
∗

∗

Motion Editing with Spacetime Constraints

Michael Gleicher

Apple Research Laboratories

Abstract

1 Introduction

2 A Model for Motion Editing

CR Categories and Subject Descriptors:

Additional Keywords:

Apple Computer, 1 Infinite Loop M/S 301-3J, Cupertino, CA 95014.
gleicher@apple.com
http://www.research.apple.com/People/gleicher

To appear in the Proceedings of the 1997 Symposium on Interactive 3D Graphics

In this paper, we present a method for editing a pre-existing motion
such that it meets new needs yet preserves as much of the origi-
nal quality as possible. Our approach enables the user to interac-
tively position characters using direct manipulation. A spacetime
constraints solver finds these positions while considering the entire
motion. This paper discusses the three central challenges of cre-
ating such an approach: defining a constraint formulation that is
rich enough to be effective, yet simple enough to afford fast solu-
tion; providing a solver that is fast enough to solve the constraint
problems at interactive rates; and creating an interface that allows
users to specify and visualize changes to entire motions. We present
examples with a prototype system that permits interactive motion
editing for articulated 3D characters on personal computers.

I.3.7 [Computer Graph-
ics]: Three-Dimensional Graphics and Realism – Animation; I.3.6
[Computer Graphics]: Methodology and Techniques - Interaction
Techniques; G.1.6 [Numerical Analysis]: Optimization.

Spacetime Constraints, Motion Displace-
ment Mapping.

Advances in techniques such as motion capture, keyframe editing,
and physical simulation make it possible to create high quality mo-
tion for animation. Editing these motions is often useful, whether
to make some unforeseen adjustment or to reuse the motion for an
entirely new purpose. Unfortunately, adjusting a good motion can
lose something – the motion may no longer be physically correct, or
may lose some nuance given by the original animator. We therefore
must look at motion editing as a creative process where decisions
are made as to how best to keep the original quality of the motion
while meeting new needs.

Traditional motion editing tools can be inconvenient for making
alterations to existing motion. Current systems provide a range of
techniques for editing poses at given times and use keyframe inter-
polation to reduce the tedium of specifying every frame. While
recent methods, especially motion-displacement mapping[2][21],
enable large scale changes while preserving fine detail, they offer
little assistance at maintaining specific aspects of the original mo-

tion, except to tediously check each frame. The user gets no explicit
control over non-key frames.

In contrast, spacetime constraint methods[20] consider the en-
tire motion simultaneously. These methods enable the user to spec-
ify constraints over the whole motion and use a solver to compute
the “best” motion that meets these requirements. Since a single
large mathematical problem must be solved to determine a mo-
tion, spacetime constraint solutions have been computed as batch
processes. While the methods have been successful for synthesis of
physically realistic motions, to date, they have offered little help for
interactive editing.

In this paper, we present a new method for motion editing. Like
more traditional keyframe and inverse kinematics methods, the user
makes adjustments to an animated character with direct manipula-
tion, for example pulling on a character’s hand to reposition it. But,
to achieve these new positions, the animation system makes ad-
justments that attempt to preserve the original motion. Like other
spacetime constraint methods, our system considers the entire mo-
tion in making changes. Unlike the previous spacetime systems,
we solve the numerical constraint problems fast enough to provide
direct manipulation dragging. To achieve this new style of motion
editing, we must tackle three sets of issues: first, we need a con-
straint formulation that is rich enough to be effective, yet simple
enough to permit rapid solution; second, we need fast methods for
solving these constraint problems; third, we need new interaction
techniques for specifying and visualizing changes to an entire mo-
tion. This paper addresses these three topics.

We emphasize that we do not have new solution techniques that
allow us to solve the same spacetime problems orders of magnitude
faster than previous systems. Instead, we rely on simplifications
and approximations that would be unacceptable for the tasks of syn-
thesizing physically-correct motions. Because our goal is interac-
tive editing, we can make many tradeoffs to achieve performance.
The quality of the motion can come from the talent of the anima-
tor, not just the solution process. While our methods do not afford
automatic synthesis of novel motions, they do enable interesting
interactions for editing existing motion.

Our task is to take a motion that is basically good but is in need of
adjustments, i.e. our initial motion has the basic form that we want.
Consider one adjustment: at a particular instant of the animation,
we have a specific, unmet desire. To use a simple example, consider
Figure 1. We have a good jumping motion, but we would like to
have our character jump a little higher. We would like to add the
constraint that the character’s hand is at a particular, higher location
at frame 20 (which is the time of the apex of the jump). We expect to
keep a similar jump – raising the hand will not cause a dramatically
different motion like obtaining a ladder and climbing it.

The traditional method that is most applicable to this task is in-
verse kinematics. Traditional inverse kinematics (IK) enable the
user to edit motion by dragging an end-effector of a character. The
IK solver computes the best pose of the character that achieves this
new positioning. Good IK methods can prevent the violation of
other constraints, such as keeping joint angles from going past their

Frame 0 Frame 10 Frame 14 Frame 20 Frame 24 Frame 37

Frame 20 Frame 24 Frame 20 Frame 37

Figure 1:

3 Extensions to Previous Approaches

To appear in the Proceedings of the 1997 Symposium on Interactive 3D Graphics

Editing a rotoscoped jumping motion. Frames from the initial motion are shown in the top row. The lower row shows the three
editing drag operations, first pulling the hand at frame 20, pulling the pelvis at frame 24 (frame 20 is shown after this edit, notice that the
hand constraint is maintained), and pulling the knee at frame 37. The grey figure shows the position before each dragging operation.

legal ranges.
A traditional IK solver considers only one pose in its computa-

tion – for editing, it controls only the current frame. If the frame is a
key frame of an interpolated motion, other neighboring frames will
be altered, although the number of frames and the way that they are
affected will be determined by the key spacing, an artifact of how
the original motion was created. Motion displacement techniques
improve this by allowing the key spacing for editing to be set inde-
pendently of the original motion. However, they provide no control
over what happens between the key frames.

In contrast, our extended solver computes the best motion that
achieves the specified positioning, considering more than just the
current frame. This, of course, leaves the open question of how do
we define what the “best” motion is. There is an obvious candidate
for editing a good motion: the best motion is the one that best pre-
serves the important qualities of the original motion. This is still
open to a realm of interpretation as we cannot know what about
the original motion the user wants to keep. We address this with a
threefold strategy that we will detail in Section 4:

1. We augment the motion and the character to include con-
straints that must be maintained to keep the integrity of the
motion.

2. We minimize some metric comparing the original and result-
ing motion over all the possible solutions that satisfy the con-
straints.

3. We diminish the importance of getting the “right” answer by
providing interactive performance. The user can see unde-
sired solutions and add additional constraints to achieve de-
sired results.

For each dragging operation, there may be many constraints that
are maintained on the motion, but there will be only a small number
(often, but not always, one) of constraints that drive the changes to
the motion. This constraint may be created specifically for a drag-
ging operation, for example, when we grab the character’s hand to
adjust the jump, a constraint on the hand position is created if one

does not already exist. As the mouse is moved, the constraint is ad-
justed, and the motion is reconfigured, hopefully rapidly enough to
give the illusion of continuous motion for direct manipulation feel.
Typically, we leave the constraint in place after the dragging oper-
ation is completed to make the alteration persistent. The model of
one constraint continuously changing while others are maintained
has implications of this on usability and performance [6].

When making an edit, the user can also specify a time range for
the change. The system tries to create a change that is somewhat
smooth at this scale, keeping higher frequency details. This paral-
lels Cohen’s concept of “windows” [3] for focusing the numerical
solution and preventing unwanted lookahead.

Our work combines two powerful techniques in computer anima-
tion, motion displacement maps and spacetime constraints. Space-
time constraints approach was introduced by [20]. [3] extended this
with a more complete system and the concept of windows that fo-
cus the solution process. Subsequent work has addressed solver
performance [13] and provided alternative formulations [11] [15]
[19]. Recently, [12] applied the approach to the problem of gen-
erating transitions between motion segments, and [8] showed how
the methods can be used for repurposing motions.

Previous spacetime work has not been applicable for interactive
editing, due to a number of factors, including the computational
expense of solving, difficulty in controlling the computations, and
the failure to identify objectives other than energy consumption.
To achieve interactive editing, we use a different formulation that
places less emphasis on the minimization of the objective function
and instead relies on the initial motion, the motion representation,
and kinematic constraints to create the new motion. This simplifi-
cation does sacrifice spacetime’s ability to generate physically cor-
rect motions from sparse user input, but it affords fast approximate
solvers, and makes the user interface easier: rather than having to
define objective functions that mathematically characterize motion
qualities, we instead provide initial motions and kinematic con-
straints.

2

≤ ≥

2

2

c

c

0 0

0

variational

x f x c

x
x f

c

m x

x

x

m x

m x m d x

d

m x

g .

g

t,
t

.

t,

t, t t, ,

f t , c

, , , t
c f

4.1 Representation

4.2 Constraints

4 Constraints, Parameters, Objectives

minimize () subject to () =

()

()

() = () + ()

(())

=

To appear in the Proceedings of the 1997 Symposium on Interactive 3D Graphics

Motion displacement maps (also known as motion warps) were
introduced by [2] and [21]. The methods, which we will review in
Section 4.1, allow motions to be edited independently of the scale
of the detail in the original motion by adding a new curve with prop-
erties that make it convenient for editing. By using an interpolating
curve for the displacement map, the method can be a simple exten-
sion to existing keyframe animation systems. Our approach gives
up this simplicity, but provides additional user control by allowing
simultaneous constraints at non-key frames. Constraint-based con-
trol of motion displacement maps was introduced in [8]. This work
focused on providing detailed descriptions of motion changes using
many constraints across the entire motion which made interactive
performance infeasible.

Like all spacetime approaches, we have turned our problem into a
numerical constrained optimization. Subject to a set of constraints,
including both those that maintain the existing motion and those
that specify desired changes, minimize some objective function. In
mathematical terms, we write this problem as

(1)

Where is a vector that represents the parameters of the motion,
is the objective (a scalar function of), and is a vector function
of the constraints. For each cycle of a dragging operation, a few el-
ements of the vector will be updated, and the equations re-solved.
We now explore the three pieces of the optimization problem, keep-
ing in mind that we need to choose them in a way that will lead to
Equation 1 being solvable in a timely fashion.

The mathematical formulation of the animation problem encodes
the motion into a vector of parameters. We assume that the ani-
mated figure’s configuration can be represented by some vector of
parameters, for example, an articulated figure by the position of its
root and the joint angles. An animated motion is then a
function that provides this vector given a time , based on a vector
of parameters that define the motion. For example, if the motion
was created by a set of key values that are interpolated, would
be the concatenation of all of the keys. Typically we include only
parameters that are to be adjusted in

Typically, for keyframe animation systems the motion function
is some interpolation of the keys since this allows the keys to be
manipulated individually. Spacetime approaches are more flexi-
ble since the algorithms need not look at individual keys. Previous
spacetime systems have chosen representations that are more well
behaved mathematically, such as B-Splines and Wavelet B-Splines
[13].

For motion editing, we are given an initial motion to
adjust. Presumably, this representation was chosen to be convenient
for the creation of the motion, and may not be adequate for the task
of editing. Motion displacement techniques offer an alternative.
Rather than use these parameters, we can treat the initial motion as
a constant and add in a new curve with convenient parameters, that
is, we let our edited motion be

(2)

where is a new motion curve. This provides the freedom to
choose a representation that is convenient for editing. For example,
a straightforward implementation could use an interpolating curve
with its keys placed at the times that the user specifies new poses.

We use the motion displacement approach for our spacetime
computations. This allows us to choose our parameterization based

on our computational needs, as well as the scope of the changes we
would like to make. Our system allows a variety of displacement
curve types, such as linear and cubic interpolation, cubic B-Splines,
and wavelet B-Splines. In previous work [8], we experimented with
using contrived displacement functions as a mechanism for control-
ling the changes. In an interactive setting, we prefer (for both nu-
merics and user interface) to use standard curves, typically endpoint
interpolating cubic B-Splines.

The key spacing has an important impact on the results of the
motion edits. If the keys are spaced far apart, the displacement
curve will be smoother and will add only low frequency (typically
subtler) changes to the motion. Having distant keys also means
having fewer keys, which can reduce the time for solving the op-
timization problems. On the other hand, with distant keys, it may
be impossible to meet all of the constraints. In such cases, we aim
for a least-squares norm solution, solving the constraints as best as
possible, distributing the error amongst them. In cases where more
accuracy is needed, we can run a cleanup process later where addi-
tional degrees of freedom can be added and resolved. There is no
guarantee that the coarser solution is a correct approximation to the
finer one.

We generally use two strategies for picking the key spacing and
positioning for our displacement curves. The simplest is to evenly
space a number of keys along the duration of the motion. Alterna-
tively, when making an edit, the user can specify a time range for
the change. In response to the user’s range specification, a new mo-
tion displacement curve is created with fixed zero interpolating con-
trol points at its ends, and a small number of control points evenly
spaced along its duration. It is these latter points that the solver
configures. The use of a motion displacement map causes the alter-
ation to be done at the user specified scale, while preserving finer
details in the motion. However, since the solver can configure all
the controls along the displacement, constraints can be placed at
any time, freeing the user to drag at times other than key times, and
place multiple constraints.

Constraints in our approach serve two purposes: they encode spe-
cific aspects of the motion that should be maintained during subse-
quent edits and they serve as handles to drive changes to the motion.
There is little distinction in our system, in fact, constraints are often
moved between the categories.

Most constraints that we consider in our approach are kinematic,
that is that they place a restriction on the configuration of the char-
acter at a given instant. These constraints have the form

where is one of or is the time at which the con-
straint exists, is some scalar, and is the “constraint function.”
Typically, a conceptual constraint consists of multiple scalar con-
straints, for example a point position uses one per axis. For nota-
tional convenience, we group all constraint functions into a single
vector function.

We do not explicitly provide for dynamic constraints, e.g. con-
straints on accelerations or velocities. We do permit constraints that
relate multiple instants, such as requiring that a point is in the same
place as it is in another frame. This provides an approximation to
dynamic constraints.

Often, we prefer to place constraints over a range of times, rather
than at a specific instant. We call such constraints con-
straints because ideally they describe a relationship over a contin-
uous interval. In practice, we implement variational constraints by
sampling: placing individual kinematic constraints at specific in-
stances within the time interval. The most obvious sampling is to
place a constraint on each frame.

3

+

∑∑
∈ ∈

∈ ∈

·

0

i i

i i 1

5 Solving

i

k t j pt

j j

T

4.3 Objectives

m m
d

s
p m x

x

p m x

x

x x Sx

S

S

x x

t t
t .

j pts k t
i,

∂ k,

∂

∂ k,

∂
.

g ,

() ()
()

() ()

=
(()) (())

() =
1

2

sequential quadratic programming

active set

To appear in the Proceedings of the 1997 Symposium on Interactive 3D Graphics

There are many constraints that can be useful in motion editing.
Some that we have found useful in our prototype system include
specifying: the position of a point at a specific time; the position
of a point over a range of times, for example a hand-hold or foot-
plant; a path that a point must follow; a region a point must stay
inside or outside of; limits on the range of joint angles; and fixed
distances between points. By point we include any position along
the kinematic chain of a character.

The most obvious constraint for interactive dragging is one that
positions a point in a specific frame. This position can be tied to the
location of the input device during dragging. Other constraints also
serve as interesting interactive handles; for example, footplant and
handhold locations or obstacles to avoid, may also be dragged.

Obtaining the large numbers of constraints that seem to be re-
quired to produce high-quality adaptations is, in practice, far less
work for the user than it might seem. Constraints tend to fall into
three general categories: constraints on the character, such as joint
angles; constraints that provide information about the initial mo-
tion, such as footplants and handholds; and constraints used to
make adjustments. Given the amount of work usually required
to obtain a model for a character, the extra effort is minor. Simi-
larly, augmenting the motion takes an insignificant amount of time
compared to obtaining the motion, especially since many of these
constraints can be obtained semi-automatically (such as detecting
footplants by examining foot heights).

Usually, there will a space of possible solutions that meet the con-
straints, the solver chooses the solution that minimizes an objective
function. Even in cases where there is no solution to the constraints,
there is typically a space of equally close solutions. To select among
the solutions, we choose one that minimizes an objective function.
Previous spacetime approaches have chosen to minimize the energy
consumption of the character. For our approach, we choose to min-
imize the difference between the motion before and after the edit.
This still provides a range of choices, for example, we might choose
to match the positions of the end-effectors, their velocities, their ac-
celerations, or the joint angles. Our initial experiments suggest that
there is no right answer – it is easy to construct an example where
one metric is either clearly right or clearly wrong.

Rather than seek the perfect objective, or devise a good way of
presenting the choices to the user, we have chosen an alternative ap-
proach: not worry about it too much. Instead of using the objective
function for control, we instead use constraints. We pick a simple
objective function that is selected to make solution of the optimiza-
tion problem as fast as possible. The interactive performance that
this allows enables the user to make adjustments by adding more
constraints, guiding the system closer and closer to a satisfactory
answer.

A simple objective function is suggested from the form of Equa-
tion 2. The difference between and is the displacement
curve Minimizing the displacement curve would require min-
imizing an integral over the duration. Because of the types of curves
we employ, we can approximate this by minimizing the magnitudes
of the controls.

Simply minimizing the magnitude of the parameter vector does
have some drawbacks. One particular problem is that different pa-
rameters often have vastly different effects, for example if one is
measured in millimeters and another in miles, if one is an angle
that affects the pinky and another is the orientation of the entire hu-
man figure, or if a key is close to other keys verses one that affects
a very large number of frames. To combat these problems we use
a weighted sum-of-squares of the parameters, where the weights
are chosen to unify the parameter sensitivities as discussed in [7].
The sensitivities are computed by summing the amount each point

on the character in each frame is moved by a
change in a variable

(3)

For best interactive performance, we compute the weightings once
for each dragging operation, and sample the sums of Equation 3
sparsely. The objective function is then

(4)

where is a diagonal matrix with the sensitivities as its elements.
Our objective can be seen as an approximation to the function

that minimizes the amount the points on the character are displaced
over the course of the motion. Equation 4 is a quadratic approxi-
mation to this function, the matrix is a diagonal approximation to
the Hessian. We do not argue for the correctness of this objective,
nor the validity of the approximation, but rather, admit that these
were chosen because they will lead to systems of equations that can
be solved efficiently in Section 5.2.

We have posed the motion editing problem as a numerical con-
strained optimization, in the form of Equation 1. This is a standard,
well-studied problem, albeit a difficult one. A good introduction to
solution methods is [17], and a more thorough one can be found in
[4] or [5]. Our usage is non-standard because of our performance
demands: to provide for interactive dragging, we must solve the
constrained optimization problems fast enough to provide the illu-
sion of continuous motion. The nature of our problem makes this
all the more challenging: we have nonlinear equations with poten-
tially large numbers of constraints and variables since we create a
single problem for an entire motion. We provide an overview of our
solver here primarily to show how standard methods can be adapted
to our unique needs.

The performance of general purpose, nonlinear solving algo-
rithms is difficult to characterize. Available algorithms are iterative,
taking a series of steps that refine an estimate of the solution and
are extremely sensitive to the problem, slightly different equations
or starting conditions can cause different solution times. Perfor-
mance considers two things: the overall solution time on real ex-
amples, which is important since it indicates what can be achieved
in practice; and the cost per iteration, which typically does have
fixed computational costs and because we have the opportunity to
display the intermediate results between steps if the solver does not
run to conclusion.

The most common general class of nonlinear solving algorithms
by building approximations of the nonlinear problem. At each it-
eration, an approximation with a form that has a known solution
method is created. The algorithms we use belong to a class of algo-
rithms known as (SQP) because
they use are quadratic programs as the approximations. Quadratic
programs have linear constraints and quadratic objective functions.

For our discussion, we consider only equality constraints be-
cause they are simpler. In practice, we implement inequality con-
straints using techniques [4] that operate by switching
equality constraints on and off. Our solver employs a simple, ap-
proximate active set method presented by [7].

An iteration of an SQP solver begins with the current estimate
for the solution and compute an updated solution by:

1. building a quadratic program using Taylor expansion of the
non-linear functions. The constraint function is approximated

4

2

2

≈

−

−

�

�

�

�

�

�

− −

− −

− −

i i

i

i i

i

i i
T

T

i

i

i

h

h

h

h

T

i

T

1 T 1

1 T
i

1

i

1 T
i

1

automatic differentiation

Lagrange Multipliers

∂

∂
,

∂ /∂
.

,

.

g g
∂g

∂

∂ g

∂
.

g .
g g /

, , ,
.

,

κ κ

t

t,

∂

∂

∂

∂

∂

∂
.

∂ /∂ ,

g

g

,

,

, , , ,
.

ε ,

ε

5.1 Computing Functions and Derivatives

5.2 Solving the Quadratic Program

To appear in the Proceedings of the 1997 Symposium on Interactive 3D Graphics

(+) () +

= () =

(+) = () + +
1

2

() = 1 2 +

+

+

+

() = (())

=

minimize () =
1

2
+

subject to () = =

+ =

=

= +

(+) = +

f x ∆ f x
f

x
∆

f x∆
x J

J∆ c f x c

c

x ∆ x
x

∆ ∆
x

∆

g G
x x Gx

bx G b
Gx b

∆

x ∆

x ∆

x

f x p m x

p
m

f

x

p

m

m

x

p m

∆ ∆ G∆ g∆

f ∆ J∆ c

G∆ g J

∆

∆ G J G g

JG J c JG g

c g G J
∆

JG J I c G g

I

by

where is the Jacobian of the constraint function at
the value which we denote by The constraint equation
is therefore

(5)

where we denote the residual as

A second order Taylor expansion to provides a quadratic ver-
sion of the objective function,

We denote the gradient of as and the Hessian matrix as
Note that when is a quadratic function

, the Hessian is but the gradients is not but rather

2. solve this quadratic program for the step direction vector.
If the original constrained optimization problem is a quadratic
program (or if this approximation is very good), then
would be the answer.

3. performing a line search to find how far to move in the step
direction. This computes a value for which pro-
vides the best answer to the problem. This search minimizes
a merit function that accounts for both the constraints and the
objective.

This 3 step process is repeated until the algorithm decides to termi-
nate either because the solution is sufficiently good or because no
progress is being made. The stopping tolerances can be set based
on the problem’s precision requirements. The following sections
describe how we have implemented each of the 3 tasks of the step
process in our system.

Our system solves the non-linear optimization problems between
each refresh of the screen. This is in contrast to previous differential
approaches [7] that emphasize constant frame rate, refreshing the
screen after each update of the configuration.

Solving the optimization problem requires evaluating the objective
and constraint functions and their derivatives. These are large and
complicated: they involve the blending of keys, the kinematics of
the character, and the relation applied to these points. Viewed as a
monolithic whole, these functions are daunting. However, viewed
as smaller pieces composed together, the task is much more man-
ageable. The derivatives of these composed functions can be built
by the chain rule. Rather than symbolically performing the process,
the elements are computed and multiplied together numerically, a
process called [10]. For example, a con-
straint of the position of the hand of an articulated figure at time
might have the form

where is the kinematic function that computes the position of
the hand given the figure’s parameters, and is the function that
computes the parameters at a given time from the key configuration.
The chain rule permits us to compute

Each of the two matrices can be computed independently and mul-
tiplied together. We use a general purpose implementation of auto-
matic differentiation [7] [9] designed specifically for the demands
of interactive systems, allowing functions to be defined dynamically
and evaluated efficiently.

To compute the Jacobian of the kinematic function
we also use a mixed symbolic-numeric approach. The kinematics
is defined by a chain of matrix multiplications. We compute the Ja-
cobian by recursively applying the product rule for differentiation,
symbolically computing the derivatives of each transformation but
combining them numerically. Special case techniques exist for per-
forming these evaluations for rigid kinematic chains (for example
one is described in [12]), but we have not yet explored such tech-
niques.

The form of the objective function (Equation 3) does not re-
quire us to evaluate the Hessians of complicated functions. Instead,
our objective Hessian is built by computing the gradient of many
functions, performing dot products on them, and summing them
together.

Sparsity is an important consideration in implementing our ap-
proach. Avoiding excess storage by using representations that ex-
ploit the large numbers of zeros in the gradients, Jacobians and Hes-
sians is vital for performance, in evaluation and especially in linear
system solving in the next section.

At each step of the SQP, we must solve an optimization problem
that has a quadratic optimization objective and linear constraints,

There are many methods available to solve these problems (see [4]
or [5]). Most methods involve posing the problem as a linear sys-
tem. The method that we use exploits the fact that the Hessian
matrix is easy to invert. The method is detailed in [7]. Briefly,
the extrema of a function is the point where the gradient vanishes.
However, this point may not be feasible given the constraints. The
constrained extrema, therefore, is a point where the gradient points
in a direction that is prohibited by the constraints. The gradient of

must therefore be a linear combination of the constraints

(6)

where is a vector called the that denote the
linear combination. Solving this equation for gives

(7)

which we plug into Equation 5 to get

(8)

a linear system that we solve for since and are known.
This is then substituted back into Equation 7 to compute

If the constraints are over-determined, meaning that there is no
exact solution so that we are looking for one with least-squared
error, the multipliers are underdetermined. To handle this case, we
use a method known as damping or multiplier penalties [7] [14].
While this method has some numerical disadvantages, it has the
advantage that it merely replaces Equation 8 with

(9)

where is a small constant, and is the identity matrix. We pre-
fer this approach because it allows us to use any method we like to

5

i

1 2

1 2

1

·

•

•

•

•

•

•

•

•

∆ ∆

x x f x f x

x ∆

() = () + () ()

+

m α g α

κ κ
κ,

α α
α

6 Interface

7 Examples

5.3 Line Search

5.4 Performance

6.1 Visualization

To appear in the Proceedings of the 1997 Symposium on Interactive 3D Graphics

solve the positive-definite-symmetric linear system. We have cho-
sen a conjugate-gradient method [1]. This iterative algorithm al-
lows us to trade accuracy for performance and exploits the sparsity
in the matrix.

If our optimization problem were a quadratic program, computing
would provide the answer. For the non-linear problem, is

only a suggestion as to the best direction to search from the current
estimate. Because of the expense of computing the direction, it
is usually worthwhile to maximize its utility, by searching along
the direction. Because we are attempting to minimize the objective
and satisfy the constraints simultaneously, we select the step length
based on both of these. We define a merit function

(10)

that evaluates the quality of a solution. We find a value of the step
length that for which the new value minimizes the merit
function. The line search process tries various values of evaluat-
ing the merit function for each. We use a variant of Brent’s method
[17] to perform the line search.

There is a tradeoff between spending effort on computing step
directions and on making evaluations in the line search. For prob-
lems such as ours, some line searching is useful because evaluations
are much less costly than computing new step directions. Another
tradeoff in the line search process is to prefer solving the constraints
(reducing the magnitude of the residual) or minimizing the objec-
tive function. This tradeoff is controlled by choosing the values of
the constants and in Equation 10. We typically emphasize
the constraints by choosing a very small value for because their
error is much more noticeable than non-minimal objective values.

In order to provide interactive performance, we must be able to
solve the constrained optimization quickly. We must perform the
solve/redraw cycle many times per second, each solution cannot
take very long. Our entire approach is designed around these per-
formance needs. Some of these considerations:

the motion displacement maps enable the use of sparse keys,
which lead to fewer variables to solve for;

the user defined time range limits the scope of the computa-
tions;

the maintain/drag model leads to good starting points for the
numerical solutions;

the inexact nature of typical animation tasks means that im-
precise answers are acceptable. This allows the use of large
tolerances for stopping criteria and coarse sampling of the
variational constraints. We use iterative algorithms so that we
can trade accuracy for performance;

the simple objective function has a Hessian that is trivial to
evaluate and invert. While computing the sensitivities at the
beginning of each dragging operation can be expensive, it’s
impact on the condition of the linear system and quality of the
results are worthwhile, and it can be sampled sparsely to cut
computation cost.

The utility of good starting points creates a bit of a performance
paradox. If solutions are fast, the distance that the user can move
the mouse is smaller, so the required adjustments are smaller, so
the solution times are shorter. As solutions take longer, the user has

more time to move the mouse, creating larger adjustments, which
in turn require more time for solution.

During dragging, we have the greatest performance demands,
so we cut corners, using higher tolerances on the iterative solvers
and sparse sampling of the variational constraints. At the end of
the dragging operation, we perform a cleanup solution at the stan-
dard settings. While this sometimes leads to an undesirable pause
and jump, the differences between the fast and normal solutions are
typically small enough that it is not a problem.

Our spacetime constraints approach to motion editing has a num-
ber of challenges in the design of the interface for motion editing.
The user must be able to specify and adjust constraints over the en-
tire motion and see the results. Like most animation systems, our
prototype allows direct manipulation in multiple 2D and 3D views.

While our prototype system does not have a commercial quality
user interface, and has not yet been tested on animators, we have
tried to restrict ourselves to an interface design that could conceiv-
ably be used by someone other than a programmer. In particular,
our interface never presents equations to the user – all constraints
can be specified by direct manipulation (or through scripting), and
constraint are displayed graphically.

Providing feedback for motion editing is a tough task before we
add the additional complexities of constraints – there is a lot of data
that has meaningful temporal information. In our spacetime con-
straints editing approach, the visualization problem becomes even
more challenging. The constraints are yet another bit of informa-
tion that must be conveyed. Because a duration of the motion may
be affected by a dragging operation, it is even more important that
the user can see the changes over this entire duration as editing oc-
curs. Our system provides a number of simple tactics that the user
can employ:

the use of multiple windows, for example having a sec-
ond window showing the animation cycling while motion is
edited;

drawing multiple frames simultaneously to create a strobe ef-
fect, often using simplified drawing or transparency to reduce
clutter;

drawing streamers that trace the paths of points.

Representation of constraints is a challenging problem even in a
static scene. We prefer visual representations that display constraint
symbols in the locations that they act, as opposed to representations
that are separate. Designing a visual representation for constraints
requires trading off visibility of the constraints and their function
against clutter and visibility of the objects. When constraints from
multiple frames are shown simultaneously, the clutter problem be-
comes even worse, especially since different frames often have sim-
ilar constraints. Presently, we use extremely simple representations
for constraints and rely on selective display to manage interframe
clutter problems. Figure 2 and the color plate shows an example
that uses many of the visualization methods together.

In this section we provide some representative examples that we
have used with our system. All run in real time using our pro-
totype software on a Power Macintosh 8500/180 with a 180MHZ

6

Table 1:

Figure 2:

Range D.o.f.s
Keys

Frames total
drag

eval jac
solve step

SQP draw

To appear in the Proceedings of the 1997 Symposium on Interactive 3D Graphics

consts Time (msec.) Rate
Figure d.o.f.s keys frames total drag eval jac solve step SQP draw (fps)

1 2D Jump 9 7* 37 1025 514 2 2 7 19 57 23 10
3 2D Walk 14 12 81 2195 1125 4 6 34 115 360 63 2.5
2D Walk (range) 14 5* 81 (45) 2195 671 2 3 18 50 142 61 5
5 2D Slide 14 6* 55 1546 799 3 4 27 69 65 70 5
2 3D Walk 57 10* 88 2850 1440 7 17 12 139 284 58 3
6 3D Walk 35 10* 88 2811 1422 7 11 4 94 182 59 4

3D Slide 37 5 54 4176 2123 6 12 10 73 127 56 5
7 3D Thief 49 10 100 5921 1587 9 38 24 221 261 94 3

Examples discussed in this paper. examples limit to a smaller number of frames. are the number of degrees of freedom
used for the character in the example. are the number of B-Spline control points used in the displacement curve, an asterisk denotes
that one of the end frames is frozen. is the length of the motion. Both the number of constraints and the reduced number of
constraints used during dragging () are given and include the constraint used for manipulation. Timings are averages over all cycles
during a long dragging operation: is the time required to evaluate the constraint and objective functions, is the time taken to compute
the Jacobian of the constraints and the gradient of the objective, is the time to solve the linear system, is the amount of time for one
step of the SQP solver, is the time for solving the nonlinear programming problem, and is the time for the redraw required at each
cycle. For the 2D slide example, the solve times are misleading because the mouse sometimes did not move enough to require the solver to
take a step. The last column is the average frame rate during dragging.

(see color plate section for color version) Visualizing a spacetime constraint-based motion edit of a walking motion. Strobing (with
color alternation and transparency to help contend with clutter) and streamers (the thin lines following the feet and hand) are used to convey
the motion. The striped streamer shows the initial (pre-edit) motion. Dark symbols represent constraints.

7

x

1

1

Figure 4:

Figure 5:

7.1 2D Examples

7.2 3D Examples

To appear in the Proceedings of the 1997 Symposium on Interactive 3D Graphics

We thank Biovision Motion Capture Studios for providing us with this
sample data.

The example of Figure 3 is detailed. On the left, we see
frames near the edited step. Notice that the footplant constraint is
maintained as its position is moved. On the right, standard motion
displacement mapping techniques are applied to adjust the edited
frame. The method does permit the user to reposition the foot and
provides a smooth transition, however, because it only considers
constraints on one frame, the techniques achieve the edit by making
the character float into the new place.

PowerPC 604e microprocessor and a graphics accelerator for 3D
rendering. The constraint counts and timings for all examples dis-
cussed in this section are presented in Table 1. Timings are averages
over the many cycles during a long dragging operation. The time
for many parts of the computation, especially the iterative portions,
are highly variable and problem sensitive. We provide timings pri-
marily to compare the costs of various parts of our algorithm.

The images in the figures are taken from our prototype system,
but are not exactly what the user would see. The 2D images were
written out as Postscript with arrows added in a drawing program.
The 3D images are drawn with extra polygons to enhance their leg-
ibility, for example drawing tubes instead of lines.

Our first examples use a 2D human figure with 14 degrees of free-
dom (translation, orientation and 11 joint angles). The motions
were rotoscoped by manually tracking points and using a version
of our solver to compute an inverse kinematic solution that fills in
missing data and maintains continuity.

The jumping motion in Figure 1 has 37 frames (recorded at
15fps), and has the stick figures right and left arms tied together
(leading to a reduce number of degrees of freedom). Footplant con-
straints pin the foot position for the first 12 frames and force the
foot to be on the ground and not skidding for frames 24 through
37. This latter “floating footplant” constraint does not specify the

location of the footplant, but does insure that it is constant over
the 13 frames. Joint angles have upper and lower limits on each
frame. This adds up to 1025 constraints including the 2 used to
connect the hand to the mouse. The displacement curve is a cu-
bic B-Spline with 7 control points, although the first control point
is not permitted to change. For example 1, we alter the jump by
grabbing the character’s hand at the apex of the jump and pulling
it to a desired position. The inexpensive solution methods provide
an unrealistic solution that has the character snapping back to the
original position. By adding additional constraints, a better motion
can be achieved.

The walking example of Figures 3 and 4 have 81 frames, aug-
mented with footplant constraints and joint limits. The footplant
constraints have fixed positions. The example shows one dragging
operation where the user drags the position of one of the footplants.
To emphasize the difference between our approach and motion dis-
placement maps, consider their use on this problem, shown in Fig-
ure 4. Both approaches allow the footplant to be dragged at the

The first 55 frames of the walking motion of Figure 3 are
edited to have the character reach for a spot in the last frame. In this
example, the solver is permitted to adjust the footplant positions.
The dotted figures represent the original motion, the arrows indicate
the single constraint dragging operation. Notice that positioning the
characters hands not only causes him to lean forward but to take
larger steps as well.

given frame, but only ours can relocate the entire footplant with
one dragging operation.

In Figure 5, floating footplants are used. When the character’s
final destination is changed by dragging his hand in the final frame,
the lengths of the steps are made longer.

Our 3D examples use motion capture data . The model is taken
directly from the the motion capture format [18] and uses ball joints
throughout, leading to 57 degrees of freedom. This hierarchical
model is rooted at the pelvis and uses Euler angles for each joint.

For some examples, we treat the elbows and knees as planar
joints by preprocessing the motion to remove these degrees of free-
dom while maintaining end-effector positions. Some examples
omit the feet and/or hands from the figure. These examples con-
strain the ankle position rather than the heel and toe and the wrist
position rather than the fingertips. Although it detracts from the
realism of the motion even before editing, we use this simplifica-
tion because the reduced model is commonly used (for example by
[12]), data for the end-effectors is sometimes incomplete, and be-
cause it speeds the constraint solution.

As in the 2D examples, the 3D examples use footplant con-
straints to prevent skidding. Again, specific footfall positions can be
dragged, or floating footfalls adjust in response to other constraints.
Figure 2 shows a walking motion. The footplant constraints are at-
tached to the character’s heels, and additional constraints are used to
position the toe in a reasonable manner. It is these latter constraints
that make this example difficult. When the feet are removed, as
in Figure 6, solver performance improves. The 3D slide example,
mentioned in Table 1 but not pictured, is analogous to the 2D ex-
ample of Figure 5.

The thief of Figure 7 provides a more challenging example. The
motion captured data has the thief approach, pick up, and run away
with a treasure. We add constraints that ensure that the thief’s hands
are at the location of the treasure at the moment he picks it up, that
the hands stay the correct distance apart while he carries the trea-
sure, that his feet do not skid while he is on the ground, and his
joints do not go beyond their limits. With these constraints, we are

8

=f ma,

Figure 3:

Figure 6:

Figure 7:

8 Discussion: Is this Spacetime?

To appear in the Proceedings of the 1997 Symposium on Interactive 3D Graphics

A walking motion is shown on the left by “strobing.” The character is made to step over an obstacle by dragging the location of
the footplant constraint.

Adapting a walk without feet. The motion of Figure 2 is
used with the character’s feet removed. All constraints are applied
to the ankles, which float above the floor. The footplant in the lower
right of the image has been dragged. The dark traces show the
motion of the head and foot, the striped traces show the original
motion.

The thief bends down, picks up the treasure, and carries
it away. Constraints ensure that the thief’s feet do not slide, that
the thief picks up the treasure at the correct spot, and that his hands
stay the correct distance apart. These constraints are maintained if
the treasure is moved.

able to reposition the treasure and have the motion adapted auto-
matically. For the thief example, we use even coarser sampling of
the variational constraints and larger tolerances to achieve interac-
tive performance.

At this point, it should be clear that our formulation is very different
that previous spacetime approaches. In particular, we have given up
the seemingly most prominent feature of previous spacetime work:
physics and energy minimization. In our view, energy minimiza-
tion is just one possible objective, in fact, one that is hard to justify
for real characters. Ideally, we would like our objective functions
to provide the animator with “director level controls” – specifying
meaningful attributes such as “gracefully,” “as if you were scared,”
or even “like Charlie Chaplin.” While such objectives were antic-
ipated by Witkin and Kass’ original paper [20], these meaningful
quantities seem hard to encode mathematically. In a sense, we pro-
vide the user with the ability to describe any of these objective func-
tions by example. If the user desires a graceful walk, they can begin
with a graceful walk.

A more serious omission is the lack of Newton’s laws in our sys-
tem. It is all too easy to make a character appear to fly through
space, or make some other violation of physical law. At one level,
these are simply constraints and could be added in. In fact, using
finite different approximations for the time derivatives, adding con-
straints that and for gravity is a simple addition. Part
of our reluctance to include these constraints is computational: not
only will they add to our already large numbers of constraints, but
the physics constraints have structure that appears to make solution
of the optimization problems much more difficult. Also, these con-
straints take control away from the animator – maybe the character
is supposed to fly through space. In practice, we aim to find con-
straints that allow the animator to include elements of physicalness
as desired, for example to keep the character from passing through
the floor. In the future, we hope to find more ways to help prevent
the animator from accidentally destroying the physicalness, or other
desirable characteristics, of the motion.

There are many potential improvements to our implementation.
Some obvious ones are the use of automatic adaptive subdivision
to add a sufficient number of control points (as in [13]), the use of
special purpose methods for evaluating the derivatives of kinematic
chains more rapidly (like those employed by [12]), addition of con-
straints for balance (as in [16]) and better use of transparency and
texture for constraint display. However, when considering richer
optimization objectives and constraints, we must be careful not to
violate the simplifications that make interactive performance possi-
ble on spacetime problems.

9

References

Acknowledgments

To appear in the Proceedings of the 1997 Symposium on Interactive 3D Graphics

Templates for the
solution of linear systems: Building Blocks for Iterative Meth-
ods

SIGGRAPH 95 Conference Pro-
ceedings

Computer Graphics (SIG-
GRAPH ’92 Proceedings)

Practical Methods of Optimization

Practical
Optimization

Computer Graphics (1992
Symposium on Interactive 3D Graphics)

A Differential Approach to Graphical In-
teraction

Proceedings of Graphics Interface ’93

Mathematical Programming: Recent
Developments and Applications

SIGGRAPH 95 Conference
Proceedings

SIG-
GRAPH 96 Conference Proceedings

SIG-
GRAPH 94 Conference Proceedings

Advanced Robotics: Redundancy and
Optimization

Computer Graphics (SIG-
GRAPH ’93 Proceedings)

Computer Graphics (Proceedings SIGGRAPH 91)

Numerical Recipes in C

Computer Graphics (SIG-
GRAPH ’93 Proceedings)

Computer Graphics (SIGGRAPH ’88 Pro-
ceedings)

SIGGRAPH 95 Conference Proceedings

There is a tradeoff between having constraints and objectives that
are better able to compute better edits and having a simple enough
problem to solve at interactive rates. In this paper, we have cho-
sen the latter approach. Our system allows editing motions such
that they meet new constraints but maintain essential features of
the original. While the solutions may not always be perfect, they
are computed rapidly enough to permit the user to interactive guide
the system to an acceptable solution by adding more constraints or
adjusting existing ones. Our examples demonstrate that even on a
personal computer we can achieve interactive rates with our current
prototype.

I would like to thank Pete Litwinowicz for getting me interested in
motion reuse, suffering with early versions of the software, roto-
scoping the 2D motions, and jumping in front of the camera (for
Figure 1). The people of BioVision Motion Capture Studios gener-
ously provided the sample motion and file format assistance. Pablo
Fernicola of Apple’s Quickdraw 3D team helped with my use of
the graphics library. Sebastian Grassia at CMU offered helpful ad-
vice on numerics and articulated figures. Gavin Miller, Dulce Pon-
celeon, and Yalin Xiong offered advice on the writing.

[1] Richard Barrett, Michael Berry, Tony Chan, James Demmel,
June Donato, Jack Dongarra, Victor Eikhout, Roldan Pozo,
Charles Romine, and Henk van der Vorst.

. SIAM, 1994.

[2] Armin Bruderlin and Lance Williams. Motion signal process-
ing. In Robert Cook, editor,

, Annual Conference Series, pages 97–104, August
1995.

[3] Michael F. Cohen. Interactive spacetime control for anima-
tion. In Edwin E. Catmull, editor,

, volume 26, pages 293–302, July
1992.

[4] Roger Fletcher. . John Wi-
ley and Sons, 1987.

[5] Phillip Gill, Walter Murray, and Margaret Wright.
. Academic Press, New York, NY, 1981.

[6] Michael Gleicher. Integrating constraints and direct manip-
ulation. In David Zeltzer, editor,

, volume 25, pages
171–174, March 1992.

[7] Michael Gleicher.
. PhD thesis, School of Computer Science, Carnegie

Mellon University, 1994.

[8] Michael Gleicher and Peter Litwinowicz. Constraint-based
motion adaptation. Technical Report 153, Apple Computer,
June 1996.

[9] Michael Gleicher and Andrew Witkin. Supporting numerical
computations in interactive contexts. In Tom Calvert, editor,

, pages 138–145, May
1993.

[10] Andreas Griewank. On automatic differentiation. In M. Iri
and K. Tanabe, editors,

, pages 83–108. Kluwer Aca-
demic, 1989.

[11] Radek Grzeszczuk and Demetri Terzopoulos. Automated
learning of Muscle-Actuated locomotion through control ab-
straction. In Robert Cook, editor,

, Annual Conference Series, pages 63–70, August
1995. held in Los Angeles, California, 06-11 August 1995.

[12] Brian Guenter, Charles F. Rose, Bobby Bodenheimer, and
Michael F. Cohen. Efficient generation of motion transitions
using spacetime constraints. In Holly Rushmeier, editor,

, Annual Conference Se-
ries, pages 147–154, August 1996.

[13] Zicheng Liu, Steven J. Gortler, and Michael F. Cohen. Hier-
archical spacetime control. In Andrew Glassner, editor,

, Annual Conference Se-
ries, pages 35–42, July 1994.

[14] Yoshiko Nakamura.
. Addison-Wesley, 1991.

[15] J. Thomas Ngo and Joe Marks. Spacetime constraints re-
visited. In James Kajiya, editor,

, volume 27, pages 343–350, Au-
gust 1993.

[16] Cary Phillips and Norman Badler. Interactive behaviors for
bipedal articulated figures. In Thomas W. Sederberg, edi-
tor, , vol-
ume 25, pages 359–362, July 1991.

[17] William Press, Brian Flannery, Saul Teukolsky, and William
Vetterling. . Cambridge University
Press, Cambridge, England, 1986.

[18] BioVision Motion Capture Studios. BVH motion file format
specification, 1996.

[19] Michiel van de Panne and Eugene Fiume. Sensor-actuator
networks. In James Kajiya, editor,

, volume 27, pages 335–342, Au-
gust 1993.

[20] Andrew Witkin and Michael Kass. Spacetime constraints. In
John Dill, editor,

, volume 22, pages 159–168, August 1988.

[21] Andrew Witkin and Zoran Popović. Motion warping. In
Robert Cook, editor, ,
Annual Conference Series, pages 105–108, August 1995.

10

