
∈

∑

q

q

q

q

x,y R

R → R

−

2

0 1

2 2

2

0 1
2

Υ

Υ

() = (() (Υ ())())

L

I I ,

R.

.

L

e I x, y I x, y .

gleicher@cs.cmu.edu

ABSTRACT

1. Introduction

2. SSD Trackers

difference decompositon,

piecewise-projective

Projective Registration with Difference Decomposition

Michael Gleicher
Apple Research Laboratories
1 Infinite Loop M/S 301-3J

Cupertino, CA 95014

Current methods for registering image regions perform well
for simple transformations or the large image regions. In
this paper, we present a new method that is better able to
handle small image regions as they deform with non-linear
transformations. We introduce a
novel approach to solving the registration problem. The
method is a generalization of previous methods and can bet-
ter handle non-linear transforms. Although the methods are
general, we focus on projective transformations and intro-
duce transformations for modeling the
motions of non-planar objects. We conclude with examples
from our prototype implementation.

Whether under the guise of tracking or registration, deter-
mining the transformation between regions of two images
is an important problem in computer vision. In addition to
vision applications, such as recognition and surveillance, it
has a number of applications for computer graphics, such
as image mosaicing, model-based compression, and video
effects. In such applications an accurate transformation is
required; the use of simplified models or inaccurate para-
meters may lead to undesirable visual artifacts.

Research in computer vision has provided methods for
region registration. State of the art methods apply numerical
optimization to minimize the error between the transformed
target and reference images. Such an approach is called a
sum-of-squared-difference approach (SSD) because an
norm is typically used to measure the error. Variants of this
method have been shown to track simple (affine or transla-
tional) deformations quickly [5] and more complex projec-
tive [13] [8] or piecewise bilinear [14] transformations over
large image regions. SSD methods replace the image regis-
tration problem with non-linear minimization, allowing the
use of standard algorithms.

In this paper, we present a tracker that is capable of fol-
lowing small image regions as they deform with complex

transformations. Because using a black box solver provides
little opportunity to employ our problem specific insights,
we derive an optimzation-based algorithm in the specific
context of image registration. This leads to a more general
derivation of the SSD algorithm. By exploiting the gener-
ality, we can create a method that better suits our demands.
While our methods are general, we focus on projective im-
age transformations since they have particularly useful ap-
plications. We also introduce the concept of a piecewise-
projective deformation that can better approximate cases
where a single projective patch cannot.

The rest of this paper is organized as follows. We first
review the existing SSD approaches. We then introduce our
“difference decomposition” method in Section 3. Section
4 discusses specific details for tracking projective defor-
mations, and introduces the piecewise projective transform.
We conclude by presenting experimental results.

Given a reference image and a target image the regis-
tration problem is to compute an image transformation
that transforms the target image such that it matches the
base image in a specified region In practice, we pick
a parameterized model and solve for the vector of para-
meters

Often, our primary interest is determining the geometric
transformation between the images. A geometric transfor-
mation is defined as a mapping between coor-
dinates. We typically include a transformation to account
for changes in intensity as well. The most commonly used
transformations are translation and affine deformation with
linear offset and scaling of intensity.

We typically do not search for an exact match. Rather,
we try to find the best possible match, typically with an
(sum-of-squares) norm. SSD minimizes

(1)

Solving this optimization problem for various motion

1

∑

q

q ∆q q

q

q

−

◦

−

−
·

R

{ }

.

x,y R

n

m

i

i

i

′ ′

′
′

′

∈

′

′

′

′

′

q

q

q q q q

q

q

∆q
∆q

b b

q
b q

b

b q

q

1 2 3

7 8

4 5 6

7 8

1

1 1

0 0 1 2

1 0

1

0 ∆ 1
2

0

∆ 1

1

1

0

1

1 1

2.1. Projective Transformations

3. A Difference Decomposition Approach

() =
+ +
+ + 1

() =
+ +
+ + 1

= Υ ()
=

∆

= + ∆ ∆

Υ = Υ Υ

∆

(∆) =
1
2

(() (Υ ())())

() =
Υ () () =1 2

= 8

∆
∆

∆

x x, y
q x q y q

q x q y
, y x, y

q x q y q

q x q y
.

. I
I I ,

I , D I I L

I I

.

,

e I x, y I x, y .

E I
I , e / E E.

. n
n

. . .

.
,

I
I

I

, I I ,

models has been a mainstay of computer vision. Histori-
cally brute force search was used [1]. This was inefficient
and impractical for higher dimensional parameter spaces.
More recent methods treat Equation 1 as a non-linear op-
timization problem. This approach was introduced by [7]
who used a Newton-type iteration. Many authors have sub-
sequently improved on this work. For example, [11] tracked
affine deformations and [5] reformulated the tracker for
real-time performance and reduced sensitivity to changes
in illumination. [12] connected images texture, numeri-
cal issues, and tracker performance. A more sophisticated
(Levenberg-Marquardt) solver was used to track more com-
plex transforms including multi-bilinear [14] and projective
[13] patches.

Unfortunately, casting the problem as non-linear mini-
mization trades one hard problem for another. There is no
guaranteed, direct method. Although the basic methods are
centuries old and the algorithms highly evolved, they still
rely on heuristics. Most algorithms, like those used in SSD,
iteratively refine an estimate of the solution. At each step,
the function being minimized is approximated by a simpler
form with a known solution. For a practical introduction to
numerical optimization, see [10] or [3].

Motion for tracking is rarely generated by a simple 2D im-
age transformation. In certain special cases, however, real
motions are be modeled by relatively simple image trans-
forms. A projective transformation exactly models motions
generated either by a camera rotating about its eyepoint, or
if the imaged object is planar [13]. The projective transform
in 2D is an 8 parameter transform:

(2)
Recovering the projective transformation is particularly

important for applications that resynthesize the images,
such as image mosaicing [6][13][2]. Even in cases where
the transformation doesn’t exactly describe the motion,
the projective transformation better approximates simpler
transformations since it accounts for depth effects [8][6].
The projective group subsumes the more commonly used
affine and translational cases, so a projective transformation
always provides at least as good an approximation.

The obvious question is: why aren’t projective transfor-
mations used more often? The answer seems to be that they
are considerably harder to use in a tracker. Not only do
they provide a larger, less constrained search space than the
affine case, but the transformation is highly non-linear and
the variables have widely varying sensitivities. Since affine
or quadratic models are often close enough for small defor-
mations, the additional effort is often not worthwhile.

Despite the difficulty, systems have been developed to

track projective deformations. [13] described a system that
enhances the standard SSD methods with the more sophis-
ticated Levenberg-Marquardt optimization algorithm. [8]
provided an algorithm that fit a succession of simplified
transformations. Both demonstrate impressive results, but
require large image regions because they rely on decimated
images to sense larger interframe changes.

Let us consider minimizing Equation 1 using an iterative
approach. For a given step of the iterative optimization
process, we have an estimate for the solution that we will
call When the transformation is applied to to give

we are left with an image which still differs
too much from the error has too great an
norm. We must determine a transformation that trans-
forms into something that matches In a traditional
numerical minimizer, our next estimate of the solution will
be However, if we had really computed
as a transformation, we would expect the answer to be the
composition of the two transforms. A general optimization
procedure approximates this composition by addition. We
can remove this approximation by using
either by changing the update rule (for example, using ma-
trix multiplication if the transform is an affine deformation
matrix), or by picking a parameterization for which com-
position is addition (for example the parameterization for
projective regions discussed in Section 4.1).

We now must tackle the problem of computing that
minimizes

(3)

For notational convenience, we define
so

A naive approach to minimize Equation 3 is to exhaus-
tively try the possibilities, sampling . When is large,
for example for a projective deformation, any form
of adequate sampling is impractical.

For now, let us ignore the impracticality and suppose
there is some set of vectors that represent a
sampling of the parameter space. It is sufficient to try all the
sampling vectors to find The obvious implementation
would plug each in for compute the difference im-
age for each one, and pick the one with the smallest norm.
Rather than transform each time, we could equivalently
transform by the inverse transform for each . What
this does is create an image of what we would expect to see
for if was the correct answer for . The expectation
images depend only on the base image and sample vectors
and are independent of or therefore they can be
precomputed.

i

−

′

′

′

−

≈

− −

−

b

i j

j

T

T

T

0
1

0

1 2

1
2

2 1
2

2 1
2

0 1

i

i i

i

i

i,

i

i j

i j,

i i j

T

T T

T

T T

i

= Υ ()

∆

∆

∆

∆

(∆) +

=
∆ =

= + ∆ = +
= +

∆ = +

∆

)

=

()
=

(+)
= 0

+ =

∆

=

∆ =

∆

(∆)

(0)

b b
q

q
b

q

q

q K∆q K

q b
q b b

q b b

q

K

k B k B

B k
k

B k kBB k
k

B BB k 0

q

B BB k

k

q N k

N

q

N

B I I .

, B D.

,
.

e
E, E D ,

e

D kB
k, k .

D B B , .
D k B k B

k k .

D ,

∂ D

∂

∂ D D

∂

D .

I I .
D

D

,

B

e q

e ,

e

3.1. Linearization

3.2. Generalizing the Traditional SSD

3.3. When Linearization Breaks Down

We can carry this idea a step further. For each basis vec-
tor, we can create a “difference template”

(4)

This image shows the difference we would expect to see
if were the correct answer. To find the that the best
estimates we find the that best matches

We can only try a (small) finite number of vectors. To get
an exact answer for we must be lucky in our choice for

In general, the choice that has the smallest error may
not be the that is closest to the exact right answer. To
avoid exhaustive search we must make assuptions about the
problem. As in most optimization problems, we make the
assumption that the error is a “somewhat smooth” function
of its parameters (). This means that the error is a mea-
sure of distance to the solution, so that decreasing the error
is a way to move towards the solution. Each iteration can
reduce the error, not necessarily elimate it.

The smoothness assumption implies that the function’s
higher order derivatives are small. Therefore, the error
function is reasonably approximated by a low order polyno-
mial. Many optimization algorithms (including those used
in SSD) approximate the function with a quadratic. To ob-
tain a quadratic approximation for , we use a linear ap-
proximation for where is some
matrix. The extremum of can be computed by solving the
linear system.

Linearity means that the errors scale and add with the
inputs. So, with the linearity assumption, if for
some scalar we could estimate Similarly,
if then we could estimate
Or, combining scaling and adding, if
then This means that if we can find
partial answers then we can add them up. It suggests that
if we could decompose the difference image into a linear
combination of the difference templates then the solution
for would be a linear combination of the corresponding
basis vectors. Note that we never use the linearized error
function (e.g. .

This “difference decomposition” is computed by consid-
ering the images as long vectors. The linear combination
vector is defined by where is the matrix
with each row containing a difference template. Since there
might not be an exact solution, we solve this by minimizing
the squared error — squaring the equation, and solving for
the vanishing of the gradient

(5)

Equation 5 gives a method for estimating by “de-
composing the difference” between and We first com-
pute the how the difference is decomposed into a linear
combination of the difference templates by solving

(6)

for , and then compute

(7)

where is a matrix where each row has the corresponding
basis vector.

Because of linearization, we do not need to be thorough
with our basis set. The algorithm will find an estimate for

based on considering several nearby samples.

The derivation of the previous section basically provided a
different, more general, derivation of standard SSD meth-
ods (in particular, the form described by [5]). A unit sam-
ple vector provides a first finite difference approximation
for the derivative of the base image with respect to a vari-
able. If we use the set of unit vectors for the samples, the
difference templates become the derivative images, and
Equation 6 (Equation 7 isn’t needed since is the identity)
is the update formula for SSD (see [5]).

Because the error function is non-linear, the first finite
difference is unlikely to be a good approximation for the
derivatives. To get a better value for the derivatives, im-
plementation can use filtering to better estimate the spatial
derivatives in the image[15], and via the chain rule use these
to compute the derivative with respect to the transform vari-
ables. The difference decomposition approach compensates
for this advantage by allowing the use of an arbitrary set of
sampling vectors. By using vectors of varying lengths, we
can model the non-linearities of the error further away from
the origin.

If the error function were linear the unit sampling vectors
would be sufficient. In fact, any set of vectors that spanned
parameter space would be sufficient, although we might
want to change coordinates to have better conditioning. Ad-
ditional sampling vectors would be redundant.

Consider the one dimensional case. If is
quadratic, we find the minimum by solving the linear equa-
tion for its derivative equal to zero. Assuming that we know

either the slope of the line, or the value of any sample
along the line will tell us the solution. The SSD approach
is the former approach while our approach is the latter. Any
sample will give the same answer. If is not linear, how-
ever, using different samples will provide different results.

We could use multiple samples by fitting a higher-order
polynomial than a line. This approach is difficult to gener-

−
·T

T T

1
2

2 1
2

= (
) +

= (+)

∆

∆

k

B k k k

B BB I k

q

q

m D

ε , ε

D ε .

E

ε.
ε

ε,

3.4. Multiplier Damping

3.5. Hierarchical Solution

3.6. Algorithmic Control

3.7. Tuneable Parameters

alize in multiple dimensions and is generally not used be-
cause of stability problems. A different approach would be
to find the solution suggested by each sample and average
among them. A third variant would use the sample whose
value was closest to zero, assuming that it best predicts the
function is zero.

Equation 6 is effectively a combination of the second
and third approaches. Solving the linear system provides
us with a weighted average of the samples, with the weights
dynamically chosen based on the proximity of the sample
value to zero. If the sample were an exact match, then it is
used completely.

We now consider a potential problem: what if some sam-
ple vectors are redundant (or nearly so)? This means that
there is insufficient texture to distinguish their effects on
the image, and leads to a singular (or ill-conditioned) ma-
trix in Equation 6[12]. Without any additional information,
an algorithm has no good reason to pick one choice over the
other. In practice, the algorithm will choose a bad one im-
posed by the realities of computational linear algebra. We
therefore add some additional information.

Our addition is the observation that large values for the
multipliers () are bad, so that minimizing the magnitude
of the multiplier vector is good. This approach is called
a multiplier penalty or damped multiplier approach, and is
discussed in [4] [9]. The same method appears in a different
guise in the Levenberg-Marquardt algorithm [10]. We add
an additional term into Equation 5, giving

where is a small constant. Solving for
the gradient equal to zero gives a variant of Equation 6,

(8)

Multiplier damping means that if two templates give
equally good matches, their contributions are equally
weighted. It also adds stability in cases where there is no
good match as it discourages the algorithm from explaining
things as a large positive plus a large negative weight.

The size of the estimate that we can reliably make for
is limited by how well is approximated by a linear func-
tion. If the image is smoother, then this approximation will
be valid over a larger range. To exploit this, registration
algorithms usually work hierarchically: first operating on
a decimated version of the image, then successively solv-
ing on less blurred versions. Such a strategy allows larger
changes to be sensed in the coarse image, and precision to
be added with the finer images.

We employ a coarse-to-fine strategy in our approach as
well. At each level, we can use a different set of sampling
vectors. At coarser levels, the sampling vectors are chosen

that require less image texture, albeit at the cost of finding
less accurate transformations. The accuracy can be resolved
at the finer levels.

While the hierarchical process extends the range of SSD
trackers, the amount of this extension is limited. First, there
is a limit to how many levels can be used for tracking be-
cause small regions quickly become too small to use. Even
in larger images, the texture required for unique matches
is quickly blurred away. Also, the smoothing operation
may remove non-linearities from the image, but not the
non-linear transform. With our approach, we can use both
longer sampling vectors and hierarchical solution to extend
the range.

Until this point, we have only focussed on the problem of
determining one step of the iterative process. We now ex-
amine how this fits into the actual problem. For a tracking
problem, we must find the transformation between the base
image and each target frame. With our approach, we always
compare the new image with the reference frame, although
we could reset the reference frame after each match.

With a fixed reference frame enables significant
preprocessing[5]. The difference templates can be gener-
ated for all levels of the pyramid and the matrices for solv-
ing can be formed and factored. Unfortunately, this precu-
ludes dynamic adjustment of Instead, we pick a few fixed
values for , compute the matrices for each during the pre-
computation phase, and use the one that give us the best
result for each iteration of the algorithm. Another downside
of the preprocessing approach is that we cannot dynami-
cally change the region size, for example, when the target
region crosses an edge of the frame.

For each new frame, we must first determine an initial
guess for the solution. To date, we have used the result
from the previous frame, however some form of prediction
would enhance performance when a motion model applies.
The optimization process is then executed at each level of
the pyramid, iterating the steps until no progress is made.
The step process computes via Equation 8 for several
values of computes the residual error for each of these
guesses, and chooses the best one.

We would like to use any knowledge we have about the
motion being tracked to tune the tracker for a particular
task. Like the traditional SSD, our algorithm allows tuning
through the choice of the motion model and the process by
which initial estimates for parameters are generated. Our al-
gorithm adds additional flexibility by permitting the design
of the sets of sampling vectors (plural because a different set
is used for each level of the hierarchy) and the non-uniform
damping parameters associated with them.

q
q

, ,

.

1 2 3

8

3

7

± ± ±

R

•

•

•
•

•

•
•

4. Tracking Projective Regions

4.1. Parameterizing Projective Transforms

4.2. Piecewise Projective Transforms

The difference decomposition approach requires the de-
sign of the sample vector sets. In practice this is not a prob-
lem. It is easy to choose a standard basis that gives at least
as good performance as an SSD approach by including the
same samples that would be used by a good implementa-
tion of the image gradient computations. Including the unit
vectors and copies scaled by small integers (we usually in-
clude) insures that the sample vectors span the
parameter space. Additional vectors can be added to this ba-
sic set to improve tracker performance, albeit at the cost of
increased computation per step and potential conditioning
problems.

If we have some knowledge about the expected motions,
we can tune our sample vectors accordingly. For example, if
we know that horizontal motions are most common, we can
add additional vectors to better sample these likely regions
of parameter space.

The formulation of the tracker in the previous section is
intentionally non-specific about the type of transforma-
tion. There are very few restrictions on the types of
transformations that we can use, for example we can use
a non-differentiable model. We have implemented and
tested translational, affine, bilinear, multi-bilinear, projec-
tive and piecewise-projective transformations. Since pro-
jective transformations are the most useful for our applica-
tions, and where previous methods have not provided suffi-
cient performance, we focus on them here.

The non-linearity of projective transforms is one reason
that standard methods do not handle them well, typically
functioning only over very small changes between images.
Our approach offers a number of enhancements to improve
this. First, we explicitly handle the non-linearity in com-
posing steps. Secondly, the use of larger sample vectors can
extend the search range in a way that takes the non-linearity
of the transform into account, not just the non-linearity of
the image. Third, we can design our sample vector sets to
better to focus our search in the areas of in which re-
alistic motions are more likely to appear. Fourth, because
we do not need to compute analytic derivatives of the trans-
formation, we can use an alternative parameterization that
addresses a number of issues.

The most obvious implementation of a projective tracker
would be to perform the minimization on the 8 parameters
of Equation 2. Unfortunately, this leads to equations that are
difficult to solve. Not only are the equations non-linear, but
the sensitivities of the answer to the parameters vary widely.
For example, a change in will make less of a change in
the answer than an equivalent change in One way to
address these differences is parameter scaling, as discussed
by [4].

Rather than represent the projective transformation by
the eight coefficients of Equation 2, we instead use an alter-
nate representation and perform search over these new pa-
rameters. The parameterization that we use stores the posi-
tional offsets for the four corners of the bounding rectangle
of the initial region. Transformation between this represen-
tation and the canonical parameters is computed by solving
a system of linear equations [6]. This parameterization has
a number of advantages:

The parameters have uniform sensitivity and are less
interrelated than the canonical parameters;
The parameters have intuitive meanings (which facili-
tates debugging);
The composition is addition;
Common simple transforms can be represented by
fixed parameter vectors (for example, a one pixel trans-
lation is always the same vector);
Regions can be made to have abutting edges simply by
sharing parameters;
Inversion is negation;
Users can give hints by pulling on patch corners;

Although the representation is similar to that of bilinear
patches, we do compute the proper projective mapping.

The projective transform is useful because it exactly mod-
els an important special case. The more general case (for the
motion of curved surfaces) is unlikely to have a compact so-
lution, and must be approximated. Computer graphics tra-
ditionally approximates curved surfaces with sets of small
polygons. For tracking, a similar approximation would use
projective patches that are small enough that the surface in
each region is sufficiently flat to be well approximated by
the transformation. This poses two additional challenges:
the patches connect properly; and smaller patches are less
likely to have sufficient texture for the projective track-
ing. The answer to these is to not treat the patches inde-
pendently, creating a connected mesh. Enforcing connec-
tion between patch corners is sufficient to create connec-
tivity between projective patch edges, and the constraints
between the patches effectively allow them to share infor-
mation. These constraints can be implemented by having
patches share corners.

By parameterizing the projective patches as in the pre-
vious section, creating connected grids is simple. They
are akin to the bilinear patches of [14], with the exception
that within each patch, a proper projective transformation is
computed and used. The piecewise projective patch offers
a number of advantages. Foremost, it better approximates
real surfaces because it accounts for depth effects, allow-
ing larger piece sizes to be used (see the examples). Sec-
ondly, because a projective transformation is defined by any

−∗

L

(3 1)

2

= 4 2 = 16

5. Experiments

5.1. Projective Distortions

5.2. Non-Projective Cases

6. Conclusions

References

IEEE Conf. of Pat-
tern Recognition and Image Proc.

Computer Graphics (SIG-
GRAPH ’95 Proceedings)

Practical Optimization

A Differential Approach to Graphical Inter-
action

IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR)

Proceedings
IJCAI-81

IEEE Conference on Image
Processing (ICIP)

Advanced Robotics: Redundancy and Opti-
mization

Nu-
merical Recipes in C

Proceedings of the IEEE International Conf. on
Robotics and Automation

IEEE Conf.
on Comp, Vision and Pattern Recognition

Workshop on Applications of Computer Vision

[1] P. Burt, C. Yen, and X. Xu. Local correlation measures for
motion analysis, a comparitive study. In

, pages 269–274, 1982.
[2] S. E. Chen. Quicktime VR – an image-based approach to

virtual environment navigation. In
, pages 29–38, August 1995.

[3] P. Gill, W. Murray, and M. Wright. .
Academic Press, New York, NY, 1981.

[4] M. Gleicher.
. PhD thesis, School of Computer Science, Carnegie

Mellon University, 1994.
[5] G. Hager and P. Belhumeur. Real-time tracking of image re-

gions with changes in geometry and illumination. In

, pages 403–410, 1996.
[6] P. Heckbert. Fundamentals of texture mapping and image

warping. Master’s thesis, U. C. Berkeley, June 1989.
[7] B. Lucas and T. Kanade. An iterative image registration

technique with application to stereo vision. In
, pages 674–679, 1981.

[8] S. Mann and R. Picard. Virtual bellows: Constructing high
quality stills from video. In

, November 1994.
[9] Y. Nakamura.

. Addison-Wesley, 1991.
[10] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling.

. Cambridge University Press, 1994.
[11] J. Rehg and A. Witkin. Visual tracking with deformation

models. In
, April 1991.

[12] J. Shi and C. Tomasi. Good features to track. In
, 1994.

[13] R. Szeliski. Image moscaicing for tele-reality applcations. In
, 1994.

[14] R. Szeliski and J. Coughlan. Spline-based image registration.
Technical Report 94/1, DEC CRL, 1994.

[15] Y. Xiong. Content-based expansion for image matching.
Technical Report CMU-RI-96-26, June 1996.

pair of quadralaterals, any tiling of the patch with quadri-
laterals can be used, not just grids. Piece edges could be
placed along edges or other discontinuities. Third, texture-
map methods (including hardware support) can be used for
rendering. Fourth, the projective transformation is easily
invertable.

Our prototype implementation uses Quicktime movies,
Quicktime VR object movies, and sets of still images as
content. The video examples were captured using a con-
sumer camcorder played into the built-in digitizer of a
Power Macintosh 8500 and recorded using standard com-
pression. Our implementation provides the options of lin-
ear or bicubic interpolation for the image warps (albeit with
point sampling) and uses a linear intensity adjustment (off-
set and scale) for pixel values. We emphasize that we have
not done any tuning to the algorithm for these examples. All
examples use a 3 level pyramid with our default basis vector
set consisiting of scaled unit basis vectors and translations.

Our implementation of the previous method [13] does
not succeed on these examples. This is more a statement
about our implementation than of the methods.

Figure 1 shows a projective test case: a 40 pixel square re-
gion is tracked as the camera moves. The tracker stays on
target despite the extreme perspective and lighting changes.
In the 30fps sequence, we see corners move more than 7
pixels along one axis between pairs of frames. At 15fps, the
largest change (approximately 18 pixels) loses the tracker,
which is not surprising since this is at the limit of the
range of the basis set (4 pixels, 3 levels up the pyramid

pixels).
Figure 2 is taken from a Quicktime VR object movie,

a sequence of still frames. The steps between frames are
larger than in most motion examples. Known rotations are
an excellent candidate for a tuned basis vector set.

To demonstrate the piecewise projective patch, we use 2
types of examples where a projective transformation does
not model the motion: tracking rigid curved objects (Figure
3), and flexible objects (Figure 4).

In a reconstruction scenario (Figure 5 and 6), we see the
advantages of smaller patch sizes. In our examples, sam-
pling and illumination artifacts make the boundaries of the
patch obvious. Numerically, the error decreases with
patch size. Empirically, the piecewise projective patches
have less error than comparably sized bilinear patches.

In this paper, we have presented difference decomposition,
a method for finding the transformation between regions

of two images. By examining the numerical optimization
process, we have created an algorithm that is better able
to handle non-linearities in the image transformation than
conventional approaches. The algorithm can track smaller
image regions over larger interframe differences for non-
linear transformations. It also provides more opportunities
for tuning for specific classes of motion. We pay particu-
lar attention to projective transformations, and introduced a
piecewise projective transformation that is able to better ap-
proximate the motion of curved surfaces. We have demon-
strated our system on a variety of examples.

In our view, this paper makes two contributions. First,
it presents the difference decomposition approach that po-
tentially provides better performance than previous tracking
algorithms. Second, it introduces the piecewise projective
patch, offering advantages over the previous piecewise bi-
linear patches.

Figure 3: Frames from tracking a curved object using a 48x48 piecewise projective patch with a 3x3 grid.

Figure 4: Frames from tracking a flexing object using a 48x48 piecewise projective patch with a 3x3 grid.

Figure 2: Projective tracking in a QuicktimeVR object movie (a sequence of still images). The bottom row shows the warped region (I
1
’).

Figure 5: The sequence from Figure 4 is tracked with various 96x96 piecewise-projective patches. The upper row of images shows the
trackers. Beneath each, the image is “reconstructed” by drawing the transformation of the patch from the first frame. We do not correct for
illumination. The lower left image shows the portion of the original frame shown in the other images.

Figure 1: Tracking a 40x40 projective region across a 74 frame, 320x240 video sequence.

Acknowledgements
This research was conducted in the computer graphics group
of Apple Computers’ Research Laboratories. I would like
to thank Yalin Xiong for his assistance with this project
including providing me with the QTVR example of Figure
2. Mark Wheeler and Roberto Manduchi, also of the
QuicktimeVR group, helped with the preparation of the
paper. Gavin Miller, my manager, encouraged this work as
well as provided proofreading assistance.

Figure 6: “Virtual Graffiti” - an application of tracking/recon-
struction. After performing tracking (Figure 5), we paint on frame
1 of the video and the effects can be propagated to the rest.

