
Chapter 2

I think the past is behind us. Real confusing if it was not,
but anyway.

— Blues Traveler
But Anyway

Related Work

The differential approach uses constraint techniques to realize graphical manipulation.
Like other uses of constraints in computer graphics, the differential approach must ad-
dress a number of challenges in applying, solving, and implementing constraints. This
chapter looks at previous work on applications of constraints and constraint solving
technologies. It then looks at previous work on the creation of toolkits for the con-
struction of graphical applications, as the differential approach will be used to create
such a toolkit in Chapter 7. Finally, previous work on particular 3D interaction prob-
lems used as examples Chapter 8 will be examined.

Both the basic idea of graphical manipulation, and the use of constraints to enhance
it, date back to Ivan Sutherland’s Sketchpad system [Sut63]. Englebart pioneered the
more general use of a graphical pointing device in computer interfaces, as chronicled in
[Eng86]. The style of interaction in which a pointing device controls a graphical object
in a tight coupling is commonly referred to as direct manipulation, a term generally
attributed to Ben Schneiderman [Sch83]. His classification of interfaces in terms of the
user experience led to later attempts to better define it [WR87], and even to arguments
as to why such categorizations are not helpful [WG87].

2.1 Uses of Constraints in Graphical Applications

Constraints have been used in graphical applications in many ways. Some systems
provide constraint-based interfaces, that is, the users of the system are presented with
constraints to use in completing their tasks. Constraint techniques have also been used
to aid the programmer of graphical applications, by providing them with a tool to use in
the construction of their systems. The two uses of constraints are orthogonal: it is com-
mon to write an application with a constraint-based interface using conventional tools,
and to use constraint-based tools to write applications with conventional interfaces.

25



26 CHAPTER 2. RELATED WORK

2.1.1 Constraint-Based Graphical Interfaces

The central idea of a constraint-based graphical interface is that the user is able to make
persistent constraints: declarations that the system maintains after they are specified.
The canonical example application of a constraint-based graphical interface is drawing.
In a constraint-based drawing program, the user specifies relationships among parts
of the drawing as persistent constraints that the system maintains during subsequent
editing. For example, a user can attach an arrow to an object, and the position of the
arrow is altered as the object is moved.

Sketchpad pioneered direct manipulation permitting users to directly manipulate
graphical objects by dragging them with the light pen. It also introduced constraint
methods, permitting users to specify relationships between parts, for example that two
lines should be parallel. Sketchpad would “relax” the drawing until the constraints were
satisfied, and continue to maintain the constraints during subsequent manipulations.

Since this ground-breaking application, graphical manipulation has been continu-
ally refined and has become standard. Constraints have not been as successful. Const-
raint-based approaches to drawing have been limited by difficulty in creating con-
straints, solving them, and displaying them to users. These interface issues, coupled
with implementation complexity and performance problems, have prevented the wide-
spread acceptance of constraint-based systems.

There have been examples of research systems for constraint based drawing such
as Juno [Nel85], IDEAL [VW82], HILS [Whi88], CoDraw [Gro89], PictureEditor
[KNK89], HotDraw [FB93], and Magrite [Gos83]. A very different use of constraints
is shown in the PED picture beautifier [PW85] that automatically places constraints on
a rough drawing and solves them to clean up the drawing. Another use of constraints
is in the Visio [Sha93] diagramming program which permits defining object semantics
with equations with a spreadsheet interface.

Recent developments such as constraint inferencing, more widely available solving
technology, and the faster computers capable of solving constraints at interactive rates
have renewed interest in constraint-based drawing. Systems such as Chimera [Kur93],
Grace [Alp93], IntelliDraw [Ald92], Rockit [KLW92], DesignView [Com92], Con-
verge [Sis91] and my own Briar (Section 9.1) all use constraint inferencing to couple
constraints and direct manipulation.

Constraint techniques have also been applied in 3D systems. Although Sketchpad
III [Joh63], the first interactive 3D application, did not have constraints, they are sug-
gested as a requirement for future systems. The Variational Geometry systems of Lin,
Gossard and Light [LGL81] renewed interest in the use of constraint techniques for
designing 3D objects. Bruderlin [Bru86] and Rossignac [Ros86] presented constraint-
based solid modelers. Constraint-based solid modelers that use direct manipulation
input are presented by Sohrt and Bruderlin [SB91] and by Fa et al [FFD93]. David
Pugh’s Viking system [Pug92], uses constraints to maintain geometrical relationships



2.1. USES OF CONSTRAINTS IN GRAPHICAL APPLICATIONS 27

defined by sketching. Converge [Sis91] models 2D and 3D objects with constraints.
Constraint methods have been applied to surface modeling, allowing users to ma-

nipulate surfaces without seeing the underlying representations. Fowler [Fow92] and
Welch, Gleicher and Witkin [WGW91] present simple constraint methods for control-
ling points on B-Spline surfaces. Celniker [CG91] describes methods that optimize a
shape interactively, which are extended in [CW92] to a broader class of constraints.
Welch and Witkin [WW92] extend this work to a wider variety of constraints that per-
mit the user to stitch together pieces of surfaces.

The “energy constraints” work of Witkin et al.[WFB87] introduces the idea of mod-
elling using arbitrary functions of objects as controls. Barzel [Bar92c] discusses the
philosophical attractiveness of using physical constraints for modelling.

Specialized interactive graphics systems use constraints to help users manipulate
complex objects. Mark Surles’ SCULPT system [Sur92a, Sur92c, Sur92b] permits
the interactive manipulation of molecules. The Jack system [PB88a] uses constraint
methods to interactively position a human figure. In [PB91], the authors extend Jack
with more complicated constraints on human figures.

The differential approach and the tools created to implement it were heavily mo-
tivated by the desire to build constraint-based applications and to study the issues in-
volved. Seeing 30 year old films of Sketchpad inspired the desire to understand how
these techniques might apply in modern systems. The energy constraints work was also
particularly inspiring because it demonstrated the utility of a wide range of controls, a
central theme in the differential approach. Of the systems discussed, Briar, Converge
and Chimera best typify the applications motivating the differential approach.

2.1.2 Constraint-Based Tools for Building Graphical Applications

Tools for building graphical applications have employed constraints to ease the con-
struction process, for example, by automatically maintaining consistency multiple rep-
resentations of data or between views and data. The use of constraint methods to sim-
plify the construction of graphical applications was pioneered by Borning’s ThingLab
system [Bor81]. The early successors to Thinglab for constructing interfaces using
constraints are surveyed in [BD86]. Barth’s GROW toolkit [Bar86] was another early
use of constraints to help the programmer lay out the various elements of the interface.

The common use of constraint methods for maintaining consistency of data can
trace its origins to non-constraint-based methods. The Smalltalk Model-View-Con-
troller model [KP88] for direct manipulation implementation provided the influence for
many other systems, despite its late appearance in the published literature. The model
uses separate objects to handle input and output for application objects. A critical piece
to implement the model is a mechanism for dependencies: objects must be notified of
changes to other objects, for example to update the display when appropriate. The
dependency mechanism is a simple form of constraints known asone-waybecause the



28 CHAPTER 2. RELATED WORK

data only flows one way in the constraint. Distinctions among types of constraints will
be explained in the next section.

More sophisticated algorithms for creating one-way constraints were introduced
later, and lead to more general dependency mechanisms for interface toolkits. For
example, Hudson’s incremental attribute evaluation [Hud91] was used to create the
Apogee toolkit [HH88]. Similar one-way mechanisms were used in other toolkits such
as Coral [SM88], MEL [Hil91], and Garnet [MGD+90].

Despite the simplicity and limited expressibility of one-way constraints, they are
an extremely useful feature in interface toolkits. They are sufficient to update views
when data changes, keep dependant data consistent, and help designers lay out inter-
faces. Simple solvers are extremely popular because efficient and simple mechanisms
for creating them have been widely available. As developments in solvers make more
powerful techniques practical, newer toolkits explore their advantages. Examples in-
clude Rendezvous [HBP+93], ThingLab II [Mal91], VB2 [GBT93], and Multi-Garnet
[SB92]. Rendezvous even permits creating constraints across multiple displays, main-
taining consistency between multiple users of a shared application.

The existing constraint-based tools for developing graphical interfaces are inade-
quate for constructing the constraint-based applications and examining the interface
questions I wanted to study. The lack of support for numerical constraints in existing
tools provided a niche to be filled with the work of this thesis. It is important to explore
whether numerical constraint methods could be encapsulated and provided in a toolkit.

2.2 Constraint Solving Technologies

The wide array of uses of constraint techniques has led to the creation of an even larger
selection of constraint solving technologies. Here, we provide a brief survey. Most
systems have only used a single solving technique. Other systems, including the early
Sketchpad [Sut63] and ThingLab [Bor81], used hybrids where multiple solvers were
used to solve different parts of problems.

2.2.1 Propagation and Symbolic Methods

The simplest constraint methods allow the specification of dependencies among ele-
ments of the data. Some mechanism is provided in order to make sure that dependent
values are updated appropriately. These mechanisms can operate either by replacing ac-
cesses with function calls to recompute the data, or by having changed data notify their
dependents. This latter approach is known aslocal propagationbecause new results
first propagate to elements closely connected (i.e. local) in the dependency graph. De-
pendency schemes are calledone-waybecause information flows only one way across
the dependencies. Despite their simplicity, one-way local propagation techniques are



2.2. CONSTRAINT SOLVING TECHNOLOGIES 29

extremely popular because they are easy to implement efficiently and because they can
provide some important needs in user interface software, Efficient methods for handling
one-way constraints by minimizing the number of evaluations are discussed by Hudson
[Hud91], and extensions to one-way constraints for indirectly referencing variables are
provided by Vander Zanden et al.[VZMGS91, VZMGS94].

One way constraints describe dependencies on data. For example, consider the
constraint C=A+B. A one-way constraint would declare that C depends on A and B,
and when either A or B changes, C is updated accordingly. Multi-way constraints per-
mit the dependency to be determined based on the data, allowing C to be computed
when A and B are provided, or B to be computed when A and C are provided. Conse-
quently, multi-way solvers are more complex than one-way solver, which has hindered
their acceptance. Sophisticated multi-way local propagation solvers such as DeltaBlue
[FBMB90], SkyBlue [San94], and the methods of Vander Zanden [VZ88, VZ89], are
now becoming more readily available. Sannella et al [SMFBB93] argue that they are
as efficient as the simpler one-way solvers.

Local propagation solvers can be optimized by making them incremental, so that
only the elements affected by changes are recomputed. Efficient algorithms that recom-
pute minimal numbers of dependencies include the DeltaBlue solver [FBMB90] and its
successors such as SkyBlue [San94]. These solvers also have the interesting property
that they are hierarchical [BFBW92]: they permit declaring certain constraints to be
more important than others. The more important constraints are solved first, and less
important constraints are used only when more important constraints leave unspecified
degrees of freedom.

The popularity of local propagation solvers owes to their utility, their efficiency,
and the fact that arbitrary functions can be computed in the dependencies. However,
even the most sophisticated local propagation solvers have an important limitation: the
methods are local. Propagation constraints solve systems of constraints by treating the
constraints one at a time. Therefore, they can solve only sets of constraints for which
there is an ordering such that constraints depend only on previous results. In graph
terminology, propagation constraints can solve only systems that do not have cycles
in their dependency graphs; in terms of equations, local propagation solvers can only
solve triangular systems. Sophisticated local propagation solvers, such as SkyBlue
[San94] can detect when their methods are insufficient, but cannot solve simultaneous
equations.

For geometric problems, local propagation is insufficient. For example, it is unable
to handle a pair of constraints that specify that a point is equidistant from two other
points. This requires solving two constraints simultaneously. Solving two constraints
simultaneously is the backbone of geometric constructions, as it permits intersecting
figures as done in compass and straight-edge constructions. Compass and straight-
edge constructions need only to handle pairs of constraints simultaneously as only two
objects are ever intersected. However, these objects may depend on the results that are



30 CHAPTER 2. RELATED WORK

propagated from previous computations.
Solving pairs of constraints simultaneously, for example to permit compass and

straight-edge constructions, is an important special case that has been added to some
propagation systems. Ruler and compass construction systems allow the user to explic-
itly order dependencies on constructions. Examples include Noma’s system [NKK+88],
LEGO [FP88], DoNALD [Ben89], and GIPS [CFV88]. More sophisticated systems
have solvers that automatically plan the propagation paths. An example is the 2-forest
propagation solver used in PictureEditor [KNK89]. Even more sophisticated solvers
use rule-based systems to find sets of constraints that must be solved simultaneously
and build propagation plans that use special case solutions for the simultaneous cases.
Examples include Glenn Kramer’s TLA solver [Kra90] and Aldefeld’s system [Ald88].
Augmented term rewriting, introduced in Bertrand [Lel88] and also used in Siri [Hor91,
Hor92], generalizes and formalizes the rule based propagation approach.

The inadequacy of propagation methods was a motivation for the differential ap-
proach. The success of the methods showed that constraints could be a useful tool in
interactive systems. However, to achieve the desired flexibility of types controls and
simultaneous combinations, a new approach to using numerical constraints would be
needed.

2.2.2 Numerical Constraint Solving Techniques

Solving systems of linear equations for real numbers is a very well studied problem.
Methods must address a wide variety of issues, including precision, stability, robust-
ness, and efficiency. An excellent introduction to the field is provided in the text by
Golub and van Loan [GL89]. Solving systems of non-linear constraints is much more
difficult. In fact, for an argument that no general guaranteed method can exist, see
Chapter 9 of Press et al.[PFTV86]. Generally, non-linear methods are designed for op-
timization, rather than equation solving1. Good, general tutorials on optimization meth-
ods are given by the texts by Fletcher [Fle87] and Gill, Murray and Wright [GMW81].

Some numerical methods operate like propagation methods in that they operate
only on one constraint at a time. One example is relaxation which successively solves
each constraint. Relaxation has been used in several early constraint-based graphical
systems including ThingLab [Bor81] and Sketchpad [Sut63]. With relaxation, solving
a constraint may break previously solved ones. The process iterates over all the con-
straints until a solution is found, or the solver gives up. Other methods that treat con-
straints individually include gradient (steepest) descent and penalty methods, surveyed
by Platt [Pla92]. These simple methods do not work reliably for constraint problems
and offer slow convergence even on problems that they do solve. The poor performance

1Chapter 9 of Press et al.[PFTV86] explains why the two problems are not equivalent, and argues
why optimization is a more tractable problem.



2.2. CONSTRAINT SOLVING TECHNOLOGIES 31

of these simple solvers has discouraged many people from using numerical constraint
methods for interactive graphics.

An important class of equation solving and non-linear optimization techniques op-
erate by solving a sequence of linear systems. These iterative methods take a sequence
of steps (hopefully) converging on a solution. At each iteration, a linear system is
solved to determine what step should be taken. Numerical analysis texts, such as
[PFTV86], introduce the basic varieties of these methods. The best known are Newton-
Raphson methods, which have been used in a number of constraint-based graphics sys-
tems including Juno [Nel85] and Converge [Sis91].

Methods that use linear system solving are susceptible to problems when the con-
straints are redundant, inconsistent, or ill-conditioned. A standard method to cope with
these problems is the technique known as regularization or damping. The technique
will be discussed in Section 3.2.1, but briefly, it alters the linear system by limiting
how much any particular equation can contribute to the solution. The method is the ba-
sis for the Levenberg-Marquardt method for solving non-linear equations [GMW81]. It
has also been applied to the animation of articulated figures by Maciejewski [Mac90],
and to the related problem of robotic control by Wampler [Wam86]. Damping methods
are equivalent to the robust pseudo-inverse techniques of Nakamura [Nak91].

The “snakes” work of Kass et al.[KWT88] used numerical optimization to per-
form computer vision tasks. This work pioneered the use of optimization in interactive
graphical applications. The system permitted a user to directly manipulate curves by
resolving the optimization between each redraw. User interaction is created by includ-
ing the user’s input as part of the optimization objective, a technique that will be used
in Section 3.5.

It is possible to view the methods of this thesis as a form of non-linear constrained
optimization solving in which each iteration is displayed to the user. Unlike most
solvers, the methods are more tuned towards generating smooth trajectories towards
the goals, rather than getting to the goals as quickly as possible. Because the user can
interact with the optimization process, a system can be interactively guided out of local
minima. Mark Surles used a similar approach in his SCULPT system [Sur92a, Sur92c].
He used a different alternate Lagrange multiplier formulation than the one presented in
Section 3.2.

2.2.3 Physical Simulation

The computer graphics community is becoming increasingly interested in using tech-
niques of physical simulation for animation and modelling. Physically-based mod-
elling and animation typically provide constraints in order to mimic the mechanical
and structural relationships found in the real world.

A simple method for implementing physical constraints is by using springs to at-
tach things together. This is called thepenalty methodbecause broken constraints are



32 CHAPTER 2. RELATED WORK

penalized to pull them back to a solved state. To model more rigid constraints, the stiff-
ness of the springs must be increased, making the equations of motion harder to solve
numerically. The penalty method and its problems are reviewed by Platt [Pla92].

Lagrangian dynamics provides a constraint method that derives new equations of
motion for constrained objects. A standard text used to introduce the methods is Gold-
stein [Gol80]. The methods effectively permit switching to a representation where the
constraints are implicit. Unfortunately, the methods are impossible to automate for gen-
eral cases as they require the ability to find algebraic solutions to systems of non-linear
equations.

A method more applicable to computer graphics is the Lagrange multiplier method.
In this method, constraints create reaction forces that cancel out any applied forces
that would cause the constraints to be broken. The constraint forces are computed
by solving a system of linear equations. Constraint stabilization methods, introduced
by Baumgarte [Bau72], also use the constraint forces to inhibit the accumulation of
numerical error due to drift.

Methods derived from constraint stabilization have been used by the computer
graphics community to find initial solutions to constraints as well as to simulate their
behavior. Barzel and Barr’s dynamic constraints [BB88] use the stabilization forces to
cause models to self assemble from various configurations. Platt and Barr’s augmented
Lagrangian constraints for flexible surfaces [PB88b] also used constraint stabilization,
but attempted to avoid solving the linear system for the Lagrange multipliers by esti-
mating them from previous values. In a later paper [Pla92], Platt explains why this was
a bad idea, and provides a more standard Lagrange multiplier derivation of dynamic
constraints.

Issues in using the Lagrange multiplier and constraint stabilization methods in in-
teractive systems were discussed by Witkin, Gleicher and Welch [WGW90]. The sys-
tem of Witkin and Welch [WW90] used the basic methods of [WGW90] to provide an
interactive system for animating deformable objects. These techniques evolved into
the differential methods of this thesis, first presented in [GW91a] and [GW92]. For
the methods described here, constraint stabilization is accomplished by choosing con-
trollers that continually “go towards” a value, rather than simply attempt to maintain a
constant value by creating a 0 derivative. This will be described in Section 6.3.

The animation system of Witkin and Welch [WW90] provided a number of inno-
vations that influenced the differential approach. The system permitted specification
of objects’ mass distributions in order to control an object’s default behavior, an idea
generalized into the use of metric definition in Section 3.4.1. The system also presented
a predecessor to the controllers of the differential approach. The paper describes a vo-
cabulary of controllers used to describe animation by specifying forces and impulses
on objects over time.

Non-interpenetration or collision constraints are a special type of physical con-
straint. They differ from other mechanical connections in that they are represented



2.2. CONSTRAINT SOLVING TECHNOLOGIES 33

by inequality rather than equality equations. Methods for simulating collisions were
first provided by Moore and Wilhelms [MW88] and Hahn [Hah88]. David Baraff
has treated the physical simulation of collisions extensively [Bar92a], first introducing
methods that properly handle collision and contact of polyhedral objects [Bar89], and
then extending this result to curved surfaces [Bar90], surfaces with friction [Bar91a],
and deformable surfaces [BW92]. Gascuel [Gas93] provides collision constraints for
other types of deformable objects.

As discussed in Section 1.2.2, the differential approach of this thesis is a descendent
of previous work in physical simulation, discussed in [WGW90]. The differential ap-
proach can be viewed as a form of physical simulation where the world has a different
set of laws than the real world. Rather than follow Newton’sf = ma laws of motion,
objects obey Aristotle’sf = mv: Objects move only when pushed, rather than having
inertia.

2.2.4 Inverse Kinematics and Dynamics

The problem of determining the configuration of parameters required to achieve de-
sired values of object attributes is called inverse kinematics. The inverse kinematics
problem is important to robotics as it is used to compute configurations of robots actua-
tors required to achieve needed end-effector positions. The problem is, therefore, well
studied, especially for the special case of most interest in robotics: articulated figures.
An articulated figure is an object made of rigid links connected by joints.

Basic robotics texts, such as those by Craig [Cra86] or Paul [Pau81] present meth-
ods for solving inverse kinematic problems for articulated figures. Craig splits solution
strategies into two broad classes, closed form solutions and numerical solutions. His
text, like many others, dismisses numerical solutions “because of their iterative nature,
numerical solutions generally are much slower than the corresponding closed form so-
lution; in fact, so much so that for most uses we are not concerned with the numerical
approach.”

Inverse Kinematics techniques are becoming well known within the computer
graphics community. Commercial systems, such as Softimage [Sof93] and Wavefront
[Wav94] now permit users to manipulate articulated figures by positioning their end ef-
fectors. Badler and et al.[BMW87] describe extensions to standard inverse kinematics
that permit positioning articulated figures by placing multiple constraints on them. Wel-
man [Wel93] surveys inverse kinematics methods and discusses how to interactively
position articulated figures using them.

More general methods for inverse kinematics use iterative numerical algorithms
to solve the non-linear equations. Nakamura presents such an approach in his text
[Nak91]. Nakamura’s techniques are very similar to those of the differential approach,
including his use of damping to handle singular systems.

Inverse dynamics, or robot control, is a related problem to inverse kinematics.



34 CHAPTER 2. RELATED WORK

Rather than solving for configurations, the methods determine forces and torques re-
quired to achieve desired effects. Inverse dynamics has been explored for use in com-
puter animation. Armstrong et al.[AGL87] and Wilhelms [Wil87] present systems that
use inverse dynamics to aid in the animation of articulated figures. Issacs and Cohen’s
DYNAMO system [IC87] combines inverse dynamics with kinematics using a general
formulation that can handle objects other than articulated figures.

2.2.5 Numerical Methods for Interactive Graphics

As will be further discussed in Chapters 4 and 5, there are several issues in employing
numerical techniques in interactive systems. The two main ones are fast solving and
dynamic definition of the problems.

One issue in employing numerical computations in interactive systems is that the
derivatives of the functions representing constraints must be computed. While there are
several methods for computing derivatives, such as symbolically creating the equations
or estimating the values with finite differences, the methods of Automatic Differentia-
tion have been shown by [Gri89] to be at least as efficient and accurate. An introduction
to Automatic Differentiation provided by Iri [Iri91], and a survey of tools is provided
by Juedes [Jue91].

Research in Automatic Differentiation focusses on the development of compile time
tools for large problems [BGK93]. For computer graphics, Automatic Differentiation
techniques were developed to operate on expression graphs explicitly represented in
program data structures, as will be discussed in Chapter 5. These methods permit the
functions being differentiated to be dynamically defined. An implementation of the
techniques was employed in the system built for Spacetime Constraints [WK88]. A
later system using the methods is Kass’ CONDOR [Kas92] which permitted the user
to interactively specify constrained optimization problems by direct manipulation of
expression graphs.

My implementation of Automatic Differentiation, called Snap-Together Mathemat-
ics, encapsulated the methods into an application independent toolkit and is discussed
in Chapter 5. The first version of Snap-Together Mathematics was introduced as part
of work on interactive physical simulation [WGW90]. The first C++ toolkit for Snap-
Together Mathematics was detailed in [GW91b]. Based on this paper, Kaufman repro-
duced the system [Kau91]. A variant of the original Snap-Together Mathematics was
used inside of the Briar drawing program (Section 9.1), and evolved into the current
implementation introduced in [GW93] and described in Chapter 5.

The critical performance issue in most numerical constraint methods is solving a
linear system, as discussed in Chapter 4. Exploiting sparsity, the fact that a matrix
contains many 0 elements, is a standard technique for speeding the solution of linear
systems. The text by Duff et al.[DER86] provides an introduction to the techniques.
For the differential approach, the direct methods, like those discussed Duff et al, are



2.3. GRAPHICS TOOLKITS 35

less appropriate than iterative methods. Detailed discussions of iterative methods, and
specifically the Conjugate-Gradient methods used in this thesis, are provided by [PS82]
and [She94].

Steven Sistare’s thesis describing Converge [Sis90] provides an analysis of the
performance issues in using numerical techniques in an interactive drawing system,
and includes methods for dynamically selecting linear system solvers and partition-
ing the constraint problems. Mark Surles’ work on interactive manipulation of protein
molecules extensively treated the performance issues in solving the linear systems in-
volved in solving the optimization problems [Sur92b, Sur92c]. Because his task was
to manipulate predefined models that had a very specific structure, his methods do ex-
tensive pre-analysis. The structure of the matrix found in chemistry problems permits
solutions with linear time complexity.

2.3 Graphics Toolkits

For a variety of reasons, constructing interactive applications is an extremely difficult
task [Mye94]. In order to aid with this process, a variety of tools, surveyed in [Mye93],
have been developed. The most often used are graphical interface toolkits.

Basic graphics toolkits, such as GL [Sil91], PHIGS [Com88], and X [SG86], pro-
vide drawing primitives and basic elements for interaction, such as events and windows.
Graphical interface toolkits support graphical applications by providing high level sup-
port for interaction techniques and graphical object management, aiming to insulate the
programmer from low level details such as window management as much as possible.
Such toolkits have become a part of the construction of almost all graphical applica-
tions. However, most toolkits leave the majority of the work of graphical editing to the
applications programmer.

Some research tools, such as ArtKit [HHN90], Garnet [MGD+90] and Coral [SM88]
provide support for graphical editing in addition to the more typical buttons and sliders.
Tools specifically designed to support 2D graphical editors include Unidraw [VL89],
ArtKit [HHN90], MEL [Hil91] and GRANDMA [Rub91]. Rendezvous [HBP+93] is
specifically designed for creating multi-user graphical editing applications. All of these
tools provide mechanisms for creating direct manipulation operations.

More recently, toolkits have been developed to support 3D graphical applications
at a higher level than low level graphics packages such as GL or PHIGS. Such toolkits
are almost always object oriented, and provide high level abstractions of interaction
techniques. Examples of such toolkits include MR [SLGS92], Inventor [SC92], UGA
[CSH+92], BAGS [ZCW+91], Alice [PT94], VB2 [GBT93], and GROOP [KW93].

Many of the toolkits mentioned contain support for advanced interface techniques,
such as ArtKit’s snapping, GRANDMA’s gesture recognition, or Inventor’s 3D ma-
nipulators. However, no previous high-level toolkits provide non-linear constraints or



36 CHAPTER 2. RELATED WORK

interaction techniques for both 2D and 3D applications. Similarly, many user interface
toolkits use constraint techniques to help programmers build interactive applications,
as discussed in Section 2.1.2. In all cases, constraint methods are limited to propaga-
tion, and the focus is on abstractions to help programmers, not necessarily to provide
constraints to the users.

Providing an embedded interpreter in an interactive application is not an uncom-
mon technique. The utility of such extension languages is discussed in [BG88], which
describes the success of the EMACS editor. Graphics toolkits which center around
such interpreters include Tk [Ous91], MR [SLGS92], Alice [PT94], UGA [CSH+92],
and ezd [Bar91b].

Previous toolkits have attempted to aid in the development of interaction tech-
niques, and their incorporation into systems. For example, Garnet provides a basic set
of interactors [Mye90] from which more complex behaviors can be constructed. UGA
[CSH+92] and Alice [PT94] allow prototyping 3D interaction techniques procedurally.
GITS [OA90] defines interaction techniques with constraints; however it is limited to
the design of 2D widgets and it precompiles constraint solutions. In [ZHR+93], inter-
action techniques are interactively linked together in a constraint-like fashion to build
more complex 3D widgets.

2.4 Interaction Techniques and Applications

Development of 3D interaction techniques was a major motivation for the differential
approach and is the source of most of the examples in the thesis.

2.4.1 Manipulating 3D Objects

Sketchpad’s 3D successor, Sketchpad III [Joh63], introduced graphical manipulation
of 3D objects and first faced the issues of manipulating 3D objects with 2D pointing
devices. Since then, many researchers have explored the issues. Catalogs of interac-
tion methods are provided by Evans et al.[ETW81], Nielson and Olsen [NO86] and
Osborn and Agogino [OA92]. The problem of specifying a 3D rotation using a mouse
has received close attention, such as the work of Chen et al.[CMS88] and Shoemake
[Sho92]. Techniques which rotate and translate objects using references to other points
of interest in the scene are explored by Bier [Bie86] and [Bie90]. Methods based on
interactions between pairs of objects are provided by [Ven93].

In order to make interfaces easier to learn and use, designers explore how to make
them self-revealing. Houde [Hou92] considers iconic handles and movements based
on the objects’ meanings. 3D Widgets [CSH+92] use graphical objects which disclose
potential behavior in the same view as the objects they manipulate. The authors have
subsequently built an interactive tool for rapidly prototyping these widgets [ZHR+93].



2.4. INTERACTION TECHNIQUES AND APPLICATIONS 37

Inventor [SC92] is a popular toolkit for constructing 3D applications that employ a
widget style interface.

2.4.2 Controlling Virtual Cameras

The problem of specifying a viewing transformation or virtual camera configuration
is an important problem for 3D graphics. This work deserves mention here not only
because it is a problem to which the differential approach will be applied to yield inter-
esting results (Section 8.1.4), but also because the work typifies the general problems
that the differential approach is designed to address.

Most camera formulations are built on a common underlying model for perspective
projection under which any 3-D view is fully specified by giving the center of projec-
tion, the view plane, and the clipping volume. Within this framework, camera models
differ in the way the view specification is parameterized. These parameterizations are
typically designed to provide controls that are useful for either interaction or interpo-
lation.

Much of the work on interactive camera placement in computer graphics has
been concerned with direct control of these standard parameters. Several researchers
have addressed the problem through the use of 3-D interfaces, including six degree-
of-freedom pointing devices [WO90, TBGT91, BMB86] and more specialized de-
vices such as steerable treadmills [Bro86]. Issues involved in using the standard
LOOKAT/LOOKFROM model to navigate virtual spaces are considered by [MCR90].
In [DGZ92], the LOOKAT/LOOKFROM model is embedded in a procedural language
for specifying camera motions.

The difficulty with using camera parameters directly as controls is that no single
parameterization can serve all needs. For example, sometimes it is more convenient
to express camera orientation in terms of azimuth, elevation and tilt, and other times
in terms of a direction vector. These particular alternatives are common enough to be
widely available, but others are not. A good example involves the problem, addressed
by Blinn [Bli88b] of portraying a spacecraft flying by a planet. Blinn derives several
special-purpose transformations that allow the image-space positions of the spacecraft
and planet to be specified and solved for the camera position. The need for this kind of
specialized control arises frequently, but we would rather not derive and code special-
ized transformations each time it does. The differential approach permits using these
interaction techniques without deriving the inverse transformations.

Registering graphical objects and a real image by recovering camera parameters is
considered in Section 8.2.4. Problems involving the recovery of camera parameters
from image measurements have been addressed in photogrammetry2, computer vision,
and robotics. All of these are concerned with the recovery of parameter values, rather
than time derivatives. Algebraic solutions to specific problems of this kind are given

2Also see chapter 6 of [Sch59] for amazing mechanical solutions to photogrammetry problems.



38 CHAPTER 2. RELATED WORK

in [Mof59] and [Gan84], while numerical solutions are discussed in [Low80, Gen79,
McG89]. In [TTA91], constrained optimization is employed to position a real camera,
mounted on a robot arm, for the purpose of object recognition. Factors considered in
the optimization include depth of field, occlusion, and image resolution. The use of
constrained optimization for camera placement in animation is proposed by Witkin et
al.[WKTF88].

2.4.3 Controlling Lighting and Surface Properties

Shadows play a particularly important role in 3d images. They contribute greatly to
viewers’ abilities to perceive depth [Wan92]. Techniques for displaying special cases
of shadows can be implemented in real time on graphics workstations [Bli88a, Hud92],
and the most sophisticated graphics hardware is even capable of drawing more general
shadows in real time [SKvW+92].

Controlling scene parameters by directly manipulating illumination effects has been
explored by several researchers. A desire for appearance-based manipulation is ex-
pressed in [vWJB85]. Poulin and Fournier [PF92] describe techniques for positioning
light sources by specifying the positions of specular highlights and shadows. Dragging
drop shadows on the floor and walls is used to position objects in [HZR+92]. Hanra-
han and Haeberli [HH90] discuss techniques which allow users to paint on images and
have the surface’s colors updated appropriately. Painting with Light [SDS+93] per-
mitted controlling intensities of light sources in a similar fashion. Kawai, Painter and
Cohen’s Radioptimization [KPC93] permitted controlling light sources by specifying
the desired lighting on various surfaces. The methods used a constrained optimization
on the results of a radiosity computation.


