is in the technique, all the rest is just com-
mentary.
— Allen Newell
SCS Distinguished Lecture, Dec, 1991

Chapter 3

Differential Techniques

This chapter introduces the basic techniques required to implement the differential
approach. We begin by reviewing how graphical manipulation can be viewed as an
equation solving problem. To solve these equations differentially, we will solve a con-
strained optimization that computes rates of change of the parameters given the desired
rates of change of the controls. Basic methods for solving these optimizations will be
discussed.

Constrained optimization computes the rate of change of object parameters. To
determine the objects’ trajectories, an ordinary differential equation (ODE) must be
solved from an initial boundary value. Some of the basic issues in solving such equa-
tions as well as some methods will be introduced.

Additional flexibility is provided by adding additional terms into the constrained
optimization problems. This is used to provide default behaviors for objects and to
permit the creation of soft controls that can be used to express preferences.

The chapter concludes with an alternate solving method that sacrifices generality for
simplicity, a simple example worked through in detail, and a summary of the symbols
and methods discussed. The subsequent chapters describe how these methods can be
implemented in an efficient and flexible manner.

3.1 The Differential Optimization Problem

In the introduction, the basic notion of treating graphical manipulation as an equation
solving problem was introduced. We control graphical objects by specifying what hap-
pens to the values of selected attributes called controls. These controls are defined by
functions,

p= f(q), (31)

whereq is the state vector of the objectsis the vector of values of the controls, aihd
is the function that defines the controls. A full table of all mathematical symbols used
in this chapter is provided on page 62.

39
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As was discussed in Section 1.1.5, itis not practical to solve Equation 3jhfeen
p. Instead, we take a differential approach to the problem, as described in Section 1.2.
Rather than specifying values for the controls, we will specify how they are changing
over time. At particular instants in time, we compute how the state vector must change
in order to achieve the desired changes in the controls.

Given a particular instant in time, the value for the state vector at that insfant (
and the desired values for the rate of change for the conisdlsve must compute the
necessary rate of change of the state vegforiWe call this problem thelifferential
optimization Since the value for the state and the control function are given, we also
know the value of the controls at the instant the optimization is to be solved.

Our need to deal with the time derivatives of the controls and state variables leads
us to take the derivatives of each side of Equation 3.1 to yield

. _dp _df (q)
p=_ = (3.2
Applying the chain rule yields
_of dq
b= aq dt - (3.3)

For the general case of a vector of control functions, the derivative is a matrix called
the Jacobianwhich is the matrixdf /0q and is denoted by. Using this notation, we
get
p=lq. (3. 4)
Like the controls themselves, the Jacobiais a function of the state variables.
The matrix of functions that compute the elements of the Jacobian can be determined
by differentiating the control functions with respect to the variables. Since the values
for the state variables are given, the value of the Jacobian is effectively given as well.
Methods for computing the Jacobian efficiently will be discussed in Section 5.2, but
for now, we simply assume we have some method to compute the Jacobian from the
variables, and treat is as if it were a given as well.
Sincel is a known matrix, Equation 3.4 idiaear equation, even thoughis a non-
linear function ofg. The differential approach has replaced the multi-dimensional non-
linear root-finding problem with a linear system and an ordinary differential equation.
Unlike non-linear equations, for which good solving techniques are unlikely to exist,
linear systems are relatively easy to solve.

3.1.1 Underdetermined Cases

Unless enough controls are specified to uniquely determine a solution, Equation 3.4
will be underdetermined. There will be many possible ways for the state vector to
change to achieve the desired changes in the controls. As discussed in Section 1.1, the
system must select one of the ways for things to change. We must use some heuristic to
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pick a solution, because we lack any information as to what is desired. The rule chosen
for the differential approach is to minimize the amount that the configuration changes,
or, more precisely, to minimize the rate of change of the configuration. That is, if the
user’s controls don’'t ask for something to change, the system should avoid changing it.
This leaves open a variety of ways to measure change that will be explored in Section
3.4. Since the rate of change of the configuration will be a linear function of the rate
of change of the variables, its magnitude will be a quadratic function, which we denote
by ¢.
When the linear system of Equation 3.4 does not uniquely deteripjneprovides
constraints on its possible value. To determine the particular valgewé must solve
the problem
minimize E =¢( q) subjecttop =J q. (3.5)

That is, we have cast the problem as a constrained optimization: minimize the value of
a quadratic objective function @f, subject to the linear constraints that the controls are
met. In the following sections, we discuss solution methods using standard techniques
that meet the needs of differential manipulation.

3.2 Solving the Differential Optimization

The linear/quadratic constrained optimization problems are a standard class of prob-
lems for which a wide range of techniques have been developed. Good surveys can be
found in texts such as [FIe87] and [GMW8L1]. A standard technique is the Lagrange
multiplier method. A form of it is reviewed here for use in the differential approach.
To begin, we consider minimizing a specific quadratic objective function, simply

minimizing one half the magnitude @f squared. The value af that minimizes that is

the same value that minimizes the magnitude;off he specific constrained optimiza-

tion problem we consider in this section is then

1
minimize E:§( ‘q - q) subjecttop =J q. (3.6)

We will consider the general case of quadratic objectives in Section 3.4.

To provide an intuition for how Lagrange multiplier methods work, consider an ex-
tremely simple case: a particle in 2 dimensions, with its state represented as its Carte-
sian coordinatesy = {z, y}. We will place a control on the particle that is its distance

to the origin,p =f(q) =2* + y?. Suppose we specify to be 1.
As shown in Figure 3.1, there are many possible valuegjfarhich achieve the
desired value folp. In this case, it is clear to see that the one with smallest magnitude
is the one which is in the same direction as the gradierit kny component ofy not
along this line will not be helping to achieve the desired controls. We can therefore
restrict q to be some multiple of the gradient, that igcan be expressed as a scaling
factor times the gradient. This scaling factor is calledlthgrange Multiplier.
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v

Figure 3.1: A point on the plane with a radial control. Many possible valueg aofiill yield
the desired value gf. The one with least magnitude has the same direction as the gradient of

f

If there were multiple controls, each would make a contributiorgtoFor each
control, the contribution is some multiple of its gradient. We therefore have a vector of
Lagrange multipliers, which we denote Ay q is determined by the linear combination

JTA.

More formally, to be a solution to the constrained minimization problgmmust
satisfy two criteria. Firstgq must satisfy the linear constraints, given by Equation 3.4.
Secondly,g must minimizeEas much as possible, subjectto the constraints. Inthe case
of an unconstrained minimization, we would require that the gradiéjd q vanish,
meaning that there is no direction to changé¢hat would result in a lesser value for
E. With constraints, there might be a way to changeo further minimizeE but
only if these changes are prohibited by the constraints. That is, if the gradient of the
objective function is not zero, it must lie in the row space of the constraint gradients.

This requirement is expressed by defining the objective function gradient to be a linear
combination of the constraint gradients,

— =J7, (3.7)
for some value oA. The vector\ is an intermediate result which we call thegrange

multipliers.

In the case of the simple objective function of Equation 3.6, the gradiéfd q is
simply q, giving

q=J"X\. (3.8)
Substituting this into Equation 3.4, gives
p=JJT), (3.9)

a linear system which can be solved for its one unknadnThis intermediate result
can be substituted back into Equation 3.8 to yield the desired final régsult,
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3.2.1 Over-determined Cases

To this point, we have focussed on techniques that handle the cases where aninsufficient
set of controls are specified to uniquely determine a solution. We now must consider
the problem of handling cases where too many controls specify the solution. Such cases
may involve redundant controls, where multiple controls all specify the same solution,
or conflicts, where there are no solutions to all of the controls.

Conflicting controls are obviously a problem as there is no solution which will meet
the controls. However, redundant controls manifest themselves in exactly the same
way. Consider a system subject to two identical contgel&ind p,. The net result
should be thaiy moves in the manner specified. Bijtis created by the sum of the

contributions of; andp,. How much does each contribute? Dgegontribute a little
andp, alot? Doe9, contribute a huge positive amount giida huge negative amount?

When controls are over-specified, whether their values conflict or not, they cause the
Lagrange multipliers to be under-specified. The makdixwill be singular. Redundant
or conflicting controls are inevitable, and are notoriously hard to detect. It is important
that our solution method be robust in the face of these singularities, and that it will do
something reasonable with conflicts.

One approach to handling the over-constrained cases would be to employ a linear
system solver which could handle Equation 3.9 even when the matrix is singular. For
example, singular value decomposition (SVD) [PFTV86] could be used. The SVD has
many attractive properties, for example it provides information as to which controls are
redundant. Unfortunately, SVD is expensive to compute. In contrast, if we can restrict
the problem so that the solver only needs to solve non-singular systems, we can exploit
this property to solve them efficiently, as will be discussed in Chapter 4.

Rather than force the solver to handle singular matrices, we will instead modify
the matrices so that they have a unique solution. We will not get an exact solution to
the original linear system, but we are trading accuracy for improved behavior in bad
cases. Because we are interested in interaction, rather than high accuracy quantitative
methods, we will make such tradeoffs often, as discussed further in Section 4.5.

The technique for making the matrices non-singular is caluping. The basic
intuition is that we generally prefer to avoid large values for the Lagrange multipliers,
therefore, in cases where the Lagrange multipliers are undetermined, we should min-
imize their magnitude. The derivation here most closely follows that of Nakamura’'s
derivation of a robust pseudo-inverse [Nak91].

In cases where the controls are over-determined, the solver will not be able to
achieve all the desired values for them. Instead, we must settle for getting as close
as possible, that is, to satisfy them in a least squares sense. To find Lagrange multipli-
ers that achieve this minimum, we minimiz&(J”A — q) - (J*A —q), In addition,

we would like to minimize the magnitude @f, although since this is not as important,

we can scale this term by a small amount, which we will pallThe function we wish
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to minimize is .
E:i(JT)\ —q) - (JEX —q) (X - X). (3.10)

The minimum of this quadratic is found by differentiating with respect,t@and setting
that equal to 0, yielding

0 =JJTX -J°q +ul, (3. 11
wherel is the identity matrix. Recalling Equation 3.4, a little rearrangement yields

P =(JI" +ul)A, (3.12)

a variant of Equation 3.9 which has small amounts added to the diagonal of the matrix.

Rather than having a single scaling factor for the magnitude of the vector of La-
grange multipliers, we could have an individual one for each individual multiplier. This
would enable damping selectively, or to damp some controls more than others. Selec-
tive damping allows the creation a a limited constraint hierarchy: if two constraints
conflict, and one is damped but the other is not, the undamped constraint will domi-
nate the damped one. When two conflicting controls are both damped, their effects are
blended. By individually adjusting their damping values, the controls can be weighted.
The larger the damping value, the less weight the control receives.

The damping technique presented here has three major drawbacks. First, it penal-
izes large values of the multipliers whether they are underdetermined or not. This can
cause a problem when the multipliers legitimately need to be large to satisfy the desired
controls. Secondly, damping is applied whether there are conflicting controls or not.
Finally, it introduces a new dimensionless paramgateBecause it has no real mean-
ing to the original problem, values for it are difficult to determine. For the differential
approach, damping values must be determined empirically.

3.3 Solving the Differential Equation

The methods of the previous section permit us to compute the rates of change of the
state vector. We now consider how to use the rates to find the trajectories of the con-
figurations over time. We must solve the problem of computing the trajectory of the
state given its initial value and time derivatives, a problem of solving an ordinary dif-
ferential equation (ODE) from an initial boundary condition. Here, we provide a brief
introduction to handling this problem in the context of the differential approach. For a
more complete, but still practical, introduction to ODE solution methods, see Chapter
15 of [PFTV86].

The value ofj is actually is a function of time, defined by a function that computes
its time derivative. The form that we have this function defined in is

q=f'(q, ), (3.13)
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wheref’ is found by solving the differential optimization. Given the valueddwhich
corresponds te (¢ ) for some timet ), we can computéy . This is a standard form for

an ODE.

For the types of problems we encounter with the differential approach, we cannot
solve the ODE in closed form. Instead, we must solve it numerically by discretizing
time into a series of small steps. In computing a step, the following problem must be
solved: given the state at the current tig€, ), find the state at some time in the future,

q(t 4At). The time derivativey (i.e. the result of the differential optimization) does not
directly provide the solution to this problem. It only specifies how the state is changing
at the instant that it is computed. The problem of updating the state given the ability
to find its time derivatives is solving an ordinary differential equation from an initial
boundary condition.

Solving the ODE is difficult because when we perform an evaluation todifor
a particularg , we are only finding out about a particular instant in time . We have no
information about the futureg might remain constant for the duration of the step, but
it might also change drastically over the course of the step.

The simplest method for solving an ODE is to fiidat the beginning of the step

and assume it remains constant over the course of the step. This is known as Euler’s
Method, and has the simple update rule of

q(t +4) =q(t) +4& q(t). (3.14)

Euler’'s method approximategt ) with as a piecewise linear function. The size of each
piece is the step size. If the stepistoo large, the approximation will not be good. Notice
that each step requires computing a ngWwy solving the differential optimization.

To understand what is meant by “good” in ODE solving within the context of the
differential approach, consider a simple example. Once again, we will use a point in
the plane, however, this time, we will select a control that is its angular position about
the origin. Suppose we provide a desired velocity for this control of 1 unit per unit
time, the starting configuration has the point a unit distance from the origin along the
positivez axis, and the specified derivative always points tangent to the circle. Astime
progresses, we will expect the point to move around the origin in a circular path.

If an Euler’s method ODE solver is applied to this example, the problems of ODE
solving are quickly apparent. At the initial position on the x axis, the gradient of the
control points vertically. Any step in this direction will lead the point off the circle it is
expected to follow around. As more and more steps are taken, the point will continue
to spiral away from the circle, speeding off the page, as shown in Figure 3.2.

Because of error in approximation, the point spirals outward over time. However,
if smaller step sizes are taken, the behavior is better. That is, the point spirals outward
more slowly, better approximating the expected circle. This is shown in Figure 3.3. In
fact, by going more slowly, we may reach a desired destination more quickly because
we are less likely to overshoot or drift away from the target. Going slowly can be
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Figure 3.2: A point on the plane with a control that drives it tangent to a circle around the
origin. Although it should (ideally) travel in a circular path, ODE solver error causes it to spiral
off the page.

RRANAY

Figure 3.3: A point is pushed in a direction tangent to a circle about the origin, using an Euler
ODE solver and various step sizes. In all cases, the point spirals away from the target circle,
although with small step sizes, the point tracks the circle better.

accomplished two ways, either by reducing the duration of the step or by reducing the
velocities.

In solving the ODE, there is effectively a speed limit. If an object attemptsto change
faster than this, it may speed out of control or even miss its destination entirely. For
a given velocity, solving can be made more stable by reducing the step size, in the
limit of infinitesimally small step sizes, ODE solving will be exactly correct. However,
since each step may require significant computation, the number that can be executed
is limited. Alternatively, this speed limit can be viewed with a constant step size: for
a given step size, how fast can an object go without becoming unstable. If we think
of steps as taking some fixed amount of time to compute, this translates directly to an
apparent velocity in the image.

The speed limit given by ODE solving varies according to a number of factors.
Most significantly, it depends on the path that the objects take. The more non-linear
the function is, the more poorly the linear approximation will fit it. At the extreme,
if an object is truly moving in a line, Euler’'s method achieves the exact motion, and
there is no speed limit. In a sense, the speed limit can be viewed as a restriction on the
types of controls used to define the motion: given that the step size is fixed, how badly
non-linear a control can be used and still have the object move at a reasonable rate.
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If we take smaller steps to achieve better performance, we might use multiple ODE
solver steps for each redraw. For example, if we would like to maintain 10 frames per
second and updating the image or solving the differential optimization takes 30ms, we
might use two Euler steps between redraws. As we will see in Chapter 4, typically the
differential optimization is the most time consuming part of the process, and becomes
more so as the problems grow larger. With a faster computer, the time to compute each
step will be decreased, so more steps can be computed per redraw, effectively raising
the speed limit.

Using multiple samples per step is what is calfedlti-step solving.We might
phrase the problem as follows: the starting poinatdq(z)), computeq(t +4) as
well as possible using samples. Using two Euler steps has2, and uses a 2 piece
piecewise linear approximation.

Given that we have some number of samples that we can make in a step, we can
consider how to best use these samples to approxiqiate For example, if we can

take 2 samples, we might use a 2 piece linear approximation by taking two Euler steps.
Alternatively, we might use these same two samples to fit a parabola. This would be
called a2nd-ordermethod. The particular case of a parabola is simple to create, since
a parabola has a linear function for its derivative. This is effectively done by using the
initial step as a trial step, evaluating the derivative at this point, and using this for the
duration of the step. This is called th@dpoint methoar the 2nd-order Runge-Kutta
method. It is applied to the example problem in Figure 3.4.

According to Press et al.[PFTV86], the most popular multi-step method is the 4th-
order Runge-Kutta method. As implied by the name, it uses 4 evaluations per step.
According to the literature, this method is generally perceived to be superior to higher
order methods. The 4th order Runge Kutta method has been the preferred solver for
the prototype implementations in this thesis.

A higher order method is only better than taking a larger number of lower order
steps ifit provides a higher speed limit for the same number of evaluations. This will, of
course, depend on the problem to be solved. However, in practice, the 4th-order Runge-
Kutta method seems to be a good method for implementing the differential approach.
Empirically, it usually performs at least as well, but sometimes substantially better, than
taking 4 small Euler steps, or 2 Runge-Kutta 2 steps.

There are many other multi-step methods. Predictor-Corrector techniques [PFTV86]
are another popular strategy. Such methods use past steps to predict future values and
then correct for the error of the prediction. However, these methods are difficult to
apply in dynamic settings because the dynamic nature of the problems make it diffi-
cult to maintain a history to use in prediction. Often, there will be no history so some
technique like Runge-Kutta will be needed to start the process.

For the prototype implementations of this thesis, fourth order Runge-Kutta and Eu-
ler's methods solvers are used.
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Figure 3.4: Left, a second order Runge-Kutta method, and right, an Euler’s method are used
in the example problem of Figure 3.2. The evaluations used by the Runge-Kutta solver are
shown in grey. Notice how the Runge-Kutta solver stays closer to the circle using the same
number of evaluations as the Euler solver.

3.3.1 Adaptive Step-Sizes

So far, we have considered solving an ODE with fixed step sizes. Instead, we might
consider adapting the step size to the problem. When a step is made, it could be checked
to see how good it was. If it caused an unacceptably large amount of error, it could be
redone with a smaller step size. Adaptive step size methods have the advantage that
they can slow down to accurately handle problems when they become difficult. Also,
because they check their results, they are less likely to cause bad errors.

Adaptive step size methods have some severe drawbacks when used with the dif-
ferential approach. The most significant problem is that they are continually adjusting
the step size which alters the amount of computation required to advance simulation
time a specified amount. If the computation rates are fixed, the apparent velocities of
objects will fluctuate. This can be disconcerting to the user. Also, the extra evaluations
to perform checks and computing alternate steps might be better spent on making more
steps since error correction is built into the controls, as controllers can adjust their val-
ues in response to what is happening as will be discussed in Section 6.3. For example,
in the example of the previous section, if the user really cared about the point staying
on the circle, an additional control that maintained this would be used.

The differential approach provides some interesting opportunities for employing
adaptive step sizes. Standard methods for ODE solving treat the equation as a black
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box, that is they cannot get any information about the problem other than asking for
evaluations ofq . Standard adaptive ODE solvers employ methods such as taking the
same step with a higher order method to compare with.

With the differential approach, we have more information about the problem we
are solving. In particular, the functions that define the controls provide measures of
error. For example, if a controller is meant to keep a control at a particular value, at the
end of the step it can be checked to insure that the control has not changed too much.
Each different control might have its own way of defining what an acceptable amount
of error is. | call thissemantic adaptatiobecause it adapts based on the meaning of
the problem. | have experimented with some simple semantic adaptation of step size,
simply reducing the step size when a control has a value that the system finds unaccept-
able. The method works as follows: a certain set of controls are monitored. When a
step is computed, the monitored controls are examined. If any exceed a specified error
limit, the step size is shortened.

A different type of semantic adaptation is to use a different step when problems
occur. One useful variant of this is the cleanup step. In an application like constraint-
based drawing or mechanism simulation, there is typically some small number of con-
trols that cause motion and a potentially larger number that represent constraints. A
cleanup step is an extra step that is run only with the constraints. It is used when the
pulling controls have broken the other constraints to cause them to get back to their
desired configuration.

3.4 Generalized Objective Functions

The optimization objective determines which solution will be given in under-determined
cases. By selecting different optimization objectives, different default behaviors can
be given to objects. To this point, we have only consider one optimization objective:
one half the magnitude of the state vector derivative squared. This section considers
other objective functions.

The types of default behavior that we consider in the Differential Approach can be
summarized by the idea that objects should not change unless a control causes them to
change, and that when an object changes to achieve what is specified by a control, it
should do so by changing as little as possible. By altering how we measure change, we
can control the default behavior or feel of an object. For an example, consider manip-
ulating a line segment by moving one of its points, as shown in Figure 3.5. Depending
on the metric of change, the line segment will behave differently. In all cases, the line
segment achieves what is specified by the controls. However, by selecting an appro-
priate metric, the programmer can create a desirable default behavior. An appropriate
metric is not essential since if there was something that was important, it could be spec-
ified with a control. But, properly defined objectives can alleviate the need for extra
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(a) (b) (c)

Figure 3.5: A line segment is dragged by controls that specify the position of the upper point.
Different objective functions provide different behaviors: a) change in length and orientation
are minimized; b) change in the position of the center is minimized; c) change in the position
of the lower point is minimized.

specifications.

The simplest metric of change is the magnitude of the rate of change of state vector,
q, as was used in Section 3.2. This simple objective has been used up to this point, and
is sufficient for a wide variety of applications. It has a drawback: it causes the param-
eterization to affect the behavior of the object. Using the parameterization violates the
goal of separating manipulation from representation. Even simple decisions, such as
whether to represent an angle by degrees or radians, can affect an object’s behavior
[Wit89a]. This may be a serious problem, or an opportunity. It means that we can
choose which interactive behavior we would like by carefully choosing the representa-
tion. However, if we are not careful about choosing the representation, we might get a
less desirable behavior. The severity of this problem is limited, because the user could
always provide additional controls if they really cared what happened.

3.4.1 The Metric

In order to spare the user the increased effort of more completely specifying their intent,
and to give programmers more freedom to select representations that are convenient,
we must use a different objective function. Rather than measuring change in values of
the parameters, we could measure change in something that did not depend as closely
on the representation. We have used the functions that compute objects’ attributes to
serve as controls that are independent of representation. Similarly, we prefer to define
an object’s metric in terms of its attribute functions as well. We select a subset of the
attributes to define the metric. Just as we denote the subset of the attributes that serve
as the controls & we will denote the function used to define the metriggtwhich is
also a function ofj. We denote the Jacobialg/dq by G.

The optimization objective will be to minimize the magnitude of the change in the

attributes. This rate of change is
g =G q. (3.15)

Since we are searching for the minimum, we can minimjzghe sum of squares of
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g, rather than the magnitude. Since we might wish to emphasize some of the attributes

more than others, we also introduce a scaling factor for each to make the objective a
weighted sum of squares. Writing the scaling factors as the diagonal elements of a
matrix for notational convenience, the objective function is

1
E= qTGY'SG, (3.16)

We will call the matrix that defines this quadrati® (SG) term themetric because it
defines a way to measuig
The simple objective function of Section 3.2 used the parameters of the objects as
the attributes that defined the metric. Sirgce-q, G =I andM also is the identity
matrix. Viewed this way, the advantage of using a correct metric can be seen. The
identity metric defines the behavior of the object in terms of its parameters, rather than
in terms of something that is potentially meaningful to the user.

A Particularly Useful Metric

The metric provides a method for an interface designer to define a default behavior for
an object. In effect, it allows for hand-tuning the behavior that a user sees when the ob-
ject is manipulated. However, this leaves the problem that the interface designer must
hand-tune the behavior in order to hide effects of the parameterization. Often, this is
not an issue, as the parameters provide a reasonable default behavior, or, if a specific
behavior is required, it can serve to describe a metric. However, some applications
demand an automatic method for determining a metric that provides a consistent, pa-
rameterization independent, feel for a variety of objects. Such a method is particularly
useful in cases where a user may define object behavior. An example is the parametric
curve manipulation of Section 8.1.1 and Section 9.4.

An analogy to physics provides an automatic, consistent metric for a broad class of
objects. As first suggested by Witkin [Wit89b], we can imagine an object as a physi-
cal entity with an uniform mass distribution. In effect, we can view each pixel of the
object as an atom, each with a tiny bit of mass. This mass distribution defines how the
object changes as forces are applied in particular places. Inertia causes each patrticle to
move as little as possible. The mass distribution serves as the metric does, defining the
behavior of objects in response to controls. Witkin and Welch [WW290] used specifi-
cation of the mass distribution to allow animators to specify the the default behaviors
of simulated objects that were acted upon by point controls.

When solving the equations of motion of a physical object in generalized coordi-
nates in order to simulate it, the mass distribution is encoded into a matrix known as
the inertia tensor or mass matrix [Gol80]. This matrix is found by accounting for the
effects of each particle on the objects’ behavior by integrating over the mass distribu-
tion. When such a matrix is determined numerically, the integral is approximated by
sampling a set of particles.
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Analogously, a metric can be defined by viewing a graphical object as a collection
of “particles” and minimizing the motion of these particles. In practice, the distribution
is estimated by a set of points. We define the metric functions to be the positions of
an evenly spaced set of points on the object. We call such a metrirnabe matrix
because of its physical analog.

The mass matrix is an important metric because it can be defined independently
of the object. For any graphical object, a set of points can be evenly distributed either
alongits length (for a curve) or within its area (if itis solid). Section 8.1.1 will illustrate
the utility of this, allowing default behavior to be automatically provided for a wide
variety of objects.

3.4.2 Solving the Generalized Quadratic Objective

Using a different quadratic optimization objective requires a slightly different set of
methods for solving the constrained optimization problems. In this section, we derive
the method in its full generality for the case of any quadratic objective function and
linear constraints.

The standard form of a vector quadratic equation is

E:%XTMX +bTx 4, (3.17)

wherex is the vector parametety(for this chapter)M is the quadratic or matrix term,
the vectorb is the linear term, and is a scalar constant. Since we are not interested
in the value itself, but rather only the valuethat minimizes it, we can ignore the
constant as it goes away when we take the gradient, and we can multiply the quadratic
by 1/2 as it cancels out other values later, simplifying the equations. The linear term
permits measuring change from a point other than 0, and will be used in Section 3.5.
The methods of Section 3.2 solve the special case of this objective with an identity
matrix for M, and O for the linear componeht

The Lagrange multiplier derivation can again be applied, this time to Equation 3.17.
We denote the linear constraints Ax —a. We require the gradient of the objective
function to be a linear combination of the of the constraints,

9 _\g +bx —ATA. (3.18)
ox

Solving this forx and denoting the inverse of the meth€' by W, gives
x =WATX -W5. (3.19)
Inserting this into the constraint equatid®r =a gives

AT\ = 1A, (3. 20)



3.4. GENERALIZED OBJECTIVE FUNCTIONS 53

a linear system that can be solved far Once is computed, it can be inserted into
Equation 3.19 to compute

The damping techniques of Section 3.2.1 are not taken into account by the gener-

alized quadratic objective. Using a derivation similar to that of Equation 3.12, yields
(AT I )X =a +AW. (3.21)

Using the notation of the rest of the chaptdr,is the metric as defined in Section
3.4.1 and the linear constraints are given by Equation 340 anda =p.

3.4.3 An Approximation to the Metric

Using the metric to define the default behavior of an object has several advantages. It
permits separation of manipulation and representation, and provides an abstraction for
defining the feel of an object. However, it has a significant cost: we must find the metric
and invert it. This is problematic because the metric is large. Inverting a matrix this
large would be prohibitive. One advantage to using the identity matrix as the metric is
that it is trivial to invert.

What we aim for in this section is an approximation to the metric that is inexpensive
to invert, yet provides some of the features of the full metric. The approximation we
consider is simply using the diagonal elements of the metric. This diagonal matrix is
trivial to invert — we merely take the reciprocal of all its elements — and cheap to use
in solving Equation 3.20. It still addresses some of the important issues that the full
metric addresses, particularly the selection of units.

Consider again the example of dragging a line segment in Figure 3.5. Suppose its
configuration is represented by the position of its center, its length and its orientation,
and that the simple identity metric objective function is used. If the upper left corner
of the segment is move a quarter of an inch to the left, the line segment might have its
center move, scale and rotate, or some combination of the two. Suppose that the posi-
tion of the center of the line segment was represented in micrometers from the corner
of the page, the orientation represented as radians from horizontal, and the length in
inches. To achieve the movement of the upper left point by simply moving the center
would require the parameters to change very quickly as there are many micrometers
to be covered, while achieving the movement by scaling and rotating would require
considerably smaller changes in the parameters. Because the simple optimization ob-
jective minimizes change in the parameters, the latter would be chosen. If the position
of the center were measured in miles instead, a very tiny change in the position of the
center would create the needed motion, so this would be selected by the optimization
criteria.

In the example, the simple selection of units with which to represent the position
of the center of the line segment determined the dragging behavior. The problem is
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parameters having different units. One way around this is to define an objective func-
tion which minimized the amount of change in the parameters after converting them to
some standardized units. Suppose we knew the conversion factors between the units
of the parameters and the standard units. We would have a scaling factor for each pa-
rameter. For notational convenience, we can write the scaling factors as the diagonal
elements of a diagonal matr§& so the component-wise scaling of parameters would
simply be the multiplicatiorsq.
Rather than simply minimizing the magnitudegfwe would instead minimize the
time derivative of the scaled paramete$sy, giving

F=)8q-8a) (3.22
or, to use the generalized notation of Equation 3.17
M=STSs. (3.23)

We see that we have a diagonal metric.

The problem is to determir@to convert the parameters to the standard units. One
way to define standard units would be to require that equal changes in each variable
should affect the attributes the same amount. As for the metric, we pick a subset of
the attributes to define the objective function, and denote the function that computes
these attributes by. However, we are only interested in the derivatives with respect
to a single variable at a time. That is we want to measure the change in all of the
attributes ofg with respect to each variable independently. For a particular variable,

the scaling factor is the magnitude of the derivatives of each elemgnwih respect
to the variable, that is,

S; = & & (3. 24)
q; 4q;
The diagonal terms in Equation 3.23 are the scaling factors squared,
M =2 B (3.25)

q; Qi‘

These are exactly the diagonal terms of the metric in Equation 3.16.

The diagonal metric cannot take into account interactions between variables. While
it can remove differences in units between similar terms, it cannot make two different
representations seem alike. In the line segment example, it eliminates the effects of the
choice of units, however it does not remove the effect of a completely different param-
eterization. It could not, for example, express an objective function that minimized the
motion of the endpoints. Therefore, no matter what diagonal metric are chosen, a line
segment parameterized by position of center, length and orientation will feel different
than a line segment parameterized by the positions of its endpoints.
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3.5 Soft Controls

The generalized objective functions of the last section allow the creation of objective
functions that can be used to control the object. To this point, we have discussed de-
fault behaviors for objects that causes objects to minimizes their motion if controls are
causing them to change, they do not change. In this section we consider an alternative:
having objects change by default unless a control specifies otherwise. The non-zero
defaults lead to linear terms in the general quadratic optimization objective function
of Equation 3.17. Using this term will enable soft controls: controls which are over-
ridden by the regular controls. These are important because they allow us to create
behaviors such as dragging subject to constraints, where an object is manipulated by
the user but constraints will not be violated. While these techniques do not provide
general constraint hierarchies as described by Borning et al.[BFBW92], the dragging
subject to constraints that they can provide is useful in many graphical applications.
The use of optimization objective terms to provide user control was pioneered in the
vision research of Kass et al.[KWT88].
Suppose that we had some desired default valudyfatenotedqy. Rather than

simply minimize the magnitude ajf, we would instead minimize its difference from

the default value, so

B=(a~10) - (4 ~0). (3.26

In terms of the generalized objective function of Equation 3.17, the coefficients of the
linear termb in this case isqg . Similar metrics can be worked out to include a metric
as well. While the generalized solution of Section 3.4.2 can be applied, we review the
derivation for this important special case here as it provides insight.

To provide intuition for how this works, consider again the simple point example
from Section 4.3. Notice that the control specifies the behavior only in the direction of
its gradient, so the optimization objective is free to do whatever it wants in an orthog-
onal direction. Suppose that we have specifiet@® be 0. This restrictg to lie along
the line perpendicular to the gradient, as shown in Figure 3.6. Todinlbsest togg ,

we must projecigy onto this line. We do this by adding in a componentgpivhich
cancels out the disallowed portion. Thisnstraint componermnhust be a multiple of
the gradient. This multiple is the Lagrange multiplier.
We computeq as the sum of two components, its default vadye and the contri-
butions of the controlsg., SO

q4=4do +9qc- (3.27)

Since q must satisfy the controls, we substitute this into Equation 3.4, to yield
p=J(q0 +qc ). (3. 28)

Since the contribution of the constraints is a linear combination of the control gradients,
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Figure 3.6: A hard controls constrains the distance from the point to the origin. Any move-
ment of the point must be orthogonal to the gradient of this control. When a default velocity
(o) is given forq, it must be projected into the space that meets this restriction. To achieve
this, a component is addeddg that projects it onto the space where- 0.

we define the Lagrange multipliers as
qe =JTA (3. 29)
Which, with a little rearrangement yields
P Jqo =JITA, (3.30)

a linear system, which like Equation 3.9 can be solved\owhich in turn determines
qe by Equation 3.29, from whicly can be computed by Equation 3.27. Notice that
when ‘qo =0, the method of this section is exactly the same as that of Section 4.3. The
damping techniques of Section 3.2.1 also apply.

3.5.1 Determining the Values for Soft Controls

We now must figure out how to obtaify . Our goal is to provide soft controls that work

as the hard controls do, except that the hard controls are given precedence over them.
Soft controls are defined @g =fs(q), but like the hard controls, would be specified

by their derivativesps.

If the soft controls do not conflict with the hard controls, they can simply be treated
as hard controls. The more interesting cases, however, are when the hard controls limit
the soft controls. The ultimate goal is to have have soft controls work exactly as hard
controls do, except in the cases where there are hard controls that take precedence over
the soft controls.

We would like to satisfy the soft controls as closely as possible subject to the restric-
tion that the hard controls are specified exactly. We can define the objective function
to minimize the squared error of the soft controls meeting their desired values

1
minimize E:§(JS q—Ds ) (Js q—ps ) subjecttop =J q. (3.31)
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Figure 3.7: Two points are connected by a hard control constraining their distance. The
right point is also pulled by a soft control. If the soft controls are computed independently, a
non-optimal solution may be found, as shown on the left. The soft control may specify that
the right point should move, but part of this motion might be removed by the constraints. As

shown on the right, there is a solution that both satisfied the constraints and meets the desired
values for the soft controls.

Such an objective function is the similar to the definition of the metric in Section 3.4.1,
except that rather than minimizing the magnitude squared of the change of the deriva-
tives of the functions value, we minimize the magnitude squared of the difference be-
tween the derivative’s value and a default value. Generalized sets of soft controls (e.g.
Js) will lead toM terms in Equation 3.17. The problems in using general metrics also
apply to soft controls: A sufficient number of soft controls must be specified to uniquely
determingg in all cases, even when there are no hard controls. If an insufficient number
of soft controls are specified] will be singular. Problems with ill-conditioning and
efficiency in invertingVl make this soft control scheme impractical. In this section, we

concentrate on methods for simpler achieving soft controls by computing values for
do -

Two-Pass Solver

One way to findq, is to ignore the hard controls, and simply use the method used for

hard controls for the soft controls. Using this approach, two linear systems are solved:

first, a linear system is solved to compute the Lagrange multipliers that will determine

qo , then a linear system is solved to projégt into the subspace allowed by the hard
constraints.

The method of computing the soft controls independently has a serious drawback: it
does not achieve the desired solution. Consider a case where two points are connected
with a hard control constraining their distance, and a soft control pulling one of the
points to the right, depicted in Figure 3.7. The soft control alone would move one of
the points, violating the hard control. When this is projected into the legal subspace,
part of the motion world be cancelled out. However, if all the controls were treated
equally, the other point could be moved to satisfy the hard control.

An alternative is to account for the hard controls in computigg We computeyg

using the methods we would use for the hard controls, except that we include both the
hard controls and the soft controls in the computation. Damping must be used in case
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the controls conflict. We then solve an optimization problem again using the result of

the first solution a<yo , and just using the hard controls as constraints. | first used this

technique in thériar drawing program described in Section 9.1, and therefore call it

theBriar-style solver.

In cases where all the controls, both soft and hard, are consisterritivestyle

solver has the nice property that both hard and soft controls behave the same. It is

also the case that the effort in solving the linear system twice can be avoided by first

checkingtosee d ‘qp =P, inwhich casay, will trivially be 0. When using an iterative
linear system solver, as described in Section 4.3.1, this check happens automatically.

However, if we knew that the hard and soft controls did not conflict, then there

would be no need to have soft controls. In the cases where there are conflicts, the
Briar-style solver has a few drawbacks. Most obvious is that it requires solving the
linear system twice, which can be expensive. Also, since solving the larger system will
have conflicting constraints, damping must be used. The solver does not actually solve
Equation 3.31, but instead minimizes the difference between the damped result, which
already partially accounts for the hard constraints.

Spring Controls

An alternate method to computig is to use gradient descent to drive the soft controls
to their desired values. We compuig to have the direction of the gradient of the soft
control functions, and a magnitude proportional to how far from the target it is,

qo =kJs (ps = (Q)); (3 32)

wherek is a scaling constant. This causes the controls to be pulled towards their desired
values with a decaying attraction: as the control nears its desired value, the rate at which
it is being pulled is decreased. In the physical analogy of Section 1.2.2, this attraction
is a spring. Equation 3.32 is the generalized force version of Hooke’s law.

I will call these spring-like controlspring controlor simplysprings.Their method
can be viewed as a cheap way to estimate the Lagrange Multiplier, an attempt to use gra-
dient descent to achieve desired values for the soft controls, or as generalized springs,
if we view the optimization as a physical simulation. Despite the fact that they are a
little harder to justify, they do work very well.

3.6 An Alternate Technique

The methods presented in the last sections described Lagrange multiplier techniques
for solving constrained optimization problems with linear constraints and a quadratic
objective function. The methods build a linear system and solve for an intermediate
result, the Lagrange multipliers. The methods have the advantage that they permit the
use of any quadratic objective function.
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Often, we do not exploit generality of the Lagrange multiplier formulation. For
example, the simple objective functions of Equation 3.6 or Equation 3.26 may be suf-
ficient. In such cases, alternate, special purpose solution methods are sufficient.

The objective function that simply minimizes the magnitudg gives an important
special case called a linear least squares problem. This is a very standard problem in
numerical analysis. Example solving methods include singular value decomposition
(SVD), QR factorization, and pseudo-inverses. These methods, and many others, are
discussed in [GL89]. Unfortunately, these methods are almost all extremely expensive
to compute, as they are unable to exploit properties of the problems such as sparsity
that we will use in the next chapter to speed performance.

Iterative solvers may also be used to solve the linear least squares problem. In
particular, conjugate-gradient solvers, discussed in Section 4.3.1, are relevant to im-
plementing the differential approach. Variants of conjugate-gradient find a solution to
the linear system, but have the property that the solution they provide to a linear sys-
tem is solution closest to the starting point. Therefore, if the solver is begun with a
zero starting point, the solution with least magnitude is found. The conjugate-gradient
linear system solver in the Numerical Recipes text [PFTV86] is such a solver. To im-
plement soft controls using the conjugate-gradient, Equation 3.28 is solvgd fasing

the conjugate-gradient solver.

Using a least squares solver to implement the differential approach effectively solves
Equation 3.4 directly, without first computing the Lagrange multipliers. For instance,
implementing the differential approach by using a conjugate gradient algorithm works
very well. The solver given in the text of Press et al.[PFTV86] permits the two most
often used objective functions, and handles over-determined cases by providing a min-
imum norm residual solution to the linear system. Using the algorithm is a very practi-
cal way to implement the differential approach. It performs extremely well in practice.
This method served as the backbone of my early implementations, and is available by
a run-time switch even in my most current versions.

The obvious question is why bother developing a more complex technique when
the simpler approach works so well. The three main reasons for using the Lagrange
multiplier techniques in this chapter over the simpler “direct” approaches such as using
conjugate-gradient are: the intermediate result of the Lagrange multiplier techniques
(the Lagrange multipliers) will be useful in certain interaction techniques such as the
active set methods of Section 6.4; they place few restrictions on the linear system solver
that is used, so that fast algorithms can be found; and, they extend to other quadratic
objective functions. However, in cases where these advantages are not required, the
simpler approach is worth considering. The approach handles the two most often used
objective functions, those of Equation 3.6 and Equation 3.26, so it is often sufficient.
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3.7 A Concrete Example

To review the basic techniques of this chapter, we now consider a complete example in
detail. Our object will be a fixed length line segment with a unit radius, represented by
the position of its center and its orientation. The control we will create is the position
of its endpoint. The state variables afe={q., qcy, dweta), and the controls are

p :{pwa py}'

The control functions are:
Pz =f2(d) =qcs +€OSqy (3.33)
Py :fy (q) =y +singy.

The core of the implementation will be the differential optimization that will com-
pute a value forq given a value forg and p . This routine must first compute the
Jacobian of the controlg, as a function ofj :

. 1 0 -sinqy
J_lo L oase ] (3.34)

It then can compute values for the Lagrange multipliers by solving the linear system
p=JITX (3.35)

for A, and then computing as
aqa=JTx. (3. 36)

Suppose at the current time, the line was at a 45 degree angle with its center at the
origin (g =[0, 0, 7/4]), and that the control specifies the endpoint to move right with
unit velocity (p =[1, 0]). The Jacobian of the controls is then

1 0 =707
J_L 1 .707]. (3.37)
To compute they, we must first solve the linear system
1.5 8.5 1
[9.5 1.5])‘_ 0]’ (3.38)

then use Equation 3.36 to determife At this particular instantA =[. 75 . 23], so
‘q=[. 7.2 = 35. If we were to use an Euler step with step size .1, the configuration
at the end of the step would lee=[. 075. 025. 7.
The basic control for interaction will be to repeatedly take ODE solver steps, inter-
leaving redraw between the steps to give the illusion of motion. This solver will call the
differential optimization routine, possibly several times per iteration. The ODE solver
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will also have to provide values fgs to the optimization routine. These values are what
accounts for the user’s motions; for example, they might be tied to the input device.
Methods for determining desired velocities will be discussed in Section 6.3, however,
one simple way of gettingp from the input device is to use decaying attraction: we
compute the vector from the position of the control to the pointer, and use a multiple
of this for p.

In this example, we are already using multiple controls, one for each axis. Even
more controls could be added. For example, suppose we wanted to add two more
controls that position the other end of the line segment. These controls are computed
by

Pz2 :fl’(q) =, —€0Sqy (339)
Py2 :fy (q) =y —SinQ0-
The Jacobian would now be a 4 by 3 matrix.

Since we most likely will not have two mice, rather than permitting the user to
control the position of the second point, we might want to constrain it to remain at the
origin. This would require specifying,, andp,, to have values that caused the point
to move towards the origin, e.g. to be a negatively scaled multiple of the position of the
point.

Clearly, these controls will conflict: the mouse might attempt to pull the other end-
point away from the origin. This will cause the matdd™ to be singular. In order
to solve the linear system, we might add damping by adding a small amount to the
diagonal elements of the 4 by 4 matrix.

We might instead wish to drag the endpoint subject to the constraint that the other
endpoint remains at the origin, that is, the mouse should not be able to rip the other
endpoint from its resting point, but other than that, should be able to drag its endpoint
as well as possible. To do this, we use soft controls.

To compute the optimization with the soft controls, we first must compute a value
for qo by computing the Jacobian of the soft controls with Equation 3.40, and multiply
this by the desired value of the soft controls. The regular controls are now just the
opposite endpoint, so the Jacobian is simply the 2x3 matrix of their derivatives. To
computeq we first compute the Lagrange multipliers by solving the linear system

pJqo =JITA (3. 40)
We use that to computg by
o =qo T (3.41)

3.8 Summary

In this section we review the techniques presented in this chapter for solving the dif-
ferential optimization problem, summarize the procedure for implementing it, and de-
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| n | number of controls
\ m | number of state variables
| g | state vectors:vector) |
| p | values of the controlsxvector) |
| f | function to compute the controlp,=f (q) |
| g | time derivative ofy (mvector) |
| p | time derivative ofp (n-vector) |
| J | Jacobian of (n x mmatrix),J =0f /dq |
| E | optimization objective |
| A | Lagrange multipliersi{-vector) |
| | damping factor (scalar or-vector)
go | default value foiq
ps | soft controls
fs | function computing soft controls
Js | Jacobiardf s /dq |
| M | metric (nxmmatrix) |
| W | inverse metridVl * (mxmmatrix)
functions whose change is minimized to defie
Jacobiardg /dq |

g
G

Table 3.1: Symbols defined in this chapter, and used throughout the thesis.

scribe the caveats as to solving the more general, numerical optimization problem. The
symbols used throughout this chapter, and for the rest of the thesis are reviewed in Table
3.1

The differential optimization takes the current value of the sjatand the functions
that define the controls and objectives as givens. From these givens, the current values
of the controls and the Jacobians of the controls and objective metric functions can be
computed, so they too are considered givens. The procedure is as follows:

1. Compute they, value of the force controls, if any, using the damped spring for-
mula of Equation 3.32, or some other methods.

2. Find the metricM, and its inverse. Often, the identity matrix is used instead.
Computing a metric involves computing the Jacobiag.of

3. Compute the Jacobian bf J.

4. Compute the Lagrange multipliers, using some variant of Equation 3.20. Most
likely, some damping will be used on some of the controls.

5. Computeq , for example by Equation 3.8.
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6. If this computation was to compute both the hard and soft controls in a Briar-style
solver (as in Section 3.5.1), remove the soft controls,ggt="q, and return to
step 3. For the second time through, less damping might be used.

The differential optimization solves fay, givenp andg. It makes use of the control
function ) and its Jacobian (which is a function @f). If a metric is to be defined, a
set of functions @) and its Jacobian will be needed as well. The process has a single
tunable parameter, which is the amount of dampjr)g might be a vector if damping
values are to be provided for each control.

To emphasize, being able to solve the differential optimization problem

q =04 1 (a, p) (3.42)

is not the same as being able to solve the general control equation
a =f *(p). (3.43)

In fact, being able to solve Equation 3.42 does not necessarily allow solving Equa-
tion 3.43. There are two main reasons for this: we need to know yhwtl achieve
the changes necessary to get the desired valups afid, once we haveg, we don't
necessarily know what is at some future time.

Given a desired value fgy, the most obvious way to proceed differentially is to
use ap that changes the value as needed, e.g. if the value of a control is too high, make
it decrease. However, heading straight for the goal is only a heuristic that can often
fail, for example, if there is a local minimum. Also, there is no certainty that there is
velocity p that will achieve the desired controls, either if there is no way to achieve the
desired controls at all, or if there is simply no continuous path through state space.

Even if a direction forp is known, and the correspondirig that achieves it can

be found, there is no guarantee that the corgecan be found. Finding values qf
requires solving the ordinary differential equation of Equation 3.42for
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