
Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2005)
K. Anjyo, P. Faloutsos (Editors)

Fast and accurate goal-directed motion synthesis for crowds

Mankyu Sung, Lucas Kovar and Michael Gleicher

Department of Computer Sciences
University of Wisconsin – Madison

Abstract
This paper presents a highly efficient motion synthesis algorithm that is well suited for animating large numbers
of characters. Given constraints that require characters to be in specific poses, positions, and orientations in
specified time intervals, our algorithm synthesizes motions thatexactlysatisfy these constraints while avoiding
inter-character collisions and collisions with the environment. We represent the space of possible actions with a
motion graph and use search algorithms to generate motion. To provide a good initial guess for the search, we
employ a fast path planner based on probabilistic roadmaps to navigate characters through complex environ-
ments. Also, unlike existing algorithms, our search process allows for smooth, continual adjustments to position,
orientation, and timing. This allows us both to satisfy constraints precisely and to generate motion much faster
than would otherwise be possible.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Animation

1. Introduction

This paper presents a highly efficient algorithm for synthe-
sizing realistic goal-directed motion for large numbers of
characters. We focus on the important problem of charac-
ter navigation, and introduce an algorithm for creating mo-
tions that are collision-free and that precisely satisfy con-
straints on duration, position, orientation, and body pose.
For example, we might require multiple characters to meet
(i.e., face each other) at a specified position and time, or we
might require a collection of characters to navigate through
a building into a theater and then sit down in an array of
seats. Our algorithm is capable of animating entire groups
of characters at better than real-time rates, i.e., the motion
for the group takes less time to generate than it takes to play.
Given a higher-level control mechanism for directing behav-
ior [HM95, HFV00, FBT99, MT01, BC97, SCG04], our al-
gorithm is well suited as a back end for efficiently generat-
ing detailed motion for each individual character that meets
specifications on where and when desired actions should oc-
cur.

To generate high-quality motion with low computational
cost, we represent the space of possible motions with a
motion graph generated through the method of Gleicher et

al. [GSKJ03]. This motion graph is a directed graph where
each edge contains a clip of motion and nodes correspond
to character poses that are shared by the end of all incoming
clips and the beginning of all outgoing clips (Figure1). By
construction, any clip entering a node can be seamlessly con-
nected to any clip leaving that node simply by concatenating
them. This makes synthesis highly efficient, and it reduces
the problem of creating a specific motion to finding an ap-
propriate sequence of edges on the motion graph.

To create motions that avoid collisions and satisfy user-
defined constraints, we proceed in two steps. We first
use a fast path planner based on probabilistic roadmaps
(PRMs) [KL94] to navigate through complicated environ-
ments and produce motions that approximately satisfy the
constraints. The result is then refined through a randomized
search algorithm that yields a motion which exactly con-
forms to the constraints. Many existing graph-based syn-
thesis techniques also use search algorithms to generate
motions that satisfy constraints [AF02, AFO03, GSKJ03,
HGP04, KGP02, LCR∗02, LL04]. However, because new
motions can only consist of static clips from a fixed set, in
general this approach cannot satisfy constraints exactly. For
example, if a graph only contains clips where a character
turns in 30 degree increments, then that character can never
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end up facing a direction that is not a multiple of 30 de-
grees. This can lead to fruitless, time-consuming searches
for motions that cannot exist. Rather than limiting synthesis
to attaching fixed clips, we modify the search to allow for
a continual, gradual adjustment of the character’s position,
orientation, and speed in the synthesized motion. This has
two important advantages:

1. The search algorithm has greater flexibility to accurately
satisfy constraints.

2. Motions can be constructed more quickly because the
search need not computeoptimalmotions, but rather mo-
tions that are “close enough”.

To provide guarantees on motion quality, we restrict the
amount that a synthesized motion can be adjusted. The ad-
justment tolerance provides a natural mechanism for striking
a balance between efficient synthesis and guarantees on mo-
tion quality. However, in practice, adjustments that are small
enough to be difficult to discern are sufficient to make con-
straint satisfaction reliable and efficient.

The remainder of this paper begins with a review of re-
lated work in Section2, then describes our synthesis algo-
rithm in detail in Section3 and presents results in Section4,
and concludes with a brief discussion in Section5.

2. Related Work

Most previous work in graph-based motion synthesis has
created new motions by connecting existing clips from a
database with simple interpolation or displacement mapping
methods [AF02,AFO03,GSKJ03,HGP04,KGP02,LCR∗02,
LL04]. Because these methods create new motions strictly
by attaching existing clips, in general constraints on the gen-
erated motion are not exactly satisfied, and finding a solution
that minimizes deviation from the constraints can be time
consuming. In contrast, our work incorporates adjustments
to a character’s position, orientation, and speed directly into
the search process. This allows the search to terminate when-
ever a sufficiently close (but perhaps suboptimal) motion is
found, and it allows position, orientation, and timing con-
straints to be satisfied precisely rather rather than approxi-
mately. The most similar existing algorithm to our own is
that of Choi et al. [CLS03]. Given a motion graph containing
locomotion data, they randomly sampled footprint configu-
rations in the environment (i.e., foot positions and orienta-
tions on the ground) and identified pairs of footprints which,
within a tolerance, matched the configuration of footprints
within at least one clip in the motion graph. The result was
a probabilistic roadmap that associated short paths in the en-
vironment directly with motion clips. Character paths were
computed by using Dijkstra’s algorithm to find an appropri-
ate sequence of footprints in the PRM, and motion was gen-
erated by attaching and modifying the corresponding mo-
tion clips so as to pass through the footprints. Our algorithm
instead uses a PRM to obtain approximate motions which

are then refined through a fast randomized search algorithm.
This allows us to only add in the adjustments necessary to
satisfy the user’s constraints, rather than requiring synthe-
sized motions to pass through a relatively dense set of sam-
pled footprints.

Procedural motion synthesis is an alternative to graph-
based synthesis that can also be well-suited for real-time ap-
plications. In particular, several methods have been devel-
oped for procedurally generating controllable walking mo-
tion [BC89, BMTT90, SM01, BUT04]. These methods can
create motions that exactly follow effectively arbitrary tra-
jectories, eliminating the need for additional search mecha-
nisms. However, it is quite difficult to reproduce the realism
of motion capture data with procedural methods. Also, exist-
ing procedural algorithms can only produce neutral walking
motions, whereas graph-based methods trivially extend to
more stylized and/or unusual forms of locomotion [KGP02].

A second real-time alternative to graph-based synthesis is
motion blending [GR96,PSS02,PLS03], which (as with pro-
cedural synthesis) allows continuous control over character
trajectories. However, blending-based models are more re-
stricted since individual clips must be blendable, whereas
graph-based models only require clips to be similar at iso-
lated points. Moreover, blending-based synthesis incurs ad-
ditional computational overhead since each generated char-
acter pose must be formed by combining example poses. Hy-
brid graph/blending methods [RCB98,KPS03,PSS04] share
similar concerns.

Crowd animation has been the subject of many previous
research efforts. Much of this work has focused on behavior
modelling and has used only abstract character representa-
tions such as point particles [HFV00,HM95,BC97]. Other
work [MT01, UT02, FBT99] has used more explicit repre-
sentations of human figures, but has focused on high-level
control and hence has not been concerned with construct-
ing detailed movement for individual characters. Our work,
in contrast, is concerned with constructing detailed individ-
ual motions for groups of characters given constraints on
these motions. This paper thus complements these previous
efforts by providing a back end for synthesizing motions that
meet constraints issued by a higher-level behavior modelling
module. Other research efforts have, as with our work, used
motion graphs to model detailed character motion [SCG04].
However, as noted earlier, with existing graph-based synthe-
sis algorithms constraints cannot be exactly satisfied. This
paper provides a related but alternative synthesis procedure
that uses smooth, continuous motion adjustments to provide
exact and efficient character control.

Our algorithm draws upon tools that are well established
in the existing literature. PRMs have been used extensively
in previous work to perform path planning for character
navigation [PLS03,CLS03]; alternative techniques, such as
rapidly-exploring random trees [LK00,LK99,KL00], could
also be used. Our randomized search algorithm is related to
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the ones suggested by Shödl and Essa [SE02] and Arikan
and Forsyth [AF02]. Finally, our method for adjusting mo-
tions to better satisfy constraints is a version of displacement
mapping [BW95, WP95], and it is similar to the algorithm
used by Reitsma and Pollard to force motion paths to start
and end on predefined grid cell locations [RP04]. This paper
combines these techniques into a strategy for efficiently and
controllably animating large numbers of characters.

3. Synthesizing Motion

3.1. Overview

Given a group of characters and a set of constraints on each
character’s configuration, our goal is to synthesize motions
for the individual characters such that all constraints are sat-
isfied and no collisions occur. Each constraint can specify a
character pose, a positionp and orientationθ for this pose,
and a time interval[ta, tb] in which this configuration must
be obtained (possiblyta = tb). The time constraint can either
be absolute (i.e., the character must arrive at a spot 3 seconds
from now) or relative to another character’s motion (i.e., the
character must arrive at a spot within 1s another character).
Not all of these components need to be specified — for ex-
ample, one might require a character to move to a particular
spot without specifying a pose, orientation, or time interval.

To avoid inter-character collisions, individual characters
are processed sequentially, with characters whose motions
have already been planned treated as moving obstacles. This
limits the size of the search space and as a result is consider-
ably more efficient and scalable than processing all charac-
ters simultaneously. While in principle sequential processing
may result in artificially unsatisfiable constraints, typically
there are many possible motions that satisfy a given set of
constraints, and we have found that in practice sequential
processing does not prevent sophisticated group animations
from being generated. The specific processing order is arbi-
trary except insofar as is necessary to satisfy timing relation-
ships — for example, if character A must arrive somewhere
1s after character B, then B is processed first. We assume
that the timing constraints have no circular dependencies, so
a feasible ordering always exists.

We represent the actions available to a character with a
motion graph (Figure1). Each edge corresponds to a clip
of motion, and any sequence of connected edges yields a
seamless motion composed of the corresponding sequence
of clips. Every pose that the character can attain is contained
within the motion graph, and so we require each constraint
pose to correspond with the pose at some nodeN . Tradi-
tional synthesis methods based on motion graphs [AF02,
KGP02,LCR∗02] are inherently discrete in that they search
for a sequence of available clips that meets user-defined cri-
teria. As noted in Section1, this precludes constraints on
continuous properties (such as position, orientation, and du-
ration) from being exactly satisfied, and finding a clip se-
quence with minimal deviation can require an expensive

STEP LEFT FOOT

SIT

DOWN

SIT

PICK

UP

CARRY LEFT FOOT

PUT

DOWN

STAND UP

STEP RIGHT FOOT

CARRY RIGHT FOOT

Figure 1: An example motion graph. Edges are motion clips
and nodes indicate frames where clips have the same joint
orientations and velocities.

search. We instead allow the clips from the motion graph
to be continuously adjusted to alter a character’s position,
orientation, and speed. This strategy allows the constraints
defined above to be exactly satisfied, and it yields shorter
search times since a raw sequence of clips need only suffi-
ciently reduce constraint deviation, rather than minimize it.

To produce a motion that satisfies a sequence of config-
uration constraints, it is sufficient to consider the problem
of constructing segments of motion that start in a specified
configuration(Ns,θs,ps) and end in a specified configura-
tion (Ne,θe,pe) within a given time interval[ta, tb]. The full
constraint sequence can then be satisfied by iteratively gen-
erating motion that travels from the current configuration to
the next configuration. To satisfy the constraints at an itera-
tion, we use a fast approximate planner to construct motions
that navigate through the environment and then refine the re-
sult to produce a motion that exactly satisfies the constraints.
More specifically, the algorithm first constructs two “seed”
motions: aforward motionM f that starts at(Ns,θs,ps) and
ends near (but in general not exactly at)(Ne,θe,pe), and a
backwardmotionMb that ends precisely in(Ne,θe,pe) and
starts approximately at(Ns,θs,ps). A randomized search
procedure then adjusts these motions such that 1) they can
be connected with adjustments to position, orientation, and
timing that are below a user-defined threshold and 2) the re-
sulting motion satisfies all constraints. This process is illus-
trated in Figure2. The remainder of this section provides de-
tails on howM f andMb are created (Section3.2) and then
how they are adjusted and connected (Section3.3).

3.2. Creating the Seed Motions

For simplicity, we only discuss the construction ofM f ; Mb
is handled identically, except time flows in reverse. As in
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Figure 2: An individual character’s motion is generated by
computing motions that satisfy, respectively, constraints on
the initial and final configuration (steps 1 and 2) and then
iteratively adjusting these motions so they can be seamlessly
connected while satisfying all constraints (steps 3 – 5).

previous work [PLS03], we start by building a probabilistic
roadmap (Figure3) to aid in navigating through the environ-
ment. Nodes in the roadmap are created by randomly sam-
pling positions on the ground that are outside of obstacles,
and edges are created between nodes that are within a thresh-
old distance of each other and are mutually visible (i.e., the
connecting line segment does not intersect any obstacles).
Given desired starting and ending configurations(Ps,θs,ps)
and(Pe,θe,pe), nodes are added to the road map atps and
pe and edges are added to all visible neighbors. A shortest
path fromps to pe is then found with Dijkstra’s algorithm,
resulting in a sequence of way pointsw1, . . . ,wn (Figure3).

Once a sequence of way points is determined, a fast

Probabilistic Roadmap Way points

Start

Finish

Figure 3: Left: An example probabilistic roadmap.Right: A
series of way points that connects a pair of positions.

greedy planner guides the character through successive way
points such that it travels from the initial configuration to-
ward the final configuration. This planner continues until a
local error measure does not decrease, and hence while it is
guaranteed to terminate, in general it will not produce op-
timal motion. This is acceptable because only a rough ini-
tial motion is needed for the randomized search, and a fast
approximate planner is preferable to a slower planner that
produces optimal (but still necessarily inexact) results.

The planner proceeds as follows. First, assume that the
current target way point iswi , with i < n. The planner iter-
atively selects the edge in the motion graph that brings the
character closest towi without incurring collisions with the
environment or higher-priority characters. This edge is re-
quired to be within the subgraph corresponding to the char-
acter’s current locomotion state — for example, in Figure1,
a character who has just picked up a box would be required
to use one of the “carry” edges. This subgraph is determined
from annotations associated with the originally data, which
may be added semi-automatically [AFO03] as a preprocess.
Collisions are detected by placing minimum bounding cylin-
ders around each character. Because the set of all possible
character poses is encoded in the motion graph, these bound-
ing cylinders can be precomputed for greater efficiency. If
all possible edges increase the distance towi , thenwi is set
to the current way point and the planner attempts instead to
reachwi+1.

When travelling to the final way pointwn = pe, the plan-
ner must also account for possible constraints on target ori-
entationθe and ending posePe. The latter constraint reduces
to requiring the motion to terminate in the nodeNPe that cor-
responds toPe. A similar greedy algorithm is used, except 1)
the next edge is selected so as to minimize a weighted sum
of the position and orientation errors, rather than just posi-
tion errors, and 2) whenever the current motion terminates
at NPe, it is stored in a temporary variableMbest. When-
ever the error stops decreasing, the currentMbest is returned.
If no value forMbest exists (because no motion terminating
in NPe has been encountered), then instead Dijkstra’s algo-
rithm is used to find the path in the motion graph toNPe

containing the fewest edges. If multiple shortest paths exist,
then ties are broken by greedily selecting edges that mini-
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mize position/orientation error. Finally, if the orientation is
unconstrained, then only position error is considered, and if
the final pose is unconstrained, then the planner simply adds
edges until the position/orientation error stops decreasing.

Note that the planner does not consider time constraints.
These constraints are addressed in the next stage of the syn-
thesis process.

3.3. Adjusting and Merging the Seed Motions

The seed motionsM f andMb satisfy, respectively, the con-
straints on the character’s initial and final configuration. Our
goal is to merge them into a single motion that satisfies both
of these configuration constraints and, if specified, has a du-
ration within the desired interval[ta, tb]. We start by finding
frames inM f andMb where the character is in the same pose
and where the position and orientation of this pose are sim-
ilar. Displacement maps are then added so the position and
orientation are identical. Finally, the adjusted motions are
spliced together at these frames to form a seamless new mo-
tion that begins and ends in the desired configurations, and
the speed of this motion is altered to conform to the time
constraints. While this algorithm guarantees that the con-
straints are satisfied, the result may look unrealistic if overly
large changes are made. Our strategy is to use a randomized
search algorithm to perturbM f andMb such that they are
sufficiently similar at a pair frames and of sufficient duration
that the necessary adjustments are below a user-controllable
tolerance. Figure2 graphically depicts this process. The re-
mainder of this section explains our algorithm in greater de-
tail.

Let M f andMb be composed, respectively, ofnf andnb

clips from the motion graph. Theith clip of M f is repre-
sented by a tuple{t f ,i ,I f ,i ,p f ,i ,θ f ,i} containing the clip’s
durationt f ,i , the indexI f ,i of its starting node in the mo-
tion graph, and the positionp f ,i and orientationθ f ,i of the

pose associated with this node. Thejth clip of Mb is rep-
resented similarly. We consider joiningM f andMb at any
point where they share a node from the motion graph. Let the
subsection of a motionM consisting of therth

1 clip through
therth

2 clip beM [r1, r2], and consider the motion formed by
concatenatingMb[ j,nb] onto the end ofM f [1, i]. We define
the costCM f ,Mb(i, j) of creating this motion as a sum of posi-
tion, orientation, and time errors, normalized by the motion’s
duration:

CM f ,Mb(i, j) =
1

N(i, j)
(Ep(i, j)+α1Eθ(i, j)+α2Et(i, j)) ,

(1)
where

• N(i, j) is the total duration ofM f [1, i] andMb[ j,nb], com-
puted as∑i

k=1 t f ,k +∑nb
k= j tb,k.

• Ep(i, j) is the distance between the end ofM f [1, i] and the
start ofMb[ j,nb], computed as‖p f ,i+1−pb, j‖.

• Eθ(i, j) is the orientation difference, computed as
|θ f ,i+1− θb, j |, with numerical values assigned toθ f ,i+1
andθb, j such that this error is no greater than180◦.

• Et(i, j) is the time error. If the constraint time interval is
[ta, tb], thenEt(i, j) = 0 if N(i, j) ∈ [ta, tb] and otherwise
Et(i, j) = min(|N(i, j)− ta|, |N(i, j)− tb|).

• α1 andα2 are scaling factors to relate the different error
measures. In our implementation,1cm≈ 1◦ ≈ 1

30s.

The costC′
(
M f ,Mb

)
of connectingM f andMb is defined

as the minimum value ofCM f ,Mb(i, j) over all indices where
the terminating node ofM f [1, i] is the same as the starting
node ofMb[ j,nb].

C′
(
M f ,Mb

)
= min

i, j:I f ,i+1=Ib, j

CM f ,Mb(i, j) (2)

If a pose constraint exists on the start and/or end of the de-
sired motion (as opposed to, for example, just a position con-
straint), thenM f andMb will always share at least one node.
Otherwise, it is possible for them to share no nodes, in which
caseC′

(
M f ,Mb

)
=∞.

Intuitively, C′(M f ,Mb) represents the amount of per-
frame adjustment needed to seamlessly spliceM f andMb
and satisfy the time constraints. To preserve the realism of
the original motion data, we require this to be below a user-
defined thresholdε (optionally, one might also limit the to-
tal accumulated adjustment, but in our experience it is suffi-
cient to consider the per-frame adjustmentC′(M f ,Mb); see
Section4). If C′(M f ,Mb) > ε, thenM f and Mb are per-
turbed through a randomized search algorithm to produce a
new pair of motions with a below-threshold cost. The search
proceeds by generatingnm perturbed motion pairs, check-
ing as each pair is generated whether the individual motions
are collision-free and whether the splicing cost (Equation2)
is below ε. If so, the search returns this motion pair. Oth-
erwise, thekm lowest-cost pairs are retained and the search
continues. If the search fails to find a below-threshold mo-
tion pair after a user-defined maximum number of iterations
Nmax, then a warning is issued and the current lowest cost
pair is returned.

During the search, perturbed motion pairs are generated
as follows. First, one of thekm motion pairs from the pre-
vious search iteration is selected at random, unless it is the
first iteration, in which case only the original pair(M f ,Mb)
is available. Next, one of the two motions in this pair is se-
lected. A clipC is chosen at random from this motion and
replaced with a new clipC′. In order to ensure thatC′ joins
seamlessly with the rest of the motion, it is required to orig-
inate and terminate at the same nodes in the motion graph as
C (this also means that the perturbed motion begins and ends
in the same poses, so pose constraints automatically remain
satisfied). Because the motion graph is constructed so as to
have many more edges than nodes, in general there will be
many possible replacement clips. Let the change in the char-
acter’s position and orientation inC be δpC andδθC, and
let C’s duration beδtC. The actual replacement clipC′ is
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Figure 4: M ′
f and M ′

b are joined at the nodes calculated
in Equation2 by adding displacements that compensate for
differences in position and orientation, and the result is then
resampled to meet the time constraints.

chosen with a probability inversely proportional to its “dis-
tance” fromC, in terms of the relative change in position,
orientation, and time:

‖∆pC−∆pC′‖+α1|∆θC−∆θC′ |+α2|∆tC−∆tC′ |

Once suitably perturbed forward and backward motions
M ′

f andM ′
b are found, they are joined at the nodes calcu-

lated in Equation2; see Figure4. Let M ′
f [1, i] andM ′

b[ j,n
′
b]

be the motion segments that will be joined, and let the differ-
ence in the final position and orientation ofM ′

f [1, i] and the
initial position and orientation ofM ′

b[ j,n
′
b] be, respectively,

δp andδθ. Also, let Nf be the duration ofM ′
f [1, i], Nb be

the duration ofM ′
b[ j,n

′
b], andδt be the smallest amount that

must be added toNf +Nb such that(Nf +Nb +δt) is inside

the constraint time interval[ta, tb]. Lastly, defineλ1 = Nf

Nf +Nb

andλ2 = Nb
Nf +Nb

. The final motion is formed as follows:

1. Thekth frame ofM ′
f [1, i] has its position and orientation

adjusted by k−1
Nf−1λ1δp and k−1

Nf−1λ1δθ.

2. Thekth frame ofM ′
b[ j,n

′
b] has its position and orientation

adjusted by− k−1
Nb−1λ2δp and− k−1

Nb−1λ2δθ.

3. The adjustedM ′
f [1, i] andM ′

b[ j,n
′
b] are concatenated.

4. The result is resampled so its duration is(Nf +Nb +δt).

By construction, the result is continuous and satisfies all con-
straints. A final test for collisions is made on this new mo-
tion and, if the test fails, then the motion is discarded and the
search algorithm continues from where it left off.

Figure 5: Experiment 1:20 characters (grey) are required
to arrive simultaneously in specified configurations (black).

Figure 6: Experiment 2:70 characters are required to ar-
rive at a set of positions in which they spell out SCA.

4. Results

We tested our algorithm using the motion graph shown in
Figure 1, which allowed characters to walk in various di-
rections; sit down into and get up from a chair; and pick
up a box, carry it in various directions, and put it down.
Altogether, the motion graph contained 50s of motion data
sampled at30Hz. In our experiments, we setε = 2cm/s =
2◦/s = 1

15s/s, and the parameters for the search algorithm
(see Section3.3) werenm = 200, km = 30, andNmax= 1000;
for these values the search algorithm was always able to find
a motion pair that was within the adjustment tolerance and
avoided collisions. We generated several animations that re-
quired a large number of characters to perform certain tasks
at specified positions, locations, and times; see Figures5
through9 and Table1 for a summary of results.

Figure 7: Experiment 3:The character in black must start
at the lower right, navigate through a set of rooms filled with
obstacles and other characters, and lift a box in the room at
the upper right. The location of the box is circled.
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Figure 8: Experiment 4: 40 characters start in a theater
lobby (top) and take their seats (bottom). Dark sitting char-
acters represent target poses, and light sitting characters are
agents that are already sitting down (i.e., obstacles).

Figure 9: Experiment 5: 20 characters, initially sitting,
must each pick up a designated box in the second room,
place it in a designated position, and then return to their
original seat. The top image shows initial positions (grey)
and constraints poses (black). The lower image shows char-
acters moving towards placement goals, with constraint
poses again shown in black.

In order to test our method on varying numbers of char-
acters and densities of characters, for Experiment 6 we cre-
ated a contrived scenario where a number of characters are
placed on a uniform grid and are given target positions on a
translation of this grid. The target for each character is cho-
sen such that each character’s path is of approximately the
same length, but that the characters must interact in order
to meet their goals, as illustrated in Figure10. This experi-
ment allowed us to test examples with large numbers of char-
acters. When the spacing between characters is sufficiently
large that collision avoidance does not unduly restrict move-
ment, our algorithm can synthesize the motions for hundreds
of characters faster than real time.

The speed of our algorithm depends upon the complexity
of the scenario that is to be animated. In particular, higher-

Example # Agents Duration Synthesis Time
Average Total

1 20 14.8s 0.21s 4.2s

2 70 21.3s 0.18s 12.6s

3 1 83.3s 0.01s 0.01s

4 40 30.2s 0.35s 14.0s

5 20 23.6s 0.15s 3.0s

6a 300 25.3s 0.034s 0.86s

6b 500 25.6s 0.035s 0.90s

Table 1: Information relating to the animations shown from
Figure 5 to Figure 9. The second column states the total
number of characters that were animated, the third column
states the average duration of each character’s motion, the
fourth column states the average amount of time needed to
synthesize the motion for a character, and the final column
states the total amount of time needed to synthesize all mo-
tion for all characters. All experiments were performed on
a PC with a 3.0Ghz processor and 1GB main memory. For
Experiment 6 (described below) we report results for repre-
sentative trials with (6a) 300 characters and (6b) 500 char-
acters.

density groups of characters (or, equivalently, more cluttered
environments) require additional time in order to avoid colli-
sion, both because collision detection is more time consum-
ing and because the search will typically explore a greater
number of paths before finding one that avoids collisions. To
illustrate this, for Experiment 6 we created a series of sce-
narios wherein motion was synthesized for a group of300
characters with different inter-characters spacings. Figure11
shows the average amount of time needed to plan the motion
for an individual character as a function of the grid spac-
ing. At smaller grid spacings, the average synthesis time in-
creases because more paths are rejected during the random
search due to collisions.

Different values ofε provide different tradeoffs between
motion quality and synthesis speed — larger values permit
greater deviation from the raw graph-generated motions, but
also allow the search to terminate more quickly because a
larger range of motion pairs will be able to satisfy the con-
straints. Figure12 shows the time needed to synthesize the
motion for all70 characters in scenario2 at different values
of ε; the shape of this graph was similar in the other sce-
narios. At very small tolerances, relatively few motions can
be made to satisfy the constraints, but at higher tolerances
a wider variety exists and the search hence can terminate
sooner. However, eventually the speed benefit of increasing
the tolerance decreases, because sufficient flexibility already
exists to quickly find motions that satisfy the constraints,
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Figure 10: The scenario tested in Experiment 6. Characters
begin in grid formation (left) and are each assigned a target
on a translated version of this grid (right). Targets are cho-
sen to keep each character’s path approximately the same
length. Specifically, if a character begins at position(i, j) on
the original grid, then it will be assigned a randomly per-
turbed position on the target grid. For example, the charac-
ter indicated by the dark grey triangle is assigned one of the
target positions indicated by a dark grey square.
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Figure 11: The average time per character needed to gener-
ate motion for300characters in the scenario of Experiment
6, as a function of the spacing between characters.

and the synthesis time becomes dominated by other concerns
like collision detection.

We limit the amount of per-frame adjustment toε based on
the intuition that longer motions can tolerate larger overall
adjustments if they are worked in gradually. However, if the
total accumulated adjustment exceeds a certain amount, this
approach breaks down. For example, a180◦ change in ori-
entation will yield unrealistic results now matter how gradu-
ally it is introduced, because eventually the character will
face opposite the direction of travel. This can trivially be
avoided by placing a second limitε′ on the total allowable
adjustment. However, in our experiments we found this to be
unnecessary, because the amount that motions needed to be
altered to meet the constraints was effectively independent
of the duration of the motions.
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Figure 12: The average time per character needed to gen-
erate motion for70 characters in a typical scenario, as a
function of the allowable amount of motion adjustmentε.

5. Discussion

This paper has presented an efficient algorithm for generat-
ing realistic goal-directed motion for large numbers of char-
acters. Our algorithm creates collision-free motion that pre-
cisely satisfies constraints on pose, position, orientation, and
duration. A fast PRM-based path planner is used to construct
rough motions that navigate through complex environments,
and this is then refined through a randomized search over a
motion graph that explicitly incorporates continual, gradual
adjustments to a character’s position, orientation, and speed.
The flexibility provided by these adjustments allows us both
to precisely satisfy constraints and to reduce the time needed
to construct desired motions.

We have focused on the problem of character navigation,
where the main technical challenge is to guide a character
through an environment such that it ends up in a particu-
lar configuration. For stationary tasks, such as manipulat-
ing objects or gesticulating during conversation, we assume
that a corresponding clip or known sequence of clips already
exists. Also, to be able to reliably satisfy constraints with-
out destroying motion quality, our algorithm relies on con-
straints being sufficiently sparse that the connecting motions
can be meaningfully adjusted. For example, if the character
were constrained to be in a specific pose every second, then
it is likely that satisfying all of these constraints would re-
quire a very large value forε, which would in turn probably
result in unrealistic motion.

Our motion graph search algorithm does not generate op-
timal motion in the sense of minimizing deviation from the
constraints. Instead, it finds motions that can be made to
exactly satisfy constraints by being adjusted within a user-
specified tolerance, and all motions within this tolerance are
considered equally suitable. In principle, this involves trad-
ing off motion quality for computational speed, but in prac-
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tice even a modest tolerance can significantly reduce search-
ing times without appreciably altering motion quality. Our
search algorithm also assumes that the constraints fully spec-
ify what a motion should do, and that any motion that satis-
fies the constraints is acceptable. This can sometimes lead
to artifacts where characters, despite having smooth motion,
exhibit unusual behavior. For example, a character might not
take the most direct path towards a route, and indeed will in-
tentionally wander if the time constraints require a lengthy
motion. This is a common limitation that is shared by ex-
isting graph-based synthesis algorithms which rely on con-
strained minimization [AF02,KGP02,LCR∗02] — if the ob-
jective function and constraints does not completely describe
the desired properties of a motion, then undesirable behavior
is inevitable. For scenes with many characters, however, we
have found this to be less of a problem because a viewer’s
attention typically is not limited to a single individual, and
hence longer-term behavioral oddities are less noticeable.

The constraints used by our synthesis algorithm are pro-
duced by an external process, and it is the responsibility of
this process to ensure that these constraints are achievable.
For example, it should not require two characters to be at the
exact same place at the same instant of time.

The methods of this paper are offline and hence not di-
rectly applicable to applications like games. However, for
more interactive assessment of the results the search can be
broken into stages, first generating motion that satisfies the
initial configuration/time constraint of each character, then
the next constraint for each character, and so on. A more gen-
eral extension to online applications is left for future work.
Also, a straightforward extension of this work is to employ
smooth, continual motion adjustments for collision avoid-
ance, in addition to constraint satisfaction.
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