
A Differential Approach to Graphical
Interaction

Michael L. Gleicher

November 18, 1994
CMU-CS-94-217

School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213-3891

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:
Andrew Witkin, Chair

Paul Heckbert
Brad Myers

Robert Sproull, Sun Microsystems

c1994 by Michael L. Gleicher

This research was supported in part by Apple Computer, an equipment grant from Silicon Graphics
Inc., and a fellowship from the Schlumberger Foundation. The views and conclusions contained in this
document are those of the author and should not be interpretted as representing the official policies, either
expressed or implied, of these companies.



Keywords: Constraints, Direct Manipulation, Interaction Techniques, User Inter-
face Toolkits



Abstract

Direct manipulation has become the preferred interface for controlling graphical ob-
jects. Despite its success, the ad hoc manner with which such interfaces have been
designed and implemented restricts the types of interactive controls. This dissertation
presents a new approach that provides a systematic method for implementing flexible,
combinable interactive controls. Thisdifferential approachto graphical interaction
uses constrained optimization to couple user controls to graphical objects in a manner
that permits a variety of controls to be freely combined. The differential approach pro-
vides a new set of abstractions that enable new types of interaction techniques and new
ways of modularizing applications.

The differential approach views graphical object manipulation as an equation solv-
ing problem: Given the desired values for the user specified controls, find a configura-
tion of the graphical objects that meet these constraints. To solve these equations in a
sufficiently general manner, the differential approach controls the motion of the objects
over time. At any instant in time, controls specify desired rates of change that form lin-
ear constraints on the time derivatives of the parameters. An optimization objective
selects a particular value when these constraints do not determine a unique solution.
The differential approach solves these constrained optimization problems to compute
the derivatives of the parameters. An ordinary differential equation solver uses these
rates to compute object motions.

This thesis addresses the issues in using numerical techniques to provide interac-
tive control of graphical objects. Techniques are presented to solve the constrained
optimization problems efficiently and to dynamically define equations in response to
system events. The thesis introduces an architecture, called Snap-Together Mathemat-
ics, that encapsulates these numerical needs. A graphics toolkit, constructed with Snap-
Together Mathematics, provides the features of the differential approach yet hides the
underlying machinery from the applications programmer.

The thesis demonstrates the differential approach by applying it to a variety of in-
teraction problems, including manipulation of 2D and 3D objects, lighting, and camera
control. Demonstrated interaction techniques include novel methods for some specific
interaction tasks. A number of prototype applications, including 3D object construction
and mechanisms sketching, demonstrate the tools and the approach.

iii



iv



If I lost my mind, would you help me find it?
If I lost my mind, would I have to be reminded?

— Soul Assylum
Spinning

Acknowledgements

I acknowledge everyone who needs acknowledged.
With so many other pieces of thesis to work on, I’m tempted to leave it at that. But,

thanks to a large number of people, my six years in Pittsburgh have left me with a lot
more than just the regional dialect.

It would be a lie for me to say I don’t know where to begin. First I would like
to thank my parents for their love and support throughout the years. The ski trips to
Colorado the past few years were particularly useful in helping me keep my sanity as
the throes of graduate student life stressed me out. My sister, grandmothers and Uncle
Robert were all particularly understanding that my schedule made visits infrequent.

My six years at CMU have been a wonderful opportunity to learn and grow, not just
as a computer graphics researcher, but as a person in general. Surviving the experience
would not have been possible without a great set of friends who were always there to
help me through the hard times, and to celebrate the good. Scott Nettles was there
from our first attempts to figure out how to buy beer under Pennsylvania’s laws to the
celebrations as I finished. He always provided a willing ear for my complaining. Bryan
Loyall and Peter Weyhrauch, my housemates for the past 5 years, helped make the
house on S. Atlantic Ave. a great place to call home. Bruce Horn and Spiro Michaylov
suffered through innumerable early drafts of my papers and still hung around for the
fun things afterwards. It’s impossible to list everyone, but David Steere, Lin Chase,
James Landay, Jim Blythe, Phyllis Ruether and Greg Morrisett are the first people I
think of.

Ian Davis encouraged me to get back to playing music, a much needed diversion.
He, Shaun McDermott, and the rest of Painted Mice provided an outlet for me to do
something besides computer science. The Thursday dinner club helped keep me well
nourished, nutritionally and intellectually. And a special thanks to Lori Fabrizio for
being special and for her care and patience over the past 2 years.

My advisor, Andy Witkin, gave me countless good ideas, talked me out of a lot of
bad ones (and tried to talk me out of some good ones as well), and was patient with me
as I learned to do math and write. He and the rest of my committee, Paul Heckbert,

v



Brad Myers, and Bob Sproull, really helped me turn a jumble of ideas into something
resembling a thesis. Will Welch, my officemate and co-conspiritor for the past 5 years,
shared countless amounts of caffeine and conversation, and in the process gave me
an amazing amount of mathematical intuitions. David Baraff, Sebastian Grassia, Paul
Heckbert, and Zoran Popovich all helped make the 4th floor of Doherty Hall an excit-
ing place to do computer graphics. Phyllis Pommerantz was our “den mother.” And
no CMU CS thesis would be complete without thanking Sharon Burks and Catherine
Copetas who really make the place run.

One of the most fun aspects of doing this thesis was to become part of the world-
wide computer graphics research community. I’d like to thank everyone who shared
ideas, encouragement, and skepticism. I would especially like to thank everyone at the
graphics group at Apple ATG, which was my home away from home for two summers.
A special thank you for the loaner computer to help with the thesis writing.

Writing this is a lot harder than I had expected. It’s difficult to summarize six years
of great experiences on one page. I guess I took two, and still only scratched the sur-
face.

vi



Contents

1 Introduction 1
1.1 Implementing Graphical Manipulation: : : : : : : : : : : : : : : : : 2
1.2 The Differential Approach: : : : : : : : : : : : : : : : : : : : : : : 12
1.3 An Approach to Graphical Interaction: : : : : : : : : : : : : : : : : 14
1.4 Thesis Roadmap: : : : : : : : : : : : : : : : : : : : : : : : : : : : 20
1.5 The Thesis: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22

2 Related Work 25
2.1 Uses of Constraints in Graphical Applications: : : : : : : : : : : : : 25
2.2 Constraint Solving Technologies: : : : : : : : : : : : : : : : : : : : 28
2.3 Graphics Toolkits : : : : : : : : : : : : : : : : : : : : : : : : : : : 35
2.4 Interaction Techniques and Applications: : : : : : : : : : : : : : : : 36

3 Differential Techniques 39
3.1 The Differential Optimization Problem: : : : : : : : : : : : : : : : 39
3.2 Solving the Differential Optimization: : : : : : : : : : : : : : : : : 41
3.3 Solving the Differential Equation: : : : : : : : : : : : : : : : : : : 44
3.4 Generalized Objective Functions: : : : : : : : : : : : : : : : : : : : 49
3.5 Soft Controls: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 55
3.6 An Alternate Technique: : : : : : : : : : : : : : : : : : : : : : : : 58
3.7 A Concrete Example: : : : : : : : : : : : : : : : : : : : : : : : : : 60
3.8 Summary: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 61

4 Efficient Solution Techniques 65
4.1 The Demands of Interactive Systems: : : : : : : : : : : : : : : : : 65
4.2 Scalability of the Differential Approach: : : : : : : : : : : : : : : : 67
4.3 Solving the Linear System: : : : : : : : : : : : : : : : : : : : : : : 70
4.4 Reducing Problem Size: : : : : : : : : : : : : : : : : : : : : : : : 74
4.5 Trading Accuracy for Performance: : : : : : : : : : : : : : : : : : 76

vii



5 Snap-Together Mathematics 77
5.1 Evaluating Functions: : : : : : : : : : : : : : : : : : : : : : : : : : 79
5.2 Evaluating Derivatives: : : : : : : : : : : : : : : : : : : : : : : : : 80
5.3 Sparse Representations: : : : : : : : : : : : : : : : : : : : : : : : : 82
5.4 The Snap-Together Math Library: : : : : : : : : : : : : : : : : : : 84

6 Controllers 93
6.1 Example Interactions: : : : : : : : : : : : : : : : : : : : : : : : : : 94
6.2 Continuous Time: : : : : : : : : : : : : : : : : : : : : : : : : : : : 97
6.3 Basic Controllers: : : : : : : : : : : : : : : : : : : : : : : : : : : : 100
6.4 Switching Controllers: : : : : : : : : : : : : : : : : : : : : : : : : 102

7 A Graphics Toolkit 111
7.1 The Bramble Application Model: : : : : : : : : : : : : : : : : : : : 113
7.2 A Simple Example: : : : : : : : : : : : : : : : : : : : : : : : : : : 116
7.3 Bramble’s World: : : : : : : : : : : : : : : : : : : : : : : : : : : : 120
7.4 Connectors in Bramble: : : : : : : : : : : : : : : : : : : : : : : : : 123
7.5 Graphical Objects: : : : : : : : : : : : : : : : : : : : : : : : : : : 124
7.6 Hooks : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 128
7.7 Other Application Components: : : : : : : : : : : : : : : : : : : : 131
7.8 The Bramble Standard 3D Interface: : : : : : : : : : : : : : : : : : 134

8 Interaction Techniques 137
8.1 Attributes to Control: : : : : : : : : : : : : : : : : : : : : : : : : : 137
8.2 Strategies for Interaction: : : : : : : : : : : : : : : : : : : : : : : : 151
8.3 Sources of Constraints: : : : : : : : : : : : : : : : : : : : : : : : : 158
8.4 Employing Switching : : : : : : : : : : : : : : : : : : : : : : : : : 166

9 Example Applications 171
9.1 A Drawing Program: : : : : : : : : : : : : : : : : : : : : : : : : : 171
9.2 A Planar Mechanisms Sketcher: : : : : : : : : : : : : : : : : : : : 182
9.3 A Box-and-Arrow Diagram Editor: : : : : : : : : : : : : : : : : : : 184
9.4 A Curve Modeller : : : : : : : : : : : : : : : : : : : : : : : : : : : 185
9.5 A Collision Simulator : : : : : : : : : : : : : : : : : : : : : : : : : 187
9.6 3D Construction Toys: : : : : : : : : : : : : : : : : : : : : : : : : 187
9.7 Scene Composition: : : : : : : : : : : : : : : : : : : : : : : : : : 192

10 Evaluation and Future Work 195
10.1 Contributions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 195
10.2 Evaluation: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 201
10.3 Directions for Future Work : : : : : : : : : : : : : : : : : : : : : : 211
10.4 Final Remarks: : : : : : : : : : : : : : : : : : : : : : : : : : : : : 215

viii



A The Whisper Programming Language 217
A.1 Whisper Basics : : : : : : : : : : : : : : : : : : : : : : : : : : : : 218
A.2 Some Examples: : : : : : : : : : : : : : : : : : : : : : : : : : : : 220

B Performance of the Implementations 225
B.1 A Synthetic Benchmark: : : : : : : : : : : : : : : : : : : : : : : : 226
B.2 Application Benchmarks: : : : : : : : : : : : : : : : : : : : : : : : 229

ix



x



List of Figures

1.1 3D scene with a Luxo lamp: : : : : : : : : : : : : : : : : : : : : : 4
1.2 Schematic representation of a simple graphical object: : : : : : : : : 15
1.3 Schematic representation of objects wired together: : : : : : : : : : 17
1.4 Schematic representation of objects and controllers: : : : : : : : : : 18

3.1 Point on the plane with a radial control: : : : : : : : : : : : : : : : 42
3.2 Point moving with an Euler ODE solver: : : : : : : : : : : : : : : : 46
3.3 Euler ODE solver with various step sizes: : : : : : : : : : : : : : : 46
3.4 Euler and Runge-Kutta ODE solvers: : : : : : : : : : : : : : : : : : 48
3.5 Line segment dragged by one point: : : : : : : : : : : : : : : : : : 50
3.6 Hard and soft controls: : : : : : : : : : : : : : : : : : : : : : : : : 56
3.7 Example of an error with independent soft controls: : : : : : : : : : 57

4.1 Block-rectangular and block-diagonal matrices: : : : : : : : : : : : 69

5.1 Example expression graph for geometric figures: : : : : : : : : : : : 78
5.2 Simple example of derivative composition: : : : : : : : : : : : : : : 81
5.3 Half-sparse matrix: : : : : : : : : : : : : : : : : : : : : : : : : : : 83
5.4 Scatter/gather variable representation: : : : : : : : : : : : : : : : : 88

6.1 Schematic of two line segments with an attachment constraint: : : : 94
6.2 Feedback for dragging: : : : : : : : : : : : : : : : : : : : : : : : : 96
6.3 Timeline of a dragging operation: : : : : : : : : : : : : : : : : : : 97
6.4 Discretized timeline of a dragging operation: : : : : : : : : : : : : : 98
6.5 Point bound to remain inside a rectangle: : : : : : : : : : : : : : : : 103
6.6 Clicking to a discrete set: : : : : : : : : : : : : : : : : : : : : : : : 105
6.7 Inequality constraint keeps a block above floor: : : : : : : : : : : : 106
6.8 Multiple blocks kept stacked by inequalities: : : : : : : : : : : : : : 108

7.1 Pieces of the Bramble toolkit: : : : : : : : : : : : : : : : : : : : : 114
7.2 “Hello Cone” program output: : : : : : : : : : : : : : : : : : : : : 117
7.3 Example of Bramble’s standard 3D interface: : : : : : : : : : : : : 135

8.1 Variety of parametric curves connected with constraints: : : : : : : : 139

xi



8.2 A crowbar : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 140
8.3 Manipulating an inter-object shadow: : : : : : : : : : : : : : : : : 147
8.4 Virtual eyepoint for reflections: : : : : : : : : : : : : : : : : : : : : 148
8.5 Manipulating a reflection : : : : : : : : : : : : : : : : : : : : : : : 149
8.6 Differential slider : : : : : : : : : : : : : : : : : : : : : : : : : : : 152
8.7 Overlaying real and synthetic image for registration: : : : : : : : : : 156
8.8 Registering real and synthetic images: : : : : : : : : : : : : : : : : 157
8.9 Fuel gauge widget: : : : : : : : : : : : : : : : : : : : : : : : : : : 162
8.10 Airplane gauges: : : : : : : : : : : : : : : : : : : : : : : : : : : : 163
8.11 3D Widgets : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 164
8.12 Generalized snapping away from the dragging action: : : : : : : : : 167
8.13 Preventing two rectangles from overlapping: : : : : : : : : : : : : : 169
8.14 Simulating a mechanism with collisions: : : : : : : : : : : : : : : : 170

9.1 Briar drawing program: : : : : : : : : : : : : : : : : : : : : : : : : 172
9.2 Briar’s feedback mechanisms: : : : : : : : : : : : : : : : : : : : : 176
9.3 Constructing an equilateral triangle: : : : : : : : : : : : : : : : : : 177
9.4 Briar’s representation of constraints: : : : : : : : : : : : : : : : : : 180
9.5 Mechtoy planar mechanisms sketcher: : : : : : : : : : : : : : : : : 183
9.6 Boxer diagram editor : : : : : : : : : : : : : : : : : : : : : : : : : 185
9.7 NewFF curve modeler: : : : : : : : : : : : : : : : : : : : : : : : : 186
9.8 Poly collision simulator : : : : : : : : : : : : : : : : : : : : : : : : 187
9.9 PTinker 3D construction application: : : : : : : : : : : : : : : : : : 188
9.10 Tinkertoys 3D construction application: : : : : : : : : : : : : : : : 189
9.11 Merry-go-round constructed in the Tinkertoys simulator: : : : : : : : 192

B.1 Sample run of the synthetic benchmark: : : : : : : : : : : : : : : : 226
B.2 Performance of varying numbers of constraints: : : : : : : : : : : : 227
B.3 Performance of varying numbers of variables: : : : : : : : : : : : : 228
B.4 5-bar linkage benchmark example: : : : : : : : : : : : : : : : : : : 231
B.5 Performance of simulating varying numbers of linkages: : : : : : : : 231
B.6 4-bar parallel truss benchmark example: : : : : : : : : : : : : : : : 232
B.7 Performance of simulating truss linkages of varying size: : : : : : : 233

xii



Chapter 1

and as she stepped from out her shell
and looked around for luck;
“Quack,” said Jerusha,
“I seem to be a duck.”

— Mildred P. Merryman
“Quack!” said Jerusha[Mer50]

Introduction

Ever since computers have had graphical displays and pointing devices, graphical ma-
nipulation has been an important means of communicating between people and com-
puters. Such interfaces couple the behavior of some graphical object to the input de-
vice, continuously tracking its changes with motion. Sketchpad [Sut63], the earliest
interactive graphical application, introduced this style of interface, which has come to
be known as direct manipulation.1 Input and output devices continue to evolve from
Sketchpad’s vector display and light pen. Yet after 30 years of advancements in the
hardware for interfaces, the basic notion of direct graphical manipulation remains the
same.

As computers capable of supporting direct graphical manipulation have become
more common, it has become the dominant interaction method for configuring graphi-
cal objects. However, present approaches to realizing graphical manipulation severely
limit the types of interfaces which can be constructed. They restrict the types of in-
teractive controls that can be provided to users and provide no facilities for combining
these controls.

This thesis considers how the numerical and graphical performance of modern com-
puters can be exploited to create an approach to realizing graphical manipulation that
avoids the limitations of previous approaches. I will introduce adifferential approach
to graphical interaction, in which constrained optimization is used to couple the mo-
tion of graphical objects to a user’s controls. To create such an approach to graphical
interaction, we must consider what types of mathematical techniques to employ, what
interaction techniques to build with them, and how to incorporate them into interactive
applications.

1Although the term “direct manipulation” is generally attributed to Ben Schneiderman [Sch83], the
ideas predates his work.

1



2 CHAPTER 1. INTRODUCTION

1.1 Implementing Graphical Manipulation

Direct manipulation has become the dominant style of graphical interaction with good
reason: it provides a uniform mode of interaction that resembles interaction with real
objects in the real world. The controls on a graphical object are handles that the user
can grab and drag. As the user drags a handle, the object follows the motion of the
pointing device with continuous motion, providing kinesthetic correspondence.

The success of graphical manipulation leads to a desire to extend its range to a
wider variety of graphical objects, control types, and applications. However, present
approaches to implementing graphical manipulation limit this range. The task of imple-
menting direct manipulation requires mapping from the user’s actions on the handle to
changes in the program’s internal representation of the object and providing feedback
to the user of these changes. To date, the former has been implemented in an ad-hoc
manner. Each new type of handle must be specifically hand-crafted.

Hand-crafting each handle places two significant restrictions on the types of inter-
faces that can be created. First, it restricts the types of handles to those for which the
mapping to object parameters can be determined by the programmer. Second, it re-
stricts how handles can be combined, as any combination must also be hand-crafted.
Because there is no standardized mechanism for defining the mappings between han-
dles and parameters, defining new types of handles can be a difficult task.

To better illustrate these problems, consider a simple example: positioning a line
segment in a drawing program. Even with this simple graphical object, there are many
attributes that the user might want to specify, such as the positions of the endpoints, the
position of the center, the length or the orientation. Ideally, the program should permit
the user to control directly whichever attribute they desired and and mix-and-match
these controls as needed. That is, each attribute should have an associated handle so
that the user can select controls that are most convenient to their task, and a user should
be able to employ multiple, simultaneous controls to more fully specify their intents.

A simple way for a program to represent the line segment is to store its two end-
points. This representation makes it is easy to position an endpoint: simply set a pair of
parameters equal to the position of the mouse. Providing other handles is more difficult.
For example, to permit the user to manipulate the length of the line segment directly
requires the interface implementor to work out a bit of mathematics to compute the
positions of the endpoints from the length. Had a different representation been chosen,
implementing this control would have been easier. For example, if the programmer
had chosen to store the center, orientation and length of the line segment, the set of
attributes that could easily serve as handles would be different.

With the ad-hoc implementation methods, simultaneous controls, either to support
multiple input devices or to express constraints on the object changes, require explicit
hand-crafting of each combination of controls. For example, maintaining the position
of one endpoint of the line segment while the other is dragged can be implemented



1.1. IMPLEMENTING GRAPHICAL MANIPULATION 3

easily if the line is represented by the positions of its endpoints. However, an inter-
action that maintained an endpoint’s position while the center of the line segment is
dragged would require some mathematical work by the interface designer if either of
the representations from the previous paragraph were used.

For an object as simple as the line segment, it might be possible to predict all possi-
ble combinations of controls, or at least a sufficient set of possible combinations. How-
ever, combinatorics makes this impractical with more complicated objects. Similarly,
if we consider simultaneous control of multiple objects, the increased combinatorial
possibilities make explicit coding of all combinations impossible. Controls on mul-
tiple objects, such as relative positions or differences in size, further compound the
problem with more potential handles, more possible combinations, and less possibility
of predicting what the user will need.

Without a general mechanism for defining the mapping from a handle to the ob-
ject’s parameters, it is difficult to define new handles and combinations. As a result, all
combinations of controls must be pre-designed by the program implementor, making
experimentation with combinations of controls difficult, and dynamic combination of
controls by the user impossible.

Even if combinatorics do not make it impossible to switch representations to pro-
vide alternate combinations of controls, other issues limit possible interfaces with the
approach. Often, concerns such as numerical stability, freedom from singularities, and
implementation convenience restrict the representations that can be used for objects.
The tension between these implementation concerns and user needs leads to interfaces
where the users must manipulate non-intuitive, but mathematically convenient, con-
trols, such as B-Spline knot points, or suffer with inferior representations, such as
the singularity-ridden Euler angles used by many systems for storing 3D orientations
[Sho85].

In summary, the ad-hoc methods previously used to implement direct manipulation
have many problems. As shown in the examples of the preceding paragraphs, they

� limit the types of interactive controls that can be provided to users;

� prevent interactive controls from being freely combined as desired;

� restrict the types of representations that programmers can use inside systems to
those that user controls can be conveniently mapped to;

� fail to provide a consistent set of abstractions for defining interaction techniques;

� fail to provide a methodology for defining new controls, making it difficult to
experiment with new ideas;

� prevent the realization of some potentially desirable interface styles.



4 CHAPTER 1. INTRODUCTION

Figure 1.1: A 3D scene in which a Luxo lamp is used not only as an object in the scene, but
also for illumination. To create this image, the user must configure the lamp so that the light
falls in the desired location. The techniques of this thesis allow the user to control the lamp by
manipulating the light’s target directly, and have the lamp be adjusted accordingly. The right
image shows an interactive scene composition system, described in Section 9.7, being used in
this manner. (Thanks to Drew Olbrich for the ray tracing.)

This thesis provides a systematic approach to implementing direct graphical manipula-
tion in a way that avoids these problems while keeping the essential benefits of direct
manipulation.

1.1.1 A Systematic Approach to Realizing Graphical Manipulation

Our goal is to have flexible interactive controls that can be freely combined. For some
interfaces, this increased power might be provided directly to users who could mix and
match controls as needed for their problem. However, the extra power also helps users
indirectly by giving interface designers more choices in what they can provide to users.

Some of the benefits of this flexibility are illustrated in the example of Figure 1.1.
Consider an interactive application that allows a user to manipulate desktop objects,
for example to create pictures of office scenes. There are many things a user may want
to do with the lamp, for instance, they might want the light to shine onto a particular
place, place the lamp in a particular position, or orient the lamp a certain way.

Inside the application, the configuration of the lamp might be represented as the
position of the base and the angles of each of the joints, or it might be represented as
the position and orientation of each part of the lamp. The former is preferable because
it maintains the connections between parts of the lamp. Unfortunately, to implement a
handle that permits the user to grab and drag the lightbulb, a programmer must some-
how devise a mechanism to update the joint angles accordingly. The ad-hoc approaches
to realizing graphical manipulation give little help in deriving such mathematics. Be-
cause the effort of deriving the handle’s implementation would most likely be very



1.1. IMPLEMENTING GRAPHICAL MANIPULATION 5

specific to the Luxo lamp, traditional2 direct manipulation systems would most likely
be forced to provide the user with only direct control over the joint angles. While this
is sufficient to configure the lamp, it is not necessarily convenient for tasks like posi-
tioning the light bulb or aiming the light.

This thesis presents a systematic approach for implementing direct graphical ma-
nipulation. A general-purpose mechanism maps between the handles provided to the
user and the parameters of the graphical objects. With such an approach, a user of the
Luxo lamp example could not only manipulate the joint angles, but could also grab any
part of the lamp directly, The programmer did not have to explicitly code the math-
ematics to map the manipulations into parameter changes. In fact, the flexibility in
controls permits definition of other less obvious handles that permit the user to have
direct control over attributes of interest. For example, a user interested in shining the
light onto a particular location could simple grab the target of the lamp (the center of
the spot) and drag it to the desired location. The controls can be freely combined. For
example, a user could position the light’s target and simultaneously specify the lamp’s
position on the table.

A systematic approach to realizing direct manipulation can be based on a general
purpose mechanism for mapping user controls to object parameters. Creation of such
a mechanism requires us to view graphical manipulation as a constrained optimization
problem. To solve this problem in a practical manner, we must treat itdifferentially,that
is to control how objects change rather than their final targets. This thesis introduces
a differential approachto graphical interaction that begins by taking the view of ma-
nipulation as a mathematical problem. To realize the approach, the thesis will provide
mathematical techniques to solve the problem, implementation techniques to address
pragmatic issues, and a system architecture to use the approach to build applications.
Example interaction techniques will be provided to show the promise of the approach,
and applications will be demonstrated to show its viability.

1.1.2 Classes of Users and Tools

There are different classes of people involved with an interactive graphical application.
As in Myers’ survey [Mye93], we will need to distinguish these into distinct categories.
Myers’ categories are users, interface designers, application programmers, and tool cre-
ators. For the purposes of this thesis, we will lump interface designers and application
programmers together as their tasks are similar: to build the application that the user
will employ in their graphical task with the tools provided by the tool creators. The
application builders will be the users of application development tools, but unless we

2The Luxo lamp is an example of an important special case: an articulated figure. Recently, sev-
eral commercial animation systems, such as SoftImage [Sof93] and Wavefront [Wav94], have included
inverse kinematic techniques to manipulate such objects by positioning end-effector points. These meth-
ods, and their limitations, will be reviewed in Section 2.2.4.



6 CHAPTER 1. INTRODUCTION

explicitly refer to the “user of the toolkit,” the term “user” will refer to the “end user”
of the graphical application.

The work of this thesis affects all three groups. While our approach can be em-
ployed to provide conventional interfaces, it may also be used to provide new types of
interfaces for users. It gives the application programmer a new set of abstractions with
which to build interactive systems. Finally, for the toolkit builder, there is a new class
of services that must be provided, but these services can help enhance the modularity of
the tools by: providing a standard interconnection mechanism between objects; allow-
ing the internal representation of the objects to be hidden from applications program-
mers; allowing tools to be provided to the application programmer that allow pieces
to be assembled by combination and composition to form interaction techniques; and
allowing the encapsulation of numerical constraint computations.

One might consider applications where the user is exposed to the mathematics be-
hind their graphical application. For example, the CONDOR system [Kas92] allows
the user to construct mathematical expressions that define the graphical objects. Al-
though such an application can be constructed using the approach of this thesis, this
thesis focuses on applications where the user is insulated from the mathematics, in-
stead directly manipulating graphical objects. In fact, a goal of this thesis is to hide as
much of the mathematics as possible inside the applications development tools so that
only the tool creators need see it.

1.1.3 Graphical Manipulation as Equation Solving

To introduce the differential approach of this thesis, graphical manipulation must be
viewed as a constrained optimization problem. Graphical manipulation deals with how
a user configures a set of graphical objects to achieve some desired goals. For the lamp
example, the set of graphical objects consists of the Luxo lamp, the table top, and the
other objects on the table such as the blocks. I will often use the termmodelto refer to
the set of objects.

In the class of graphical manipulation tasks considered in this thesis, users manipu-
late objects whose configurations can be stored as a concise set of real-valued parame-
ters, called the object’sstate vector.For a given object, there are potentially many sets
of parameters which might equivalently serve as a representation, as demonstrated by
the line segment example. Aparameterizationis a particular representation of the state
of an object.

Objects usually have many attributes that may be of interest to an observer. Since,
by definition, the state vector fully describes the configuration of the object, the at-
tributes must be determined as functions of these parameters. For this thesis, we re-
strict ourselves to the broad class of object attributes which can be computed by closed-
form, differentiable expressions over the state variables. This class includes many of
the types of models used in interactive computer graphics such as most parametric and



1.1. IMPLEMENTING GRAPHICAL MANIPULATION 7

implicit curve and surface representations, transformation hierarchies, virtual cameras,
and many simple shading models. We will not consider things such as combinatorial
or discrete attributes, such as the number of sides of a polygon, or attributes computed
by recursive or iterated functions such as fractals.

A control is an attribute of an object that can be specified or directly manipulated.
For example, if a system allowed the user to drag the position of the lamp’s lightbulb or
the target location of the light, these attributes of the lamp would be serving as controls.
A constraint is a control for which a fixed value is given, preventing the value of the
attribute from changing. Such controls constrain the behavior of objects by restricting
their motion so that the constraint is not violated. For the purposes of this thesis, the
terms constraint and control are nearly interchangeable: a constraint is a control with
its value fixed, a control is a constraint whose value is being specified dynamically by
the user, e.g. a value constrained to follow the mouse.

A single control generally does not uniquely determine a configuration of the object.
For example, if one endpoint of a line segment is specified, there is still a continuum of
possible configurations for the segment. To combat suchunder-constrainedsituations,
it is often desirable to use multiple controls simultaneously. In the cases where there is
only a single input device, dragging manipulation might be combined with constraints
(e.g. controls that are restricted from changing). In a sense, even a single dragging
operation can be thought of as multiple controls if we consider each axis of the pointing
device independently.

It is unreasonable to require the user to employ enough controls to uniquely de-
termine the configuration of the graphical objects. The user simply may not know or
care about some attributes of some objects, or it might be too much work to specify
everything. In such under-constrained cases, the system must somehow choose one of
the possible configurations. Without mind reading, it is impossible to reliably select
the solution that the user most desires. Systems must settle for simply trying to select a
solution that is reasonable. One version of this is the “Principle of Least Astonishment”
[BDFB+87] which suggests the system should try to select the option that will surprise
the user the least.

For an analogy, think of a model as a large machine which has a few knobs for the
user to turn and many gauges whose values the user may be interested in. Suppose
there are a few gauges for which the user desires a particular value. The graphical
manipulation task is to find settings of the knobs such that the gauges reach these desired
values. If each gauge to be specified corresponds directly to a knob, the task is easy,
because each knob can be turned and set independently. However, most gauges will
depend on complicated combinations of the knobs, making it harder to find settings of
the knobs that achieve desired values. In this metaphor, the knobs are the parameters
of the graphical objects, the gauges are attributes of the objects that the user may be
interested in, and the internals of the machine correspond to the functions that compute
the attributes from the parameters. Traditional implementations of direct manipulation



8 CHAPTER 1. INTRODUCTION

require the user to control the knobs directly. The methods of this thesis permit the user
to use any of the gauges as controls by automatically adjusting the knobs as needed.

1.1.4 Goals for Graphical Manipulation

Treating interactive control as the specification of values for controls as in the last
section leads to a concise mathematical problem. The user would like to specify some
set of controls,p. The system needs to find some configuration of the state variables,
q, which meets this. Since the controls can be computed as a function of the state
variables, we have

p = f(q): (1:1)

Solving the manipulation problem is, at one level, as straightforward as solving this
equation forq . However, there are many difficult goals which we might want our
solution technique to meet:

1. flexibility in the types of controls, and therefore the functions which compute
them;

2. freedom to combine controls arbitrarily, “mixing-and-matching” them dynami-
cally;

3. keeping the good properties of direct manipulation, e.g. continuous motion, rapid
feedback, tight coupling of the input device to objects on the screen,: : : ; [Sch83]

4. choosing the “best” solution in under-constrained cases, and finding a “reason-
able” answer even if there is no exact solution.

To aid the application implementor, there are several other goals:

5. freedom in picking representations independently of user concerns;

6. a standard procedure for defining new controls that minimizes the amount of
difficult mathematical work in defining a new type of control;

7. a solving mechanism that is general purpose and encapsulatable so that a single
common implementation can serve a number of applications and so that the ap-
plication developers need not worry about the details of the solving mechanisms.

We would like the techniques developed to realize the approach to also:

8. work over a variety of domains;

9. be fast and scale well;

10. require only readily available, easy to code numerical algorithms. Reliance on
sophisticated numerical codes that must be purchased from commercial vendors
or developed by expert numerical analysts would be unacceptable.



1.1. IMPLEMENTING GRAPHICAL MANIPULATION 9

1.1.5 The Problems of Other Approaches

Our goals make solving Equation 1.1 forq impractical for three general reasons:

� in order to have flexibility in the types of controls, non-linear equations may need
to be solved. Such equations are hard to solve;

� in order to have flexibility in the number of controls that are specified, we must
permit under-constrained and over-constrained cases;

� in order to provide the desired direct manipulation interface, object must move
with continuous motion. Therefore, the solver must be fast enough and provide
continuity in the solutions.

In order to provide direct manipulation with general controls by solving Equation 1.1,
we must solve arbitrary systems of non-linear equations fast enough to allow for fre-
quent enough updates to give the user the illusion of continuous motion.

In order to meet goal 1, the equation solver must be able to handle a wide range of
functions, including non-linear equations. Without knowledge about the functions to be
solved, sets of equations are difficult to solve. Not only is good information hard to find
in general, but each combination of equations might also require specific knowledge.
Because of this, [PFTV86, Chapter 9] argues that not only does no reliable, general,
non-linear solver exist, but that one cannot exist.

Without global information about functions and combinations, solving techniques
must rely on local information, effectively searching for solutions. Almost all non-
linear solvers are iterative methods that take an initial guess as to the solution and
repeatedly update the guess until they find a solution. Such a solver can never determine
that there is not a solution: if it fails to find a solution it might simply mean that it has
not searched hard enough. These solvers will be discussed further in Section 2.2.2.

As computers grow faster, it might become practical to consider using a sophis-
ticated non-linear equation solver to provide direct manipulation. However, such an
approach is unlikely to succeed for a number of reasons:

� despite their sophistication, the methods are heuristic and not completely reliable;

� because they are doing searches, it is difficult to predict how long it will take
them to find a solution;

� the solvers may fail to find a solution, but only after spending a long time looking
for it;

� the solvers do not degrade gracefully: it is difficult to limit the amount of time
that they spend because their intermediate states may not be close to the answer;



10 CHAPTER 1. INTRODUCTION

When we examine the previous approaches to implementing graphical manipula-
tion, we see that they all fail to meet some of these goals. Previous work will be ex-
plored in more detail in Chapter 2.

Traditional Direct Manipulation – The traditional method for implementing direct
graphical manipulation has been to couple parameters directly to the pointing
device. For example, with the luxo lamp, a conventional direct manipulation
system would allow the user to connect a joint angle to a knob. Some mappings
between the input and the values are possible, for example to convert the linear
motion of a slider to the rotary motion of the joint, but there must be some direct
way of computing the parameter values from the inputs.

Traditional implementations have been the mainstay of direct manipulation inter-
faces. Such interfaces have been very successful, largely due the fact that it meets
goals 3 and 9. However, its limitations have restricted the types of interfaces
that have been constructed. Traditional direct manipulation severely restricts the
types of functions which can be used as controls (goal 1) and it provides no au-
tomatic way to combine controls (goal 2). Parameters must be chosen so that
the controls will map onto them easily (failing goal 5). Because good represen-
tations must be developed for any new controls, and because these closed form
mapping for controls must be found, developing new controls can be difficult
work (violating goal 6).

Parametric Modeling Approaches – Parametric modeling is a variant of the tradi-
tional direct manipulation approach. Such schemes permit end users to create
models with parameter dependencies. These parameters are directly specified.
Parametric approaches permit a clever user to overcome some of the deficiencies
of the traditional direct approach. For example, if the designer of the Luxo lamp
knew the user would want to control the height of the lamp, but not the joint
angles, they might have devised a way of representing the configuration of the
lamp so that height is a parameter, and the joint angles are computed from that.
Parametric approaches suffer from the same failures of direct manipulation, al-
though it does permit a clever user to sometimes have some additional flexibility
in the types of controls.

Traditional Constraint-Based Approaches – A constraint-based interface3 treats
Equation 1.1 by employing an equation solver. Typically, the user specifies val-
ues for various aspects of the model and then the system solves for some value of
the state vector which meets these constraints. We call such a constraint-based
approach a “specify-then-solve” style.

3I use the termconstraint-basedinterface to mean that constraints are an abstraction provided to the
end user of a system, rather than simply as an abstraction used by programmers.



1.1. IMPLEMENTING GRAPHICAL MANIPULATION 11

Although the problem of solving the equations required to meet goals 1 and 2
is difficult, a bigger problem with a specify-then-solve approach is that it fails
to meet goal 3. After the user specifies the constraints, the system solves the
equations and then displays the result to the user. Objects jump to the new con-
figuration, leaving the user to puzzle out what happened. This makes goal 4 even
more difficult. It becomes critical to pick a good solution to avoid confusing the
user. Picking the correct solution is also important because without the rapid
feedback of direct manipulation it can be difficult to explore possible solutions.

A system designer might consider using interpolation to provide the desired con-
tinuous motion in a constraint solving system. After solving for a new configu-
ration a system might make a smooth transition by interpolating between the old
state and the new. However, jumping between configurations cannot be avoiding
by simply interpolating. Unless something enforces the constraints in the inter-
mediate states, the constraints may be broken, leading to potentially undesirable
behavior.

Specialized Constraint-Based Approaches –The primary drawback of the tradi-
tional constraint-based approach is that it violates goal 3, the desire for direct
manipulation. One approach to handling this is to restrict the class of constraints
so that they can be solved faster. The best examples of this are the propagation
constraint solvers, such as DeltaBlue [FBMB90]. In essence, these algorithms
trade-off goals 1 and 2, in order to better meet goal 3. As a side effect, some of
these algorithms provide techniques, such as constraint- hierarchies [BFBW92],
to handle under-constrained cases (goal 4). Unfortunately, propagation solvers
restrict the set of possible controls and the ways controls can be combined in ways
that are unacceptable for graphical manipulation (failing goals 1 and 2). Also, for
each new control, a variety of bi-directional methods must be generated, which
may not be easy for many types of functions (failing goal 6).

The problem of determining configurations that achieve the desired attribute val-
ues is an important problem in robotics and computer animation. Such solving is
referred to asinverse kinematics.The inverse kinematics literature, examined in
Section 2.2.4, includes numerical methods that solve the systems of non-linear
equations. A problems of particular interest to robotics, namely configuring artic-
ulated figures by positioning end-effectors, is particularly well-studied. Highly
developed techniques have been developed and are commonplace enough to be
surveyed in robotics textbooks, such as those by Craig [Cra86] or Paul [Pau81].
The techniques are now appearing in commercial computer animation systems,
such as Softimage [Sof93] and Wavefront [Wav94]. The methods in such sys-
tems are not general: they only permit manipulation of a very specific control
on a very specific class of model (failing goals 1, 5 and 8), and typically provide
only a single control at a time (failing goal 2). The differential approach can be



12 CHAPTER 1. INTRODUCTION

viewed as a use of generalized inverse kinematics to create a general approach
to implementing graphical manipulation.

1.2 The Differential Approach

Existing approaches fail to meet the goals for graphical manipulation, demanding the
development of a new approach. An advantage that we have over the developers of pre-
vious approaches is that computer hardware has advanced to the point that the machines
on which graphical applications are run have considerable computational and graphics
performance. Such machines make it possible to do non-trivial numerical calculations
in between each frame of continuous motion animation. This means that it is possible to
perform some numerical constraint calculations and still provide a continuous-motion
direct manipulation interface. This thesis presents such an approach to graphical inter-
action.

Our goals make solving the manipulation problem of Equation 1.1 difficult. Pre-
vious approaches have either restricted the equations, or restricted the desired direct
graphical interaction. In this thesis, I will present an approach which makes a differ-
ent kind of restriction: that we are interested only in direct graphical interaction and
will always demand that objects move with continuous motion, not jump between very
different configurations. The interfaces desired for graphical interaction have this prop-
erty.

Because we are considering cases where objects move continuously, it is sufficient
to control them by controlling how they change over time. By controlling how objects
are changing, rather than controlling their configurations directly, a variant of Equation
1.1 may be solved. Controls specify the attributes’ rates of change and the system
solves for the state variables’ rates of change to make this happen. I call this approach to
graphical interaction based on this control by time derivatives thedifferential approach.

With the differential approach, at particular instants in time a solver must determine
the time derivatives of the state vector given the time derivatives of the controls. We
refer to this asdifferential optimization.Solving the differential optimization is a much
more mathematically tractable problem than solving Equation 1.1 directly. This means
that it is possible to provide direct graphical interaction (meeting goal 3), while han-
dling a general class of non-linear functions (meeting goal 1), and allowing these to be
combined in arbitrary ways (goal 2). Methods for solving the differential optimization
problem address the issues of under-constrained and over-determined cases (goal 4).

The differential approach meets the implementation goals as well. By allowing
almost arbitrary non-linear functions to map between controls and parameters, it pro-
vides flexibility in selecting representations of objects independently of how they will
be manipulated (goal 5). The solving methods require little information about the con-
trol functions, in fact, all that is required can be found automatically given the control



1.2. THE DIFFERENTIAL APPROACH 13

function (goal 6). The mechanisms behind the differential approach are general purpose
and can be encapsulated in a manner that not only hides the underlying mathematical
techniques, but also permits a single implementation to serve as a building block for
almost any type of system requiring graphical manipulation (goals 7 and 8). The tech-
niques to realize the approach perform well enough to work on current machines (goal
9), without resorting to numerical routines beyond those in standard textbooks (goal
10).

1.2.1 Direct Manipulation in the Differential Approach

Digital computers provide the illusion of continuous motion of graphical objects by
repeatedly redrawing the image. The time between these redraws must be sufficiently
small in order for the illusion to be maintained. To support direct manipulation, a
system must sample the position of the mouse and update the positions of the objects
at a rapid rate.

The differential approach breaks the numerical constraint solving problem into two
parts: computing the rates of change of the parameters at particular instants, and com-
puting the trajectory of the parameters over time, given the rates of change at particular
instants. The former problem is the differential optimization problem, and the latter is
solving an ordinary differential equation (ODE). Between each redraw, the ODE must
be solved to update the configurations of the graphical objects. Each of these solver
steps advances the configuration by solving some number of differential optimizations,
each determining the rate of change at some particular instant.

With the differential approach, the graphical objects cannot simply be moved with
the mouse. Instead, each step they move towards a target. Limitations in ODE solving,
discussed in Section 3.3, provide speed limits on how quickly objects can move, so they
may not be able to reach their target in the time provided. If the target is the position of
the mouse, this will cause the object to lag behind its target, gradually catching up as
the mouse slows down. This can make manipulation feel as if the objects are connected
to the input devices by springs, and will be discussed in Section 6.1.2. As computers
grow faster, more computation can be done between each redraw while maintaining
a rate sufficient to provide the illusion of continuous motion. This allows raising the
effective speed limits of the objects, and can reduce the lag.

1.2.2 An Alternate View of Graphical Manipulation

An alternatative view of graphical manipulation is to imagine graphical objects as phys-
ical entities that are manipulated as physical objects in the real world: by pushing and
pulling on them. With such a view, implementing direct manipulation becomes a prob-
lem of implementing an interactive physical simulation. The issues in creating such



14 CHAPTER 1. INTRODUCTION

simulations are explored by Witkin et al.[WGW90]. The techniques presented in that
paper form the basis for this thesis.

The differential approach can be viewed as a variant of the physical simulation
approach. The physics of the “world” is modified from that of the real world in order
to facilitate manipulation. Most significantly, inertia is removed by replacing Newton’s
law of motion,f = ma; by its first derivative equivalent,f = mv: An object in motion
is only in motion while it is being acted upon by a force. For manipulation, this has the
advantage that objects remain where they are placed, rather than skidding around.

The mathematical methods used for implementing the differential approach pre-
sented in Chapter 3 are the same as those used for implementing physical simulations.
Many of the numerical methods and implementation techniques in the thesis were orig-
inally conceived for implementing interactive simulations. Presenting the differential
approach as constrained optimization, as done in this thesis, rather than presenting it as
a physical simulation, is largely a matter of taste.

1.3 An Approach to Graphical Interaction

The ultimate goal of this research is to improve the quality of graphical manipulation
interfaces. The central focus of this thesis makes an indirect step towards this goal,
providing a new set of abstractions which provide more flexibility in the type of inter-
action techniques that can be created. This increased flexibility does not necessarily
imply better interfaces — in fact, they give interface designers new ways to baffle and
confuse users. However, there are several reasons to believe that the differential ap-
proach can lead to improved interaction techniques.

The differential approach permits building interfaces which have many desirable
properties. It provides for continuous motion of the graphical objects. It permits in-
terfaces to provide controls to the user which permit directly controlling attributes of
interest. These controls need not directly connect to the parameters. It permits controls
to be combined, either by the user or by interface elements.

The example interaction techniques of Chapter 8 show the promise of the approach.
The examples which recreate prior techniques show that the abstractions provided by
the differential approach are sufficiently rich to create usable interactions. Some of the
newer techniques, such as the through-the-lens camera controls of Section 8.1.4 could
not have been considered with previous approaches to building interfaces. Some of
the examples, like the artificial horizon of Section 8.3.5, are not good interfaces. But
with the differential approach, techniques can be explored without deriving the inverse
mathematics, so it is possible to learn that they are unusable before investing a large
amount of time and effort in their development.

The differential approach provides a new set of abstractions for building graphi-
cal interaction techniques. In the remainder of this section, we briefly introduce the



1.3. AN APPROACH TO GRAPHICAL INTERACTION 15

Line State Vector
x1 y1 x2 y2

left right center length angle

l θx y x y x y

Figure 1.2: A schematic representation of a simple graphical object. The object stores a set
of parameters internally in itsstate vector.However, the outside world accesses the object via
its connectors, providing flexibility and parameter independence.

abstractions, along with the terminology used throughout the thesis.

1.3.1 Graphical Objects and Connectors

For the purposes of this thesis, we are concerned with what are commonly calledobject-
orientedgraphical editors. In such applications, the user deals with finite sets of graph-
ical objects which must be manipulated to create the desired model or drawing.

For the most part, graphical objects are the visible entities that the user manipulates.
However, we will consider structural elements, such as the groups that aggregate ob-
jects or the viewing transforms that map virtual worlds to screen coordinates as objects
as well.

For a graphical object, there are two “sides” which we must consider. On one hand
is what the programmer “sees,” the object’s internal representation. An important part
of this are the parameters that determine the configuration of the object. Each object
stores this set of numbers as itsstate vector.

To the user, the graphical object should appear as a graphical object. We assume
that the user is interested in the graphical entity, not in the internal data structures used
by the programmer. For any object, there are many attributes that may be of interest to
the user, or to other objects in the program for that matter.

Ideally, we would like to think of a graphical object as a sealed box. Inside is the
programmer’s internal representation, including the state vector. To the outside world,
all that is visible are the many attributes which other parts of the program, or the user,
may want to observe. Our desire to think this way leads us to draw graphical objects
schematically as Figure 1.2. The central notion is that the state is internal to the object
and the object’s “outputs” are its attributes. How the object computes these attributes
is the concern of the object itself, not the outside world.

The state vector of an object fully specifies its configuration. Therefore, any at-
tribute of the object must be a function of these variables. This function must be known,
otherwise it would be impossible to compute the value of the attribute.

A graphical object may know how to compute many attributes. The set of attributes



16 CHAPTER 1. INTRODUCTION

of an object is not necessarily fixed — an object may have many attributes, and new
attributes may be created in response to the needs of some other part of the system or
the user. The schematic of Figure 1.2 may be slightly misleading in that it should not
imply that the depicted outputs are a fixed, small set.

We will call the outputs of graphical objectsconnectors.As the name implies, these
are the sockets into which the outside world will connect to the object. A connector
is an attribute that an object provides for the outside world to access. Throughout this
thesis, the notion of connector will be both a conceptual idea as well as a data structure
that realizes it.

1.3.2 Compound Objects and Dependencies

Many attributes can be computed as functions of other attributes, rather than from inside
the object. For example, if we wish to know the length of a line segment, this attribute
could be computed as a function of the positions of endpoints. Therefore, if the line
segment did not know how to produce its length as a connector, we might create a
special ruler object that looks at the positions of two points and “connect” it to the
endpoint outputs of the line segment.

An important notion in the ruler example is that the ruler object takes as its “inputs”
the “outputs” of another object. The ruler measures the distance between two points,
without concern for what these points are. This is significant for three reasons:

� It means that the objects, such as the line segment, can be extended to have new
behaviors without being internally modified.

� It means that we need only one type of ruler, no matter how many different types
of objects we might be measuring.

� We are not necessarily restricted to points on a single object. Instead we could
measure the distance between two points on two different objects.

Objects like the ruler have inputs that plug in to the output connectors of other
graphical objects. Considering such dependencies leads us to draw schematic diagrams
such as Figure 1.3. The outputs of the connective objects are attributes just like the
outputs of the simpler objects. The distance output of the ruler should be a first-class
citizen, just as the position outputs of the line segments. Like the outputs on simpler
object, the connectors on the ruler object’s outputs are also functions of the state vector,
except that they are potentially functions of the state vector of the entire model (which
we will call theglobal state vector), rather than just the state vector of a single object.
The function that determines the attribute’s value can be built by composition: first
computing the values of the inputs and then using these values as the inputs to a function
which computes the distance.



1.3. AN APPROACH TO GRAPHICAL INTERACTION 17

Line State Vector
x1 y1 x2 y2

left right center length angle

l θx y x y x y

dist.

d

Line State Vector
x1 y1 x2 y2

left right center length angle

l θx y x y x y

Ruler

Figure 1.3: Compound objects are composed by plugging objects’ connectors into sockets,
like wiring together a circuit. A standardized protocol allows independence in wiring.

This picture emphasizes an important notion in the thesis: the idea of plugging
objects into the “outputs” of other objects. The facility to dynamically plug and unplug
such connections in response to user actions or other system events is an essential part
of the differential approach, and will figure prominently in the design of the machinery
to realize it.

The key element for creating the vision of snap-together objects in the differential
approach is a standard protocol for the outputs so that anything can be plugged in.
Since the connector outputs are primarily functions, the aggregate connection operation
is function composition: building more complicated functions from simpler pieces.
By supporting this operation in a dynamic environment, the machinery to realize the
differential approach can permit the needed plugging and unplugging.

Compound objects, like the ruler, can come in many forms. Typically, they are used
to compute aggregate properties of many different objects. For example, the distance
between two points, or the relative orientation of two line segments. They may also
be used to compute conversions, for example from degrees to radians. More complex
attributes can also be built this way, for example, we might compute the position of a
shadow as a compound operation that takes the position of a point, the position of a
light source, and the position of the floor as its inputs. Flexibility in building new types
of attribute outputs is a useful feature of the differential approach.



18 CHAPTER 1. INTRODUCTION

Line State Vector
x1 y1 x2 y2

left right center length angle

l θx y x y x y

Line State Vector
x1 y1 x2 y2

left right center length angle

l θx y x y

diff.

x y

x y

Attach

Follow
Mouse X

Follow
Mouse Y

GoTowards
0

GoTowards
0

GoTowards
3

Figure 1.4: Objects are manipulated by attaching controllers to their connectors. A controller
specifies how the value of a connector should be changing. Controllers can be plugged into
any connector. This diagram represents a model with two line segments that are attached. One
segment has its length constrained, while the other is being dragged.

1.3.3 Control of Graphical Objects

Since the attributes are the only view of an object that the programmer is given, it
follows that these attributes must also serve as the handles by which the object is con-
trolled. The vision of the differential approach is that any attribute output should be
able to serve as a mechanism to control the object, and that these controls should be
able to be freely applied as needed in any desired combination. Thus, any output should
also be able to serve as an input.

Our notion of using an output as an input can be best discussed by introducing
another kind of special object, thecontroller. A controller is a simple object that plugs
into a connector and specifies what behavior the outside world desires from it. With
this final abstraction, we are led to draw schematics such as Figure 1.4.

With the abstractions in place, we can now examine Figure 1.4 to see the mathemat-
ical constraint problem. We have specified the outputs of the functions that compute



1.3. AN APPROACH TO GRAPHICAL INTERACTION 19

the attributes being used as controls, and must determine the inputs to these functions
(the value of the state vector) to achieve the desired values.

As discussed in Section 1.2, we cannot solve this constraint problem directly. In-
stead, we will solve it differentially. This means that rather than specifying desired
values for attributes, controllers specify how they should be changing over time. A
controller specifies a rate of change for the attribute it is connected to.

It is important to notice that the controllers cannot instantaneously affect the values
of the connectors they control, nor the state variables of the objects. Instead, they
specify how those connectors are changing, and over time, those changes will take
effect. This implies that there is a continuous flow of time over which the controllers
can act. At discrete instants, the set of active controllers may be altered, but values
cannot be changed.

What a controller can do is quite limited: it can simply specify the desired rate of
change of an attribute. The diversity of interaction techniques comes not from diver-
sity in the types of controllers, but rather, from the way they are applied. Interesting
interaction techniques result from:

� attaching controllers to interesting attributes;

� connecting controllers at interesting times;

� using controllers in interesting combinations.

Interaction techniques are defined by controlling connectors over time. For exam-
ple, to drag a point, the connector that computes the point’s position is connected to a
controller when the mouse button is pressed to initiate the drag, and the controller is re-
moved when the mouse button is released. Similarly, a mechanical connection between
two points is created by using an object which computes the displacement between two
points and creating a controller which drives the displacement to zero.

The differential approach provides a basic set of abstractions from which interfaces
and interaction techniques can be built. The ability to wire together attributes and attach
controllers to them provides machinery that can be applied in a wide variety of manners.

One interface style which is enabled by the differential approach is to provide the
abstractions directly to the user, permitting them to mix and match controls as needed.
For example, in the lamp demonstration, the user would be permitted to grab and drag
many points involving the lamp, including the light’s target, the bulb, and the corners
of the base. Attributes which are not positional, such as joint angles or bulb brightness,
might be connected to sliders. The user could configure the lamp by manipulating any
of these controls, or by constraining their values. Controls are mixed-and-matched
by manipulating or locking their values. This interface style is similar to a traditional
constraint-based interface. Many of the issues which make constraint-based interfaces
difficult to design must be addressed, such as how to present the palette of options to
the user effectively.



20 CHAPTER 1. INTRODUCTION

Another way that the differential abstractions may be employed is to build interac-
tion techniques which are more similar to the traditional direct manipulation interfaces.
An example is the 3D translation widget discussed in Section 8.3.6. To the user, the
translation handles appear as they do in other systems which provide them. However,
this interaction technique can be concisely described by defining sets of controllers
during dragging. While the differential approach is merely used to recreate an existing
technique in such cases, it does have some interesting benefits. The differential ap-
proach addresses the difficult question of how to define such interesting behaviors in a
way that is parameter independent, and easy to generalize to other controllers.

1.3.4 Impact on Application Architecture

Just as the differential approach frees the user from worrying about the object repre-
sentations, it can also hide such parameterizations from the programmers of graphi-
cal applications, helping to foster encapsulation. Objects merely expose mathematical
functional outputs for attributes that other pieces of the system may be interested in.
The program manipulates the object by placing constraints and controls on these ports,
and the differential solving mechanism takes care of adjusting the parameters accord-
ingly.

The solving mechanism needs very little information about the functions that are
being constrained and controlled. This means that objects need not expose much infor-
mation about the functions they provide. It also simplifies the composition of functions
from pieces, such as object outputs. This allows creation of a utility which permits
functions to be defined dynamically, for example in response to user actions. The core
functionality of the differential approach, the ability to define functions and place con-
straints and controls on them, can be built in a general purpose manner.

The general protocol for connecting the outputs of objects permits the creation of
general purpose objects, constraints, and interaction techniques. Objects can provide
mathematical ports without regard for what will “plug-in” to these ports. Constraints
and interaction techniques can be defined in terms of types of outputs, without regard for
the objects that are being connected to. For example, we define graphical objects that
produce outputs that are the positions of points, and define constraints and interaction
techniques in terms of point position outputs.

1.4 Thesis Roadmap

This thesis introduces the differential approach, presents techniques to realize it, and
provides examples to illustrate its power and viability. Following this introduction, the
thesis proceeds to review some relevant related work.

Chapter 3 introduces the basic set of mathematical techniques required to realize



1.4. THESIS ROADMAP 21

the differential approach. The methods treat manipulation as equation solving. This
problem is handled differentially to make it feasible to solve. The fundamental com-
putation is solving a constrained optimization problem to compute how the parameters
of objects are changing given the rates of change of the controls. Basic methods for
solving these constrained optimization problems are developed and extended to handle
under- and over- constrained cases. The chapter also considers how to use the computed
rates of change to actually create the motion, a problem of solving ordinary differential
equations from initial values. The chapter concludes with a simple example, worked
through in detail.

In order to use numerical techniques in an interactive system, there are two central
challenges that must be faced. The computations must be made to go fast enough, and
the computations must be defined dynamically in response to the users actions. These
issues are considered in Chapter 4 and Chapter 5 respectively. Chapter 4 considers
methods to achieve the needed performance in such solving. After analyzing the com-
putational bottlenecks of the approach, a variety of methods are presented to enhance
performance. One key element is exploiting the inherent sparsity of systems of equa-
tions to be solved. Other techniques include solving smaller problems while still giving
the user the illusion that the system is solving a larger problem, and trading unneeded
accuracy for speed.

Chapter 5 considers the task of dynamically defining functions in a way that they can
be rapidly evaluated with their derivatives. A tool called Snap-Together Mathematics
that allows functions to be built dynamically from smaller pieces is presented. Snap-
Together Mathematics is an important element of the differential approach because
it provides the software structure for dynamically mixing and matching controls, and
provides a mechanism for encapsulating the mathematics of the approach.

With the basic machinery in place, Chapter 6 considers how the tools are applied
to create interaction techniques. It defines the set of abstractions provided to inter-
face designers by the approach, and describes how the differential notion of time is
different than what is commonly used in interactive-systems programming. The chap-
ter provides some basic examples of how the abstractions are employed, and provides
some extensions to the basic differential techniques to permit such things as inequality
constraints.

Chapter 7 discusses how the differential approach can be encapsulated into a graph-
ics toolkit. The Bramble toolkit was designed to aid in the development of graphical
editing applications with the differential approach. Various elements of the toolkit are
described, with an emphasis on how it supports the differential approach.

Chapter 8 describes interaction techniques built using the abstractions of the differ-
ential approach. It begins by discussing some basic strategies. It then provides concrete
examples of techniques to address various interaction tasks. In addition to several novel
interaction techniques, many previous techniques are recreated, in order to show how
the Differential Approach can be applied to these problems.



22 CHAPTER 1. INTRODUCTION

Chapter 9 presents some example applications built with the approach. The appli-
cations serve to demonstrate the viability of the approach and to give some idea of its
promise in constructing tools for users. Chapter 10 concludes the thesis by summariz-
ing the contributions, evaluating the various contents, and suggesting some directions
for future work.

1.5 The Thesis

It is the premise of this thesis that:

� The numerical and graphical performance of modern processors can be applied
to address issues in graphical manipulation.

� A differential approachto graphical interaction provides a systematic implemen-
tation of direct manipulation. This approach allows a system to provide users
with a broad class of interactive controls that can be freely combined, yet pre-
serves direct manipulation, so it does not suffer from the drawbacks of other
previous approaches.

� Mathematical techniques to realize the differential approach can be provided,
and that these techniques can be realized such that the issues of interactive sys-
tems are addressed. In particular, methods permit the computations to be defined
dynamically in response to user actions and to be performed sufficiently fast on
current generation hardware.

� The techniques of the differential approach can be encapsulated, providing a set
of abstractions with which to build interfaces as well as a general purpose imple-
mentation.

� The differential approach can have a positive impact on the way that interaction
techniques are developed and that interactive systems are constructed, by help-
ing separate manipulation from representation and by enabling general purpose
constraints and interaction techniques.

� The differential approach can lead to interesting new interaction techniques and
applications, but can also serve as a substrate for implementing existing popular
interaction techniques.

1.5.1 Contributions

The contributions of this thesis are detailed in the final chapter. Briefly and generally,
the contributions of this thesis are (in the order they will be presented in the thesis):



1.5. THE THESIS 23

� To introduce a systematic approach to graphical interaction based on the use of
numerical non-linear constraint techniques, which I call the differential approach.

� To present mathematical techniques for solving the particular constrained opti-
mization problems encountered in using the differential approach.

� To provide techniques to implement these mathematical techniques that address
the pragmatic needs of interactive systems.

� To provide a toolkit that encapsulates the differential approach, providing its fea-
tures to application developers while shielding them from the details of its im-
plementation.

� To provide new interaction techniques and examples to address problems faced
by users of interactive graphical applications, and to show how these techniques
fit in the context of graphical applications.

� To provide example applications demonstrating the viability of the approach.



24 CHAPTER 1. INTRODUCTION


