
SCALABLE, CONTROLLABLE, EFFICIENT AND CONVINCING CROWD

SIMULATION

by

Mankyu Sung

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2005

c© Copyright by Mankyu Sung 2005

All Rights Reserved

i

To my family and parents.

ii

ACKNOWLEDGMENTS

First of all, I would like to appreciate my advisor, professor Michael Gleicher for being such

a wonderful advisor. Throughout my research, his patience, care and support helped me get over

many hurdles during my graduate years. He always gave me freedom to pursue my own research

topic and gave me precious intuitions and guidance that I would not get from any other person.

I only hope that I can have a chance to practice what I learned from him to my own students

or colleagues. I also would like to thank all my committee members, professor Stephen Chenney,

Chuck Dyer, Nicolar Ferrier and Jerry Zhu. Special thanks to professor Chenney for his willingness

to discuss about research and help on writing papers.

Second, I appreciate my parents, who supported and granted me when I decided to go overseas

for my studying. At the age of 30, it was not easy decision for me to go back to school, but

they always believed in me, and that belief motivated me to keep continuing the “not-always-fun”

graduate studies.

I would like to thank all UW graphics group members, including Michael(another Michael),

Rachel, Tom, Greg, Feng, Yu-Chi, Shaohua, Gudong and old members, Lucas, Alex and Eric

for making such a fun environment to work. I strongly believe that our open-lab style is the best

environment for graduate students. We can discuss about our own research together, cheer up when

we are depressed and have fun together for relax. In addition to our group members, I also thank

one of the my co-workers, undergraduate student Aaron, for his hard working of visualization of

crowd simulation through a game engine. Although they are not in our lab anymore, I would

like to thank former post doctor, Dr. Hyunjoon Shin for allowing me to use his Snap-Together-

Motion system and Dr. Lucas Kovar for helping me on writing a paper and preparing conference

iii

presentation. Rachel, Tom and Greg helped a lot on proofreading of this dissertation. I appreciate

them again.

Finally, I should mention my wife Sungeun. Without her, I don’t think I could go through

the graduate study here. I really understand that it was not easy to be a fulltime housewife for a

graduate student husband and a full time mom for two children at the same time. But, she has

sacrificed her personal life and always been a good mom for children and a wonderful wife for me.

Thanks, Sungeun. This dissertation is for you. Last but not least, my two little angels, Hyunju and

Hyunji, helped me to overcome hard time by showing me their beautiful smiles. Girls, I love you!

DISCARD THIS PAGE

iv

TABLE OF CONTENTS

Page

ABSTRACT . vii

1 Introduction . 1

1.1 What Are a Crowd and a Crowd Simulation? . 1
1.2 Motivation . 2
1.3 Challenges . 3
1.4 Complexity . 3
1.5 Research Goal . 4
1.6 Existing Methods . 7
1.7 What Makes a Crowd as a Crowd? . 9
1.8 Thesis Statement . 10

1.8.1 The High-Level: Situation-Based Simulation 10
1.8.2 The Low-Level: Motion Synthesis . 12
1.8.3 Demand Satisfaction of Two-Level Simulation Framework 15

1.9 Contributions . 16
1.10 Outline of Thesis . 16
1.11 Overview . 17

1.11.1 Situation-Based Simulation with Probability Scheme
(Chapter 3) . 17

1.11.2 Collision Detection Using MOBB Trees (Chapter 4) 19
1.11.3 Constrained Motion Synthesis (Chapter 5) 20

2 Related Work . 22

2.1 Animating Human Characters . 22
2.1.1 Graph-Based Motion Synthesis . 25

2.2 Crowd Modelling . 28
2.3 Crowd Rendering . 31
2.4 Collision Detection . 32
2.5 Commercial Software . 33

v

Page

3 Situation-Based Simulation with the Probability Scheme 35

3.1 Introduction . 35
3.2 Probability Scheme . 39

3.2.1 Behavior Functions and Behavior Composition 39
3.2.2 Default States and Behaviors . 42

3.3 Situation and Pluggable Character Architecture 44
3.3.1 Virtual Sensors and Memory . 47
3.3.2 Situation Composition . 49

3.4 Painting Interface . 49
3.5 Experiments . 50

3.5.1 Street Environment . 51
3.5.2 Theater Environment . 53
3.5.3 Field Environment . 55
3.5.4 Validation . 56

3.6 Discussion . 59

4 Collision Detection Using MOBB Trees . 61

4.1 Introduction . 61
4.2 MOBB Trees . 64

4.2.1 Fitting MOBB Trees . 65
4.2.2 Intersection Testing . 67

4.3 Unrestricted MOBB Trees . 68
4.4 Validation . 69
4.5 Discussion . 72

5 Constrained Motion Synthesis . 79

5.1 Introduction . 79
5.2 Synthesizing Motion . 81

5.2.1 Overview . 81
5.2.2 Creating the Seed Motions . 85
5.2.3 Adjusting and Merging the Seed Motions 87

5.3 Validation . 90
5.4 Discussion . 98

6 Validation . 101

6.1 A Virtual City . 101

vi

Appendix
Page

6.2 Results . 102
6.3 Discussion . 110

7 Conclusion . 112

7.1 Summary . 112
7.2 Applications . 114
7.3 Limitations and Future Work . 116

7.3.1 Limits of the two-level crowd simulation framework 116
7.3.2 Expressiveness . 117
7.3.3 Limits to Motion Data . 118
7.3.4 Off-line Constrained Motion Synthesis 119
7.3.5 Character Rendering . 119
7.3.6 Intuitive User Interface . 120

LIST OF REFERENCES . 121

APPENDIX Behavior Functions . 129

vii

ABSTRACT

Crowd simulation is a difficult task — not only because we require extra computational time for

simulating a lot of characters, but also because the crowd behaviors are highly complex and it is

hard for them to maintain convincingness. We establish four specific demands that good-quality

crowd simulation should satisfy, which are scalability, controllability, efficiency and convincing-

ness, and propose a novel two-level crowd simulation framework that satisfies these demands at

the same time.

At the high-level, we adopt a distributed crowd control mechanism called asituationin which

environmental-specific or social relationship-specific information is automatically added to char-

acters when they are in the situations. At the low-level, and in relation to the applications, the

probability schemeor theconstrained motion synthesisis called to synthesize motions for each

individual character. The probability scheme, which computes the probabilities of all available

actions and selects the next action through random sampling, facilitates simulation of the short-

term aggregate behaviors. On the other hand, the constrained motion synthesis, which synthesizes

motions that meet constraints, is useful when the behaviors need long-term planning. In addition,

we address the issue of fast collision detection between motions and, therein, propose theMOBB

(Motion-Oriented Bounding Box)tree representation of motions, which simplifies a motion into a

simple bounding box in a spatio-temporal domain. Given the two bounding MOBB trees, the in-

tersection between two bounding boxes is tested hierarchically from the top node to the leaf node,

viii

and this outcome minimizes the number of tests, which makes collision test fast. To validate the

satisfaction of the four demands, we perform a series of experiments.

1

Chapter 1

Introduction

This thesis proposes a novel method for simulating 3D virtual crowds that is scalable, efficient,

controllable and convincing. As a starting point for our dissertation about the proposed method,

this chapter defines the research problems and clarifies the thesis statement.

First, section 1.1 definescrowdsandcrowd simulation. Next, section 1.2 explores the moti-

vation underlying this research by presenting potential applications of general crowd simulation.

Section 1.3 describes the challenges of crowd simulation. Section 1.4 defines the environmental

complexity and the density of crowds, which are important criteria to test the performance of sim-

ulation. Section 1.5 presents specific research goals of this thesis. Section 1.6 overviews existing

methods and categorizes them. Section 1.7 lists the typical features of crowds that we exploit in

our simulation. Section 1.8 presents our research statement and briefly introduces the proposed

methods. Section 1.9 summarizes the contributions of this dissertation. Section 1.10 gives the

outline of this dissertation. Section 1.11 briefly introduces the subsequent technical chapters.

1.1 What Are a Crowd and a Crowd Simulation?

This section defines the termcrowd and explains whatcrowd simulationmeans in relation to

computer graphics.

2

In general, acrowd is “a large group of individuals in the same physical environment sharing a

common goal who may act in a different way rather than when they are alone” [TKOR05]. Crowds

are ubiquitous in real life. Hence, according to the paper of Ulicney and Thalmann [UT01],

crowds have become an important research area for many scientists since the nineteenth century.

In particular, from the perspective of computer graphics research,crowd simulationrefers to an

artificial creation of virtual crowds that mimic the behavior of real crowds. More specifically, our

simulation focuses on themotion generationof individual characters. Thebehaviorof a character,

in this context, is then defined as change of motion choice that the character makes over time.

Therefore,crowd simulationis defined as the collection of every individual’s behaviors over time.

1.2 Motivation

This section explores the motivation underlying our research by enumerating important crowd

simulation applications.

Because we can see crowds anywhere at anytime, crowd simulation is vital in many virtual en-

vironment applications that concern education, training, and entertainment. For example, a movie

might use a special effect to create a battle scene where many characters are fighting each other.

A virtual environment, such as a city for training fire fighters, will look more convincing if there

exists a large crowd populating the environment, just as in real cities. In architecture, crowd is

also an important factor for designing a building or for urban planning. Computer games, war-

strategy games in particular, require many characters that interact with each other and that exhibit

high-level behaviors, such as grouping or separating. In light of these specific applications and the

impressive demand for graphics content, there is every reason to believe that demand for simulated

crowds will grow in the future.

3

1.3 Challenges

Although crowd simulation can be applied to a wide range of applications, there are several

challenges that make high-quality crowd animation a difficult task to carry out. First, crowd be-

haviors are complex because so many factors affect them all the time. Second, it is not easy to

maintain the real-time performance of a large simulated crowd. Third, crowd behavior must be

visually and semantically plausible during simulation, even when we simulate a large number of

characters. Fourth, the collision between characters should be checked fast and efficiently. Finally,

we would also like to control the actions of the crowd, but we don’t want to control every character

individually. Coming up with control mechanisms that reduce the number of control parameters

for simulating crowds is hard.

1.4 Complexity

Crowd simulation heavily depends on the complexity of the environment and the density of the

crowd. The density of a crowd and the complexity of an environment are defined as follows:

• Density of a crowd: The density of a crowd in an environment can be computed as the

ratio of the summation of each character’s size against the total walkable area of the envi-

ronment. The density of a crowd is proportional to the number of characters in a given fixed

environment.

• Environmental complexity: Environmental complexity depends on how many local be-

haviors are needed in the environment. A local behavior is defined as a behavior that is

needed only for specific areas of the environment or a behavior that only works for some

specific individuals of the crowd. Therefore, the number of local behaviors depends on how

many stuff there is in the environment and also depend on how many social relationships the

4

crowds have. For example, consider a street environment; if there are a lot of objects in the

environment, such as crosswalks, newspaper venders, vending machines, stores, benches,

buildings and parks, then the number of local behaviors also increases because people show

different behaviors when they meet different objects. Therefore, environmental complexity

is proportional to the number of objects in the environment. For testing the performance of

a crowd simulation, we define thephysicalcomplexity of an environment more specifically

as a ratio of the area of all obstacles against the total area of the environment. Thus, as the

total area of all of the obstacles in an environment increases, the physical complexity of the

environment also increases.

1.5 Research Goal

In this research, we define “high-quality” crowd simulation as simulation that meets four spe-

cific demands. These demands arescalability, efficiency, convincingness, andcontrollability. The

hypothesis of this thesis is that satisfying these four demands can result in high-quality crowd sim-

ulation.The research goal of this thesis is to propose a method that meets these four demands

at the same time.

It is critical that this thesis should define these demands with greater precision:

• Scalability: Scalability is the major demand of this research. It is the ability of a crowd

simulation to continue to function well when the environment becomes more and more com-

plicated.

The satisfaction of this demand makes it possible that an increasingly complex environment,

where many complex behaviors are needed, can be created without a corresponding increase

5

in the complexity of the characters. This demand requires that the information that a charac-

ter stores in his or her own data storage should gradually increase or decrease depending on

the complexity of the current situation.

Because we do not want to store all information in the character architecture, this demand

makes characters to be as generic as possible. This allows the crowd to adapt themselves to

various kinds of environments automatically without requiring each character’s architecture

to undergo changes. For instance, introducing a generic crowd from a shopping mall environ-

ment into a theater environment should not necessitate changes in a character’s architecture.

The more specific demands require the following:

- Scalable character memory: The amount of memory a character uses does not increase

proportionally to the complexity of an environment.

- Scalable authoring: A simulation can be authored in a scalable way if (1) the global

simulation divides into a small set of local simulations, (2) the design of each local

simulation can be done using a simple user-interface, and (3) simple copy-and-paste

techniques allow each local simulation to be reused for other purposes.

• Efficiency: Efficiency is defined by how fast an algorithm can be performed given a fixed

amount of computing power. In particular, we require a crowd simulation that satisfies the

following three efficiency demands.

- Fast motion synthesis:Given initial and target constraints, such as a pose, position, ori-

entation and time duration, an algorithm must synthesize the motions that meet those

constraints in real time or without any noticeable time delay.

- Fast collision detection: The detection and the avoidance of both inter-character collision

and collision between characters and virtual objects should be efficient. In particular,

6

the inter-character collision testing speed should be faster than simple frame-by-frame

method.

- Fast simulation performance: Overall simulation performance should increase linearly

as we increase the number of characters.

The speed of a crowd simulation algorithm is affected by the density of the crowd and the

physical complexity of the environment. For validating the efficiency demands, experiments

should explicitly specify the density of the crowd and the physical complexity of the envi-

ronment.

• Convincingness: Convincingness is defined as the ability to cause viewers to believe specific

aspects of a crowd. Our demand for convincingness means that a crowd should behave

convincingly during simulation in the following two specific areas:

- Visually convincing behavior: Visually convincing behavior refers to the realistic mo-

tions of crowds. In particular, visually convincing behavior should guarantee that there

are no significant visual artifacts, such as discontinuities, foot-skating, inter-character

collisions, or collisions between characters and environmental obstacles.

- Semantically convincing behavior: Semantically convincing behavior is behavior that strikes

one as reasonable for any given time. Reasonable behavior depends on the animator’s

intention for crowd control. That is, if an animator wants to see a particular crowd

behavior at a particular place, the crowd should exhibit that behavior when they are at

that place. For example, if an animator wants to see characters crossing a street when

on a crosswalk, they should exhibit such behavior when they are on the crosswalk.

7

• Controllability : Controllability is the animator’s ability to specify crowd behaviors by set-

ting constraints. The constraints in our approach include high-level constraints, called sce-

narios, for controlling the overall crowd without considering specific individuals, and low-

level constraints, such as position, orientation, time duration and pose, for specific individu-

als.

A high-level scenario constraint specifies the order of a crowd’s behaviors. For example, a

theater-themed scenario should specify that people must buy a ticket at a ticket booth, enter

the lobby, hang around in the lobby before the movie begins, and finally enter the theater and

watch the movie, in that order. One requirement for this high-level scenario constraint is that

the scenario should account for the variety in a crowd, meaning that not all people should

act in the same way.

Low-level character constraints require a fast, accurate motion-synthesizing technique, mean-

ing synthesized motions satisfy the constraints exactly and the synthesizing time is fast.

Controllability is closely related to the user-interface problem because the former needs both

authoring tools to specify behaviors and special data structures to set constraints automati-

cally for each individual.

1.6 Existing Methods

In recent years, several researchers have proposed different methods related to crowd sim-

ulation. These approaches can be categorized intocrowd modelling, which proposes computa-

tional models for crowds [FTT99, WCP∗, AC01, Rey87, FMS00, MT01, HM95, HFV00, BC97,

GLM99, BMdB03], smart environments, where the integration of environment-related information

into a character’s knowledge structure gave rise to proper character behaviors [FBT99, TLCC01,

8

FMS98], andcollision detection, which made the fast identification of collisions between charac-

ters possible [KKS03, RKL∗04].

Most of these approaches were application specific, focusing on different aspects of the crowd.

As a result, they employ different techniques ranging from those that treat individuals as a flow to

those that represent each individual as being controlled by rules based on either physical laws or

behavioral models [UT01].

Application-specific approaches may meet some particular demands but fail to satisfy our four

demands simultaneously. This failure stems from the following reasons:

• Lack of generality: Most previous approaches have focused on specific environments.

Therefore, the simulated crowds were not applicable to a general environment. For example,

Helbing et al.’s crowd-modelling technique was applicable only to a panic or emergency sit-

uation [HM95, HFV00]. To be useful in other environments, the crowds would have to go

through a complicated re-design process.

• Lack of behaviors: The previous approaches ignored not only the high degree of com-

plicatedness characterizing crowd behaviors but also how the environment affects crowd

behaviors. As a result, only a small set of simple behaviors can be simulated in these ap-

proaches [Rey87, MT01].

• Lack of convincingness: Previous approaches did not account for the details of each charac-

ter’s motions. Even though some researchers have adopted 3D characters and animation, the

resulting motion quality is insufficiently convincing because the motions are created from

simple motion-synthesis techniques, for instance, key-framed animation, a small number of

motion captured examples or image-based character animation; all of these techniques have

limitations in convincingness [MT01, UCT04, TLC02a, SMH05].

9

1.7 What Makes a Crowd as a Crowd?

In developing an efficient method for crowd simulation, the first step is to observe real crowds

and then identify their behavioral features so that simulations can exploit these features. The most

typical features are the following:

• Anonymity : When we see a big crowd, it is hard to distinguish one particular individual

from the others. That is, aggregate behavior of the crowd is more important than what each

individual does is. Owing to this anonymity, viewers are attentive to the overall statistics of

a crowd: the overall direction in which crowds are moving or the number of people waiting

for a bus. Hence, the motions of an individual matter only in their short-term contribution to

a crowd’s behavior.

• Locational and social-relation effects on crowd behaviors (Locality): Crowd behaviors

are complicated in that some behaviors are global and unchanging whereas other behaviors

are local and temporal. For instance, thewalking-straightbehavior is a global behavior

because it can be shown at any time in crowds. But thewalking-togetherbehavior is a local

behavior because it is needed only when an individual is walking with other individuals.

Similarly, walking-by-checking-the-traffic-signalis necessary only when individuals want to

cross the street. Most of the time, crowd behaviors are mixed with both global behaviors and

local behaviors. The problem of which behaviors subsume other behaviors is dependent on

an individual’s location and social status relative to other individuals. For example, when the

crowd is located at a crosswalk, the walking-by-checking-the-traffic-signal behavior is more

prominent than the walking-straight behavior. From this observation, we determined that the

crowd needs only a few local behaviors at any given time and that its behaviors depend on

an individual’s location and social status relative to other individuals.

10

• Variety : Various events occur in an environment; moreover, people have different responses

to the same event. For example, in the event that people meet a crosswalk, some people

might use the crosswalk while the others might avoid the crosswalk. When people visit a

museum, some of them show an interest in a painting by standing in front of it and by looking

at it for a long time, but still others just pass by the same painting without even looking at it.

1.8 Thesis Statement

This research presents a novel two-level crowd simulation approach that meets four demands at

the same time. By using this method, animators can create convincing yet controllable behaviors

for characters without requiring character complexity to increase drastically when the complexity

of the environment does.The thesis of this dissertation is that convincing and controllable

crowd behavior can be simulated through a scalable and efficient two-level crowd simulation

approach.

The two-level simulation method consists of a high-level and a low-level part. The basic in-

tuition underlying the two-level crowd simulation is, itself, bi-fold; the high-level part provides

crowds with all the required information about the current status of their environment (includ-

ing information about other characters), and then the low-level part synthesizes motions for each

individual by using that information.

The overview of the two-level simulation approach is described in Figure 1.1. The next section

briefly describes the two-level crowd simulation framework.

1.8.1 The High-Level: Situation-Based Simulation

At the high level, we adopt a distributed control mechanism, called asituation, which gives

crowds specific details about how to react at any given moment. The main inspiration for the

situation-based approach is the anonymity feature of crowds (Section 1.7). When we look at a

11

Situations

 Constrained

Motion Synthesis
Probability Scheme

High Level

Low Level

Time

Short Term Long Term

Collision Avoidance

Behaviors, Sensors, Actions, Rules Constraints

Motion Synthesis

Animator

Figure 1.1: At the high-level, situations provide all the necessary information to characters for simulating

local behaviors. Then, at the low-level, depending on the applications, the crowd simulation generates

motions for individuals by using one of these two approaches either the probability scheme, which computes

probabilities over all available actions and composes them to select one next action, or the constrained

motion synthesis, which synthesizes motions that meet constraints.

crowd, we care only aboutwhat is happening with them, not aboutwho is doing the what. Hence,

the behavior of the crowd should be driven by situations – what is happening – and not by individ-

uals. To specify what is happening in a particular situation, we use the locality feature of crowds

(Section 1.7); crowd behaviors depend on location and social relationship. Specifically, we ensure

that the situation contains information such as (1)local behavior functions that implement the con-

ceptual notion of behaviors by computing probabilities of all actions, (2)local actions, which are

motion clips that are only needed for the situation, (3)sensors for catching events happening in the

12

environment, (4)rules for determining any subsumption between behaviors and (5)constraints like

particular target positions, orientations, time duration or poses. When a character enters a situation,

to make the character exhibit proper behaviors, the situation extends the character by adding rele-

vant information. Once he or she exits the situation, the situation removes that information from

the character. In this manner, characters carry information only about situations they are currently

under. This feature enables us to simplify the character architecture and to render it adoptable in a

wide variety of environments.

The environment can include cases where several situations influence the crowd simultane-

ously. For this case, it is possible to compose multiple situations that emulate a complex situation.

To specify a particular situation in an environment, we adopt a simplepainting interface. By

drawing the situation on the environment directly, animators can effectively specify both regions

on which a situation takes effect and a particular group of characters that have a social relationship.

In addition, animators can connect situations as a graph structure to represent an order of sit-

uations that a crowd follows. In this graph, a node represents a situation and a directed edge

represents an order between two situations. By traversing the graph, we can specify a scenario

for controlling crowd flow. For example, we can connect two situations with an edge, and when

a character enters one situation, then we can get a random position of the other situation and set

the position as a target position for the character. By using a specific behavior function which is

provided from the situation, we can make the character move to the target position.

1.8.2 The Low-Level: Motion Synthesis

Given the information provided from high-level situations, each character synthesizes motions

at the low-level. In this motion-synthesizing procedure, the low-level part adopts the graph-based

motion-synthesizing algorithm [GSKJ03] where each node of a graph is a common pose and edges

of the graph represent short motion clips that connect two nodes. Basically, the graph-based motion

13

synthesis creates motions by selecting one edge from the current node and playing a motion clip

that corresponds to the selected edge. Therefore, the main job of the low-level part is to select

the current node of a motion graph for a character and to make a selection for the next action

(edge). For action selection, we use two different mechanisms called theprobability schemeand

the constrained motion synthesis. Depending on the application, our algorithm chooses between

the probability scheme and the constrained motion synthesis to synthesize motions. The main ideas

underlying our use of the two action-selection mechanisms are as follows:

• Probability scheme: Because of the anonymity feature of crowds (section 1.7), we can-

not predict certain aspects of an individual’s movement. Also, because of the variety fea-

ture(section 1.7), even when we know him or her well, his(her) motions are hard to be antic-

ipated. This lack of predictive power motivates the probability scheme. Because we are un-

sure of an individual’s movement, we model the movement probabilistically. The probabil-

ity scheme computes the probabilities of all available actions by accounting for information

from current situations, and selects one action through random sampling. The probability

scheme can take into account of the various features of crowds (section 1.7). That is, since

we select the next action through random sampling, not all people select exactly the same

actions.

Identifying which action’s probability is higher than the other actions’ probabilities is de-

termined by what behavior needs to be shown for the character at that time. In section 1.7,

we note that, with regard to crowds, individuals’ short-term behaviors are more evident than

individuals’ long-term planning. Therefore, the probability scheme is good for simulating

short-term behaviors where each character does not have specific target constraints, such as

a particular position or orientation. A crosswalk where many people are either waiting for

a traffic signal or crossing the street exemplifies a scenario where the probability scheme is

14

useful. In this scenario, it does not matter which character arrives at a particular spot on the

other side of the road so long as someone can actually use the crosswalk to cross the street.

• Constrained motion synthesis: If a character needs to arrive at an exact position or if he or

she wants to sit down on a chair, the probability scheme fails to generate motions because

it needslonger planning on motions. Such planning should find a combination of motions

that satisfies the constraints. The constrained motion synthesis, which is another motion-

synthesizing technique, is useful for this case. Given constraints (position, orientation, pose

and time duration) provided from the current situation or from the animator, the constrained

motion synthesis performs random searches on a motion graph to find a path (a series of

edges on the graph) close to the solution, and then continuously adjusts the path so that the

path satisfies the constraints exactly. Thus, the constrained motion synthesis is good for

long-term behaviors corresponding to a series of action choices that should be figured out

beforehand.

One important component of this two-level crowd simulation is collision avoidance. The col-

lision avoidance is very important because the collision, itself, is a very noticeable artifact that

affects the visual convincingness. Our two-level crowd simulation framework proposes a collision

data structure called the MOBB (Motion Oriented Bounding Box) tree. The MOBB is a space-time

variant of OBB (Oriented Bounding Box) trees for fast collision checking between two motion

data, where the whole motion is divided hierarchically and each node of the tree contains a time

interval as well as the geometrical extent of characters’ motion (bounding box) during the time in-

terval. Because the child nodes are checked only when the parent node causes a collision, we can

reduce the number of collision tests significantly. The collision testing occurs during the low-level

motion synthesis process. If an action causes any collision between characters, the constrained

15

motion synthesis does not choose the action, or the probability scheme sets a zero probability on

the action.

1.8.3 Demand Satisfaction of Two-Level Simulation Framework

The high-level situation-based simulation technique satisfies the scalability demand because

characters are under only a few situations at the same time and their complexity depends only on

how many situations they are in at that time. Once a character is not under a certain situation

anymore, all information related to that situation is automatically removed from the character’s

structure, minimizing the information stored in character memory (scalable character memory de-

mand). Because a situation encapsulates all required information for the control of particular local

behaviors as a single unified structure, animators can easily create new situations by simply modi-

fying existing situations and can create a big environment in a scalable way; we simply add more

situations to the environment as we need them (scalable authoring). And by using the situations,

we can display semantic convincingness as well; people will exhibit reasonable behaviors when

they are in a particular position. A situation graph, which specifies the order of situations, improves

the controllability demand because we can control crowd flow by traversing the situation graph.

When animating characters, the use of both motion-capture data and a graph-based motion-

synthesis algorithm guarantees the high-quality of motion, contributing to visual convincingness.

Use of the probability scheme at the low-level draws various responses from characters because

the action-selection is determined in a stochastic way. This stochastic action selection improves

the convincingness demand because it makes possible a situation in which not all the characters

exhibit the same action-selection pattern over time. The constrained motion synthesis for long term

behaviors is useful for the controllability demand; the animator can locate characters anywhere he

or she wants in the environment through the algorithm.

16

A fast random search method on the motion graph for finding a path that meets constraints and

fast collision detection through an MOBB tree improves the efficiency requirement.

1.9 Contributions

In this section, we summarize the technical contributions that we make throughout this disser-

tation.

1. Scalable, controllable and convincing framework of crowd simulation (Chapter 3).We

introduce a two-level crowd-simulation framework. At the high level, situations control

the local behaviors of crowds by adding information to crowds when they are under these

situations. At the low level, depending on the application, either the probability scheme or

the constrained motion synthesis is used for the synthesizing of motions. By performing a

series of experiments, we have validated that this framework has advantages in scalability,

efficiency, controllability, and convincingness.

2. Fast collision detection between motions (Chapter 4).We propose a novel MOBB tree

representation of motions for fast collision detection between two motion data.

3. Fast and accurate goal-directed motion synthesis for crowds (Chapter 5).We present a

novel, fast, and accurate motion-synthesis algorithm. By performing a random search on the

structured-motion graph and by continuously adjusting motion clips, this algorithm creates

a series of motions that meet constraints fast and accurately.

1.10 Outline of Thesis

The remainder of this dissertation is composed of six main parts. Chapter 2 explains the related

works. Chapter 3 represents the situation-based approach and the probability scheme. Chapter 4

17

Collision Detection

Using MOBB Trees

 (Ch. 4)

Situation-Based Simulation

with Probability Scheme

 (Ch. 3)

 Constrained

Motion Synthesis

 (Ch. 5)

 Validation(Ch. 6)

Figure 1.2: The logical relationship among chapters 3-6.

describes the fast collision detection using MOBB tree. Although the collision detection using the

MOBB tree is not directly related to the content of other chapters, it is an essential component in

our simulation and may be read independently of the other two main parts. The constrained motion

synthesis for long term behaviors given a set of constraints is considered in Chapter 5. Chapter 6

validates whether or not our method can meet the four demands we have established. Chapter 7

discusses about the limitations of our approach and future work.

Before reviewing the details of the three main parts, we will present a brief overview of the

methods that will be developed in subsequent chapters (Section 1.11).

1.11 Overview

We summarize the following technical chapters (3-6) in this section.

1.11.1 Situation-Based Simulation with Probability Scheme
(Chapter 3)

The situation-based approach with a probability scheme corresponds to the high-level part

and to one of the two low-level motion synthesis (Figure 1.1). The goal of the situation-based

18

approach is to provide a scalable yet authorable way to synthesize complex behaviors while main-

taining convincingness. Exploiting the feature that concerns locational and social-relation effect

on crowd behaviors (Section 1.7), we allow each situation to have a particular region in the envi-

ronment that this situation affects. When a character enters the region, the situations extend the

character by adding information to the character. The information includes local actions, behavior

functions that implement the local behaviors, virtual sensors that catch events, and rules for deter-

mining subsumption between behavior functions. The purpose of the extension is to make crowds

show appropriate local behaviors and, simultaneously, to account for crowds’ various features over

events. The local behaviors, which should be controllable and variable, are derived from the mo-

tion selection mechanism calledprobability scheme. In this scheme, behavior functions, part of

the information given by situations, compute the probabilities of all available actions considering

their own criteria for judging actions. For instance, awalking-straightbehavior function checks

all available actions and returns high probabilities on the actions that move the character straight,

and then returns low probabilities on the other actions. Most of the time, the crowd behaviors are

affected by many different factors, therefore, in general multiple number of behavior functions are

needed at any given time. To accommodate when multi-behavior functions are needed, we com-

pose the probability distributions, which are derived from several behavior functions, in order to

create the final action selection method. In this way, we combine simple behaviors and transform

them into a more complex aggregate behavior. Once we complete the behavior composition, we

apply random sampling to the final distribution so as to select the final action.

Because a character might be under several situations at the same time, we allow multiple

situations to be combined into one by conducting a union operation. Basically, the union operation

over two situations adds up all components such as actions, behavior functions and sensors.

19

To set a particular situation into an environment, we adopt a painting interface in which anima-

tors can specify a region or a group of people in much the same way as an artist paints a picture on

a canvas.

1.11.2 Collision Detection Using MOBB Trees (Chapter 4)

Animating multiple characters with motion data requires a fast collision testing among them. In

our two-level crowd-simulation framework, the low-level motion-synthesis part creates motions by

selecting an edge (motion) from discrete choices of a motion graph. In this process, the algorithm

should ensure that the selected motion does not cause any overlap with other characters’ motions

(Figure 1.1). Therefore, we need only to check whether or not two given motions preserve a

minimum distance between the two corresponding characters. A simple method is to check frames

one by one and, therein, to compute the distance between two motions. Obviously, this approach

is time consuming, especially when we need to check many characters.

We instead use a hierarchical MOBB tree data structure for fast collision testing. Each node

of the MOBB tree contains a spatio-temporal simplification of motion data. In particular, the

geometrical simplification is represented as a bounding box that covers entire poses at the given

time interval. More specifically, the root node of the tree has simplification information over

the entire motion data, and the two children nodes of the root node have the bounding box over

the first half frame of the motion and the second half frame of the motion, respectively. This

subdivision continues until the number of frames of the node reaches the predefined minimum

number. The construction of the MOBB is completed at the preprocessing step. At run time, given

two motions that need collision checking, the MOBB trees are retrieved from the two motions.

Then, overlapping between the two bounding boxes which are associated with each node of the

trees is tested from the top to the bottom node. Because the overlap test goes down to the children

20

nodes only when the parents nodes are overlapped, we can reduce the collision checking time

significantly.

1.11.3 Constrained Motion Synthesis (Chapter 5)

Constrained motion synthesis is one of the two low-level action selection mechanisms that

works for long-term behaviors (Figure 1.1). The constrained motion synthesis presents a highly

efficient algorithm that synthesizes realistic goal-directed motions for a large number of charac-

ters. This technique focuses on the important problem of character navigation and introduces an

algorithm that creates collision-free constraint-satisfying motions. The constraints include time

duration, position, orientation, and particular body pose. Given initial and target constraints for

a character, we propose a two-level motion synthesis algorithm (it is different from the two-level

crowd simulation framework in section 1.8) where the high-level provides a rough path to the

character by performing global path planning algorithm and the low-level motion synthesis then

generates motions that meet the constraints exactly by using the high-level’s rough path. Basi-

cally the low-level motion synthesis starts by creating two initial paths called the forward and the

backward path that satisfy only the initial and the target constraint respectively. For measuring the

distance between them, we come up with a cost function,C, which indicates the minimum dis-

tance between the forward path and the backward path. If the cost is lower than the user threshold

valueε, then the algorithm merges the two paths into one path by connecting the two paths with

distributing the distance evenly to the both paths. If the cost is bigger than the user threshold value

ε, then the algorithm randomly perturbs the initial two paths until the cost function returns a value

below the threshold value.

Because we allow the motion clips from the motion graph to be continuously adjusted to alter

a character’s position, orientation, and speed, we can satisfy the constraints exactly. Also, this

allowance yields a shorter search time because a raw sequence of clips needs only sufficiently

21

reduced constraint deviation, rather than minimized one. Our algorithm also works in highly com-

plicated environments where there are a lot of obstacles. The main reason is that the rough path

obtained from global path planning at the high level provides a collision free path which is used

for initial paths at the low level.

22

Chapter 2

Related Work

This chapter reviews researches related to crowd simulation. We first present a general overview

of human character animation techniques in section 2.1. In particular, we illustrate the graph-based

motion synthesis algorithm more in detail in section 2.1.1 because we used it as our low-level mo-

tion synthesis. And then, section 2.2 lists up a number of crowd modelling researches. Section 2.3

reviews the crowd rendering techniques. Section 2.4 overviews the general collision detection

algorithms. Finally, section 2.5 recaps the existing commercial softwares for crowd simulation.

2.1 Animating Human Characters

Because we define the crowd simulation as a collection of individuals’ behaviors, we need a

way to animate characters. In particular, we need an algorithm for animating human-like charac-

ters. In this section, we overview the existing human character animation techniques and figure out

what problems they might have when we apply those techniques in crowd simulation. From this

section, we assume that a character means a human-like character.

The motion of an individual character can be animated in several different ways. The classical

key-frame method, which manually specifies a sequence of character poses over time, has been the

most popular way up to now. However, it requires intensive labors, artistic sense, and much time

for creating animation. This becomes worse in crowd simulation because a lot of characters need

23

to be animated. An alternative to key-framing method is the procedural animation where hand-

craft algorithms produce particular motions. This allows an artist to create entire motions at once,

rather than one pose at a time, and motions can be altered on the fly to allow for online, interactive

character animation [Kov04]. For example, Perlin [Per95] and Perlin and Goldberg [PG96] have

demonstrated that a variety of motions can be generated with simple and computationally efficient

algorithms. However, these algorithms are quite difficult to design and a totally new algorithm

should be developed for different kinds of motions. In particular, for a walking motion, a few

procedural algorithms have been proposed. Bruderlin et. al. proposed a hybrid method in which

goal-directed high level control and dynamics were incorporated to create human walking cycle

motions [BC89]. Boulic et. al. presented a human walking dynamic model which is built from

bio-mechanical experimental data [BMTT90, BUT04]. These methods could create motions that

exactly follow arbitrary trajectories effectively, eliminating the need for additional search mecha-

nism. However, the procedural techniques cannot be applied to crowd simulation problem directly

because those techniques are quite difficult to reproduce the subtle personality of human motions.

The physically based approach is one of the other possibilities. In physical simulation, New-

ton’s laws are used to solve a system of ordinary differential equations that can be integrated to

obtain joint trajectories given the mass distribution for each body part and the torques generated

by each joint [Kov04]. However, finding joint torques that create a particular motion trajectory

is a difficult task [Kov04]. Hodgins et. al. were able to create jogging and bicycling motions

through proportional-derivative servos on a finite state machine [HWBO95]. By using the similar

approach, they also produced the gymnastic motions [WH95, WH00]. Faloutsos et. al. proposed

physics-based composable joint controllers for characters, and were able to create the balanced

and protective stepping motions [FvdPT01]. One common problem of these approaches is that

24

their methods could not produce the wide range of motions; only particular motions could be cre-

ated. This makes it impossible to apply to crowd simulation because crowds need various kinds of

motions.

Another way is to record the motions of a live performer and reuse them in animation, which

is called motion capture[Men00, Stu94]. Although the motion capture approach guarantees the

realistic human motion, it lacks control over character’s actions because it is no more than fixed

signal data. For example, if we need to make a character move around an environment, we need

many motions with different speed, jumping motion over obstacles and motions with different

turning angles. Capturing all required motions costs too much. Also, it is infeasible to adjust

an animation by directly editing motion data [Kov04]. Thus, many researchers have proposed

techniques calledmotion editingin which the original motions are adjusted automatically to meet

the animator’s constraints [BW95, WP95, Gle98, LS99, CK00]. The goal of motion editing is to

provide control over motion data while maintaining the fidelity of original motion data. To achieve

that goal, they generally build aconceptual modelto manipulate the motion data and synthesize a

new motion from it.

For example, Kovar et. al. [KGP02], Lee et. al. [LCR∗02a], and Arikan et. al. [AF02a] proposed

a motion graphmodel respectively. The motion graph was built from the original motion corpus

by identifying similar poses of motions and connecting them with an edge which represented a

transition. Once the motion graph has been built, a predefined searching algorithm traversed the

graph to generate motions. Basically, the graph-based motion synthesis creates a new motion by

re-ordering the frames of motion data. More details about the graph-based motion synthesis will

be followed in section 2.1.1.

Rather than reordering the motion data, several researchers have proposed agenerative model,

which is learned from original motions and generates a new motion from the model. For example,

Li et. al. presented a statistical LDS (Linear Dynamic System) model [LWS02] and Brand et. al.

25

used HMM (Hidden Markov Model) [BH00] as the generative model. Those methods overcome

the problem of reordering based motion graph in that they can edit at the frame level. However, the

generative model techniques are not necessarily good for crowd simulation because the frame-level

synthesis is slow for a large crowd.

Another alternative to motion generation model is the motion blending [GR96, PSS02, PLS03],

which (as with procedural synthesis) allows continuous control over character trajectories. How-

ever, blending-based models are more restricted since individual clips must be blendable, and

need additional computational overhead because each generated character pose must be formed

by combining example poses [SKG05]. Therefore, we cannot use those techniques for crowd

simulation because high speed motion synthesis is highly required. Hybrid graph/blending meth-

ods [RCB98, KPS03, PSS04] share similar concerns.

2.1.1 Graph-Based Motion Synthesis

In crowd simulation, fast and realistic motion synthesis is required. Our two-level crowd sim-

ulation framework adopts the graph-based motion synthesis algorithm for the low-level motion

synthesis. In this section, we overview the general graph-based motion synthesis algorithms.

Graph-based motion synthesis has been used widely in game industry as the name ofmove

tree[MBC01] for more than decades [Kov04]. Historically, these motion graphs have been made

in a manual way in the sense that a user explicitly specifies which motion clips should be con-

nected [RCB98, Kov04]. In physically based simulation, joint controllers were also linked to-

gether as a graph structure manually [FvdPT01]. In videos, by grouping similar frames, Schödl et.

al. generated user-controllable new video clips from the original video clips [SSSE00, SE02].

To overcome this manual work, several researchers have proposed the automatically con-

structed graph structure where nodes were similar poses and edges represent transitions between

them. Kovar et. al. [KGP02] proposed a pure automatic way for constructing a graph structure

26

from the motion capture data and a searching method on the graph. For automatic construction

of the motion graph, the algorithm identified the similar poses from the original motion data and

then synthesized transition motions at these points [Kov04]. Similarity was determined through a

novel point-based distance metric [Kov04]. Once the graph was built, rather than having a user

directly control the graph, they introduced a search algorithm for finding a sequence of edges that

meet a user-supplied constraints [Kov04]. To demonstrate this approach, they applied this frame-

work to the problem of creating motions that traverse arbitrary paths [Kov04]. As an extension

for highly interactive application such as a game, they extended the generic motion graph to the

structured motion graph, calledsnap-together-motion, where connection between nodes could be

predetermined by user and similar motions were gathered around a small number of hub nodes. At

running time, the motions were just concatenated each other to synthesize a long series of motions

without any further processing [GSKJ03]. We adopt the structured motion graph for our low-level

motion synthesis; primary reason is that its applicability in interactive system. The Snap-Together

Motion (STM) preprocesses a corpus of motion capture examples into a set of short clips that

can be concatenated to make continuous streams of motion. The result process is a simple graph

structure that facilitates efficient planning of character motions [SKG05]. A user-guided process

selects common character poses and the system automatically synthesizes multi-way transitions

that connect through these poses. In this manner well-connected graphs can be constructed to suit

a crowd simulation, allowing for fast synthesizing motion without the effort of manually specifying

all transitions at run time [GSKJ03].

Lee et. al. [LCR∗02a] and Arikan and Forsyth [AF02a] introduced the similar original motion

graph algorithm respectively. Both algorithms also automatically identified the transition locations

based upon a distance metric and then used a search algorithm on the resulting graph to find mo-

tions that satisfy the user-defined constraints. Differences among these three approaches are 1)

27

they used a different distance metric for finding similar poses and 2) they targeted on different ap-

plications; Kovar et. al. considered constraints on the path followed by characters while Arikan et.

al. focused on more generic constraints such as position, orientation and poses [Kov04]. Lee et. al.

presented an interface where a user could select which motion should happen at that place [Kov04].

One significant problem of these approaches is that because these methods create new motions by

strictly attaching existing clips, constraints on the generated motions are not exactly satisfied, and

finding a solution that minimizes deviation from the constraints tends to be a time consuming

job [SKG05]. Our constrained motion synthesis, on the other hand, takes account the motion ad-

justment in searching process, which speeds up the searching time and makes motions satisfy the

constraint exactly [SKG05]. Similar motion adjustment on the regular grid space was introduced

by Reitsma and Pollard [RP04], but, their goal was to come up with an evaluation function for a

particular motion graph so that they could test whether the given motion graph had the ability to

perform navigation task (e.g., directing a character to a particular position and orientation).

As an extension, Lai et. al. [LCF05] proposed a group motion graph technique. In this tech-

nique, they first constructed a graph structure from seamless group animations by identifying sim-

ilar configurations (nodes) and connecting them as edges (short animation). By traversing the

graph with satisfying constraints, they were able to synthesize a new group motion such as path-

following and region constrained of a flock. Their approach is good for animation for flock, but

does not necessarily suit for crowd simulation because the crowd need complex behaviors such as

”go crossing the street only when the traffic sign says walk”.

28

2.2 Crowd Modelling

In this section, we overview current crowd modelling researches. In particular, we focuse on

whether those approaches satisfy the four demands we set and how different they are from our

high-level situation-based simulation.

For generating human-like behaviors, many researchers have adopt the artificial intelligent (AI)

techniques, in particular, intelligent character techniques in recent years [FTT99, WCP∗, AC01].

Basically, their goal was to provide autonomy to each character so that he or she could decide his

or her behaviors automatically. In order to do that, they proposed the character architecture that is

comprised of a knowledge representation, algorithms that learn new knowledge, and modules that

plan actions based on the knowledge. However, because the level of knowledge for a character

depends on the level of autonomy, the deeper knowledge a character needs, the more complicated

character architecture is required, which has a problem in scalability.

Rule-based schemes, such as Reynolds’boids models [Rey87], are fast enough to be used

for large numbers of characters, but they are not controllable. Controlling crowds for complex

environments is extremely hard. For example, controlling a flock to follow a specific trajectory is

impossible because their simple rules do not consider the global shape of flocks. A simple solution

is to add more rules to the flock. But, determining weight values among rules that control which

rule has bigger influence than other rules is another hard problem. Similarly, Shao et. al. [ST05]

proposed several reactive behaviors based on specific rules for controlling pedestrians. The reactive

behaviors include the safety-turning, crowd direction control and collision avoidance behavior.

These behaviors are processed sequentially with specific order. But, the rules for behaviors are

hard to generalize to be used in other environments other than pedestrian.

29

Hierarchical schemes have been proposed to address scalability [FMS00, MT01]. In particu-

lar, Musse et. al. endow crowds with different levels of autonomy for hierarchical crowd behav-

iors [MT01]. Depending on the level of autonomy, they employ different behavior generation

techniques ranging from script-based behaviors to innate or pure reactive behaviors. However, all

behaviors that they can simulate were relatively simple such as splitting, wandering, repulsing and

attracting behaviors.

At the other extreme, physics-inspired approaches, such as social force models [HM95, HFV00]

or particle systems [BC97, GLM99, BMdB03], can create realistic crowd flow but are only ap-

plicable to situations such as emergency evacuations in which crowd behaviors are limited and

interactions with the environment are minimal. Main reason for these limitations is that compli-

cated human motions cannot be explained with a simple physical law. Therefore, although the

algorithm might mimic the realistic flow of crowd when a particular event happens, convincingly

detailed motions of individuals cannot be simulated.

In order to reduce the complexity of controlling crowds yet retain detailed behaviors, several

systems [FBT99, TLCC01, FMS98] have attached information to the environment to guide the

characters within it. Simple examples include driving cars or pedestrian simulators that embed

lane or pathway information in the model. Our situation-based approach also embeds information,

such as planned paths, into the environment, but, moreover, we include thebehaviorsand even

sensorsto interpret that information.

The most commercially successful system of this type is the computer game,The Sims[FW01],

in which objects advertise services, such as “satisfy hunger”, and define the procedure that runs

when the character responds to the service.The Simshighlights the authoring advantage of a rich

environment. Part of the game’s appeal is the ability to add new objects easily and have characters

respond to them.The Simsadds behaviors by enforcing a specific, linearplan to the interacting

characters. If the desired object-specific behavior is not amenable to a simple plan, the approach

30

breaks down. For instance, a “mingle with a crowd” behavior could not be added even though such

interaction must be part of the character’s innate behavior which makes the character complicated.

In contrast, our situation-based approach adds “behaviors” that interact on equal terms with the

existing behaviors and has all the power of rule-based state machines, which allows for much

simpler underlying characters and more complex extension behaviors.

Similar to The Sims, Kallmann and Thalmann [KT98] describesmart objects; objects that

provide a plan for their use. The character, upon approaching an object, is told to execute a specific

sequence of steps. For instance, an elevator informs a character to push the button, wait, and

then enter when the door opens. This approach is similar to our situation-based approach in that

the characters are provided all necessary information from the environment directly. However,

in our approach, the situation is a more general concept that includes non-physical effects such

as friendship and membership on a group among characters. Moreover, rather than indicating a

specific behavior to a character at a particular time, our situations propose a composable behavior

that can be combined with others. One result of this is that characters in our system do not always

respond to the same object in the same way, just as real people behave.

Robotics algorithms have been applied to animate multiple characters. Bayazit et. al. [BLA02]

use a global road map to set collision-free paths for multiple characters, and similar methods have

been introduced [Feu00]. Kamphuis et. al. [KO04] proposed a coherent path planning algorithm

for multiple character. Basically, in their algorithm, they first do a path planning for a single

character, and then they extend the path as a corridor for making characters move together.

Tsi-Yen Li et. al. proposed the Leader-Follower model [LJC01], the main goal of which is

to generate collision-free paths for characters. Since their focus is on path planning for multiple

characters, complex behaviors such as ”finding an empty seat and sitting down, then watching

a movie” cannot be simulated. Because the situations contain all information for complicated

behaviors and that information is plugged into crowds when they need it, our approach is able

31

to simulate complicated behaviors. In our situation-based approach with a probability scheme,

collision avoidance is achieved through a behavior function that penalizes states which may cause

collision by giving low probability to them.

2.3 Crowd Rendering

Although our research does not focus on the visual rendering of crowds, the rendering is one of

the important parts because it is the most time consuming job in crowd simulation [AW04]. This

section overviews the current character rendering techniques.

The rendering of an articulated body skeleton is usually described asskinning. Basically, the

skinning can be done in two ways, which are geometry-based rendering and image-based render-

ing. In the geometry-based rendering, animators typically manipulate an underlying hierarchical

skeleton. Then, the character mesh geometry must be attached to the underlying skeleton so that

as the skeleton deforms, the mesh also deforms appropriately. The underlying mesh geometry is

computed by transforming each vertex by a weighted combination of the joints’ local coordinate

frames [MG03]. Although the geometry-based rendering is able to show the character poses in

detail, it is quite computationally expensive for a large number of crowds. As an extension, James

et. al. [JT05] proposed a general setting of skinning deformable mesh animations, where skinning

was approximated from the mesh (not from skeleton) through a clustering of orientations of mesh

triangles and robust least squares methods to determine bone transformations. Incorporating cur-

rent programmable graphics hardware, they could generate skinning animation of more than 1,500

characters.

Tecchia et. al. [TC00, TLC02b], on the other hand, describe a real-time, image-based alterna-

tive to motion-captured data for crowds. In this technique, the character’s imposters are computed

at preprocessing and rendered at the run time depending on the camera orientation and distance

32

from the characters. Because it is a purely image-based rendering, it can render a lot of characters

at the same time. However, the realism of image-based approaches is limited by the amount of

imagery that must be stored in order to handle arbitrary, close-up viewing conditions. Ulicny et.

al. [UCT04] store complete meshes in OpenGL display lists and then carefully sort them, taking

cache coherency into account while rendering. This results in a method which has little or no

processing on the CPU because precomputed meshes are stored on the graphics card. Recently,

Dobbyn et. al [DHOO05] propose a metric for switching between geometry-based and image-

based rendering for large crowds. The geometry-based rendering is used for detailed animation of

characters who are located close to the camera while the image-based rendering is used for rough

rendering for characters located relatively far away from the camera.

2.4 Collision Detection

Collision detection between a lot of characters is an important problem because the collisions

affect the the visual convincingness significantly. However, the dynamic feature of moving charac-

ters makes the collision detection problem hard. In this section, we overview the current collision

detection algorithms between moving characters and compare them with our proposed method.

Our collision detection algorithm is a novel application of OBB trees [GLM96] to swept vol-

ume intersection in space-time. OBB trees have been applied to continuous collision detection in

the past [RKC02, RKLM04], but existing techniques use bounding boxes fitted to static geometry

and account for motion in the intersection test. This restricts their application to simple parame-

terized motions (such as linear translation [Ebe01]) and makes them unsuitable for motion capture

data.

The majority of literature in the graphics community is targeted at simulation algorithms where

the future motion of the body is either ballistic or bounded but unknown (see Mirtich [Mir96] for

33

rigid body examples). Kim et al. [KKS03] describe a crowd-specific solution that uses parabolic

horns as space-time bounds (spheres of changing radii swept along parabolic paths), while kinetic

data structures [BEG∗04] assume motions along rational curves. Our problem differs in that we

know the precise trajectory but in a sampled form, and we have a generate-and-test strategy, rather

than the continuous search for the next collision.

The robotics community has dealt with similar problems in the guide of intersection-free robot

motion planning. Several solutions have been proposed based on 4D space-time swept volumes

(see Abdel-Malek et. al. [AMBJ02] for a survey). Recent advances include work aimed at com-

plex models [KVLM03], but the most similar approach to our MOBB tree is due to Foisy and

Hayward [FH93]. They use a hierarchy of convex swept volumes, each volume specified by a set

of bounding planes. Our method is simpler than theirs due to the use of OBB trees and targeted

specifically at motion in the ground plane.

MOBB trees detect collisions between the cylindrical bounding volumes of skeletal motion,

not the skeleton itself. Redone et. al. [RKL∗04] provide a solution for close-in skeletal motion that

also exploits hierarchies of volumes but assumes small time intervals between tests. Our approach

can be viewed as a broad phase test that complements their work.

2.5 Commercial Software

To meet a lot of demands of crowd simulation in recent years, several commercial softwares

have been developed as the form of plug-in type software or stand-alone system. For instance,Sof-

tImage/Behavior, AI-Implant, Character Studio 4.0andMassive[Koe] have been used in movies

or advertisement for crowd scenes. In theSoftImage/Behaviors, the crowd behaviors are incor-

porated with a complete Integrated Development Environment (IDE) that is equipped with vi-

sual state-graph editing for character and an embedded debugger for easy testing and tweaking.

34

The Behaviors are then created by using Piccolo, a high-performance, compiled Java Script-style

language[Sof]. TheAI-Implant provides the intelligent navigation of crowds in which the entire

environment is composed of a lot of cells and dynamic searching is performed on cells for finding

path. The software also has visual authoring and debugging tools for brain creation of individ-

ual [AI-]. The Massivesoftware is a character-based crowd simulation system. In this system,

a character has an artificial vision, hearing and touch-sensor processes that allow him (or her) to

respond to the environment naturally [mas]. To get the variety of crowd reaction over environment,

the software used a fuzzy logic algorithm.

In general, all current crowd softwares need a complicated character architecture because each

individual needs an automatic way to decide his or her behaviors. Our approach is different from

their approaches in that we try to transfer all information to environment as much as possible. This

approach allows us to make the character architecture simple and make crowd adopted in various

environment easily.

35

Chapter 3

Situation-Based Simulation with the Proba-
bility Scheme

In this chapter, we present the situation-based simulation with probability scheme. The situation-

based simulation corresponds to the high-level part of two-level crowd simulation framework (Fig-

ure 1.1) and the probability scheme is one of the two low-level motion syntheses that is responsible

for short term aggregate behaviors.

3.1 Introduction

The situation-based simulation with probability scheme adopts asituationthat is a distributed

control mechanism that gives each character in a crowd specific details about how to react at any

given moment based on his or her local environment at the high level. And then, at the low level,

we use a probability scheme which computes probabilities of all actions to be the next action and

then samples to move the simulation forward. For maintaining the visual convincingness, we use

the Snap-Together-Motion[GSKJ02], which guarantees that there is no artifact as motions are

concatenated together over time. The overall structure of this approach is shown in Figure 3.1.

The main inspiration for the situation-based approach with probability scheme is the anonymity

and the locality feature offered by crowds. When we look at a crowd, we care only aboutwhat is

happening, notwho is doing it. This has two implications. First, the actions of the crowd should

36

Situation A Situation B

Situation Composition

Behavior Function

Information Information

Probability Distributions

Behavior Function Behavior Function

Behavior Composition

High Level

Low Level

Figure 3.1: An overview of our situation based simulation architecture. At the high level, single or

multiple situations are composed to provide information to characters. Then, at the low level, each behavior

function which is obtained from situations, computes the probabilities of all actions and those probabilities

are composed together to select one final action.

be driven by situations – what is happening – and not by individuals. The “what is happening” part

is usually decided by the location of crowd. This motivates our situation-based strategy. Secondly,

viewers of a crowd cannot individually identify and track characters. Rather, viewers are attentive

to overall statistics of the crowd: the direction it’s moving, the apparent agitation of its members,

the number of people waiting for the bus, etc. Hence, the actions of an individual matter only in

his (her) short-term contribution to the crowd’s behavior, and not in their long-term planning. This

motivates our probabilistic approach to simulation.

The probability scheme exploits the observation that when individuals are anonymous, their

specific actions may appear somewhat random. Consider a man crossing a busy city street at a

particular instant. There are many actions he may choose: he might continue walking across the

37

street; he might turn around and walk back the way he came; he might glance to the side to check

if a car is disobeying the traffic signals. If we knew the individual, his or her choice might be clear:

we might know that a particular person is prone to remembering that he or she forgot something

in his or her office while crossing the street. For an individual we know little about (a member of

a crowd), we cannot say for certain. We thus model the action choice probabilistically; a person

crossing the street is more likely to keep crossing, but there is some chance that he or she may turn

around and walk back. Therefore, the state of character is decided by what action the character

takes for each time step.

When the next state is required, our probabilistic action selection method considers the choices

that the character has for his or her next state, creates a probability distribution as to which choice

is likely to be taken, then samples from this distribution to determine the course of action. The

challenge, then, becomes determining the probability distributions such that the sequence of action

choices leads not just to plausible behavior of the individual, but also the desired behavior of the

entire crowd.

Complex behavior (and a correspondingly complex distribution function) is often made from

a number of simpler pieces. For example, a person walking in a city will be avoiding others,

trying to move towards a goal, trying to obey traffic laws, and so on. We definebehavior functions

that describe the actions for each of these simple behaviors through probability distributions. We

compose distributions to create the final action selection method. In this way we combine simple

functions into more complex aggregate behaviors. Behavior functions are discussed in detail in

Section 3.2. A behavior function may depend on many things. For example, it may depend on the

location of the individual (the middle of the street is not a good place to stop), what the character is

able to “sense” (wait until the signal says “walk” before crossing), or even an aggregate controller

that attempts to regulate the crowd (if there are too many people on one side of the street, it is more

likely for an individual to cross so that things are better balanced).

38

Our situation-based approach determines which behavior functions are currently influencing a

character, and hence determines the overall behavior of each character. When a character enters

a situation, such as crossing the street, our system extends the character to enable appropriate

behavior. Primarily, it adds temporary behavior functions to the character that are composed with

his or her existing ones, allowing him or her to choose his or her actions more wisely. Situations

may also add actions to the character - an individual need not know how to look both ways unless

he or she is crossing the street. In fact, even the character’s ability to sense his or her environment

can be adapted to the situation. Only in the street crossing situation does the character need to

know how to sense the status of the crossing signal. The situation also might add constraints to the

characters so that they can show a series of motions that meet the constraints exactly. For example,

some characters might need to sit down on a chair exactly or some of them might need to arrive at

the particular positions at the same time. In this case, the situation provides the constraints such as

chair positions and target positions to characters when they enter the situation. Those constrains are

then input to the constrained motion synthesis (Chapter 5) to synthesize motion for the characters.

When the character leaves the situation, all of the situation-specific extensions are removed.

The situation-based approach puts an emphasis on the environment design because overall

crowd movement depends on the situations present in the space and where they are located. For

specifying situations, we adopt apainting interface. It allows the user to specify a particular situ-

ation by drawing it on the environment directly. Situations can be easily composed by overlaying

several in one area.

The remainder of this chapter is organized as follows. Section 3.2 explains the probability

scheme. Section 3.3 describes the situation-based approach with pluggable character architecture

and section 3.4 describes our painting user interfaces. Section 3.5 shows experiments we per-

formed with our proposed architecture. Finally, Section 3.6 concludes with a brief summary and a

discussion of our approach.

39

3.2 Probability Scheme

As described in Section 3.1, the behavior of a character comes from his or her choices about

which action to take. At each time step of the simulation, the character has a states = {t,p, θ, a, s−},
wheret is the time,p is a 2D position vector,θ is an orientation,a is an action, ands− is a list of

previous states. The position and the orientation indicate the spatial disposition of the character.

The action is directly linked to a motion clip and determines which clip should be played for the

current frame. The past states are used by the behavior mechanism to give some correlation in the

character’s behavior over time. Without some previous state information it is difficult to enforce

behaviors like “walking in a straight line.” The aim of the probabilistic state selection mechanism

is to choose a next state given the current state.

The link between actions and motions means that we have a finite set of possible choices for the

next action – it has to be one of the available motion clips. From the graph-based motion synthesis

perspective, these available motion clips are identified by the edges on the graph which are linked

from the current node. Each potential next state has an associated probability representing the

chance of being selected. Our behaviors modify these probabilities on the fly, as well as the set of

potential states. Note that this is conceptually similar to probabilistic finite state machines typically

used for character AI [WP01], but in our approach both the state graph and the transition matrix

are modified at run time. Our state transitions also represent lower level behaviors compared with

traditional finite state machines.

3.2.1 Behavior Functions and Behavior Composition

When examining the movement of a crowd in real life, we easily see that there are many

different factors that influence the behavior of a character. For example, people might change

their route depending on whether or not there is a person or an object nearby. Or, if they have

40

a target place that they are moving toward, they usually go as straight as possible. To simulate

crowd behavior realistically, we need a way to take account of these various kinds of factors and

synthesize a complex behavior that reflects them. More specifically, given the possible next states,

we need a way to judge these states from the point of view of different factors and then compose

transition probabilities to reflect all factors.

Each influence on the character is encoded in abehaviorand special functions calledbehavior

functionsperform the task of transforming a behavior into a set of transition probabilities on states.

For example, the “overlap behavior function” takes care of avoiding other characters. The “Don’t

turn behavior function” checks if a state transition causes too much change in orientation. The

behavior functions judge the potential state transitions with their own rules independently and

return the probabilities.

Suppose the set of possible next states isS = {s1, s2, ..., sm}, wheresi is a particular state.

Note there arem states. A behavior function,k, evaluates all states inS and calculates their

probabilities. A prototype behavior function is shown below.

Behavior function k(States S[], Prob P [])

{
For states in setS do:

x = evaluate(s)

Pk(s) = sigmoid(x, α)

}

Theevaluateroutine inside a behavior function is a general function that can use any informa-

tion available to it, such as the state of various features of the environment or the past state of the

character or distance from a position in the environment. The evaluation function characterizes a

41

100 50 0 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

Pk(s)

alpha = 0.1alpha = 0.6

Figure 3.2: Sigmoid function

conceptual notion of “behavior” that the behavior function is trying to model. Considering this in-

formation, theevaluatefunction returns any real value. Then, the value is normalized to the range

[0, 1) using asigmoidfunction:

Pk(s) =
1

1 + e−αx
(3.1)

Note that the collection of these probabilities for all available actions cannot be represented

as a probability distribution because it may not be summed up to 1. Natural interpretation of this

probability is theweightvalue for given perspective of behavior function. That is, the probability

represents how likely the given action is to be next action.

We do this non-normalized probability computation to make composition of behaviors more

stable. The constantα determines the slope of the curve and is chosen differently for each behavior

function. The values we use range from 1.0 to 10.0. A typical graph of sigmoid function is shown

in Figure 3.2.

42

The primary reason for using behavior functions is that we are able to compose several compo-

nent behaviors to synthesize more complex behaviors that embody all the influences of the com-

ponent behaviors. Composition of behaviors is simply the multiplication of the probabilities the

behavior functions produce (see Figure 3.3). That is,

P ′(s) =
n∏

k=1

Pk(s)

wheren is the number of composed behavior functions,s is a possible next state, thePk(s) is a

probability distribution fromkth behavior function andP ′(s) is an unnormalized probability distri-

bution function. We use multiplication because it allows one behavior to veto a state transition (by

setting its probability to 0). Finally, re-normalization should be performed on the final composed

probability distribution to ease sampling. For each statesi:

P (si) =
P ′(si)∑m

j=1 P ′(sj)

Once we have a final probability distribution, the simulation algorithm chooses the particular

state transition to perform by sampling according toP (s). The sampling allows the character to

choose not only states with high probability but also those with low probability, even though it’s

not frequent. This gives the crowd an element of randomness.

3.2.2 Default States and Behaviors

If a character is not in any specific situation, we would still like him or her to exhibit certain

default actions. This relieves the user from having to specify a situation for every point in the world.

The default state transitions in our system are the identity transition (which does not change the

character’s state), five walking actions with different turn angles and six turning in place actions

with different angles. Each transition takes a character from one position and orientation in the

environment to another, and has an associated motion clip.

43

Behavior functionBehavior function

Behavior functionBehavior function

Behavior functionBehavior function

States

States

States

.5 .5 .5

.3

.7 .6

.1

.5
.2

States

.06

.7
.24

Probability Distribution

A B C

A B C

A B C

A B C

A(.06) B(.7) C(.24)

Sample

SamplingSampling Next state = B

Behavior functionBehavior Function

Behavior functionBehavior Function

Behavior functionBehavior Function

SamplingSampling

(Normalized)

Figure 3.3: The behavior functions compute the probability of input states independently. Then, the

probability distributions computed from behavior functions are composed. Finally, the next state is selected

through sampling on the composed probability distribution.

44

Several different default behavior functions are combined to produce a sequence of states ap-

propriate for a character wandering through an environment. More detail about the behavior func-

tions can be found in Appendix.

• ImageLookupBehavior: This behavior gets a bitmap describing the obstacles in the envi-

ronment, and gives zero probability to states that cause the character to enter a place where

some objects are located. Otherwise, it gives high probability.

• TargetFindBehavior: If a character has a goal position, this behavior gives high probability

to states that make the character move toward the position. Otherwise, it gives low proba-

bility. Basically, this behavior is for moving characters from one place to another through

path planning. We use the Probabilistic Road Map (PRM) method [KL94a, OS94] in which

many way-points are distributed randomly in the environment and linked together with Dijk-

stra’s all-pairs shortest path algorithm including visibility. Since we compute all-pairs paths

between two way points in a preprocessing step, at run-time we can find any path in real

time.

• Collision Behavior: This behavior gives zero probability to states that cause collision with

another character. Otherwise, it gives high probability. The collision detection algorithm

used in our system is a simple adaptive spatial subdivision.

These default behaviors are always composed unless a character is in a situation that specifi-

cally ignores them (see Section 3.3.2).

3.3 Situation and Pluggable Character Architecture

Our basic assumption is that an environment consists of a set of different situations and only

a few characters are under the same situation at the same time. A situation is distinguished from

45

other situations by what typical behaviors the crowd can show. That is, the situation in our system

controls the behaviors of a local group of characters. This provides distributed control over the

crowd because we can give situation-specific behaviors to characters only when they need them.

In addition, our approach provides composability among multiple situations so that characters can

respond to the complex scenario when several different situations are combined.

The local crowd behaviors need several local data. The local data include local actions or they

might need sensors to catch the events happening in the environment. Our situations contain that

information and add it to characters dynamically. This allows character to be as generic as possible

and to be adopted in wide range of environments because the local crowd behaviors depend only

on what situations the crowds are in. We call itpluggable character architecture. By interacting

between situations and the pluggable character architecture, we can control the crowd behaviors

efficiently.

A situation can be any circumstance that has typical local behaviors. From the observation of

real people, we easily see that one of the most important factors that affect character behaviors is

its spatial location. For instance, a behavior for getting on or off a bus can be seen only at the bus

stop. Therefore, we can set the “bus stop” situation around the bus stop. The relationship between

people is another important factor in determining behavior. Friends usually walk together when

they move. Therefore, “walking-together” is a typical behavior that can be seen among people

with friendship. It means that “friendship” can be another situation. We categorize all situations

into two different kinds.

• Spatial situation: The situation has a region that it affects in the environment (e.g., bus stop,

ticket booth, and ATM machine). This situation cannot be moved after definition (which can

be at run-time) but can be deleted at run-time.

46

• Non-spatial situation: This situation (e.g., friendship, or group) does not have any region in

the environment because it is attached to the crowd directly, not to the environment. There-

fore, this situation can only be set at run time and characters are explicitly added or removed

from the situation by the animator.

The structure of a situation is shown in Figure 3.4. The behavior functions implement behaviors

specific to the situation, the sensors provide sensing capability for characters to catch events, local

actions that create local states are used only for the local behaviors, and the event rule is a way

to relate events to specific behaviors, the constraints are particular target positions, orientation,

poses, and time duration for a particular individual. The constraints are used for the constrained

motion synthesis which will be described in Chapter 5. The constraints and behavior functions are

mutually exclusive. That is, if a situation plugs constraints to a character, the algorithm calls the

constrained motion synthesis for the character, which makes the behavior function not necessary.

When a character is under a situation, all these components are added to his or her represen-

tation at the same time. For a spatial situation, the components are added when the character first

enters the situation’s region of influence. For non-spatial situations, the character is affected when

the user assigns the situation to him or her. The components are removed from the character when

he or she leaves the situation’s region or the situation is otherwise removed. This dynamic addition

and removal of behaviors enables us to achieve scalable characters.

The first thing a situation does to a character under its influence is to extend its states by adding

new transitions to the character’s current state transition graph. We refer to this asextendingthe

graph. Because the situations add local actions, each action creates a new state that the character

can be under. This increases the number of states available for selection by the probabilistic se-

lection mechanism. An example of an extended graph is shown in Figure 3.5. In essence, each

situation has its own small state transition graph that is grafted onto the character’s existing graph

by connecting new transition edges. Each situation knows where in the character’s default graph its

47

SensorsBehavior

Functions

Actions
Event

Rules

Situation

Character
P
l
u
g
g
a
b
l
e

a
r
c
h
i
t
e
c
t
u
r
e

Constraints

Figure 3.4: When a character is under a situation, he or she gets all the information from the situation

directly. This includes actions, behavior functions, sensors and event rules.

own small state graph should be linked to. There can be multiple transitions between the existing

graph and the new portion.

3.3.1 Virtual Sensors and Memory

The events control the action of local behaviors in a situation. That is, depending on what hap-

pens in the environment, different events are sent and these change the character’s behaviors. The

events are captured by virtual sensors which are attached to the character by a situation. The cap-

tured events are stored in a list in character’s virtual memory structure. When a situation attaches a

sensor, the sensor creates an entry in this list and updates it whenever the character uses the sensor.

The contents of virtual memory are wiped out when he or she is no longer in the situation.

In our system, we use four different sensors to catch four different events.

48

State

State

 A

State
 C

State

 B

State

State

[approach]
[sit down]

[stand up]

DEFAULT STATES EXTENSABLE STATES

Figure 3.5: The states are organized as a graph structure and the graph is extended by adding a new

sub-graph when the character is in some situation.

• Empty sensor: This sensor checks for the presence of any character in a particular position

in the environment.

• Proximity sensor: This sensor maintains the distance from a character to a particular posi-

tion in the environment.

• Signal sensor: This sensor checks whether or not a signal in the environment is on.

• Agent sensor: This sensor checks a particular character’s motion and behavior including

position and orientation.

Given events captured from sensors, the event rules inform the character which behavior func-

tions to evaluate and compose, and can provide arguments to behavior functions that depend on the

sensor. For example, suppose a character is in a “crosswalk situation”, then the situation attaches a

49

signal sensor to the character to catch the traffic sign. The associated behavior rule checks the sen-

sor and applies a behavior suitable either for waiting (if the light says don’t walk) or for crossing

the street. These dynamic behaviors are composed with others to determine the character’s actions.

In our system, the event rules are encoded as Python script files and loaded automatically when

simulation begins.

3.3.2 Situation Composition

In general, characters are under several situations at the same time. This is especially true of

non-spatial situations such as group membership that must be composed with behaviors for fixed

areas like a bus stop. In our system, the composition of two situations is similar to taking their set

union; any state belonging to either is extended onto the graph, and any behavior function required

by either is added, as are any sensors.

Some situations must prevent certain behaviors from occurring. For example, in the bench

situation, to make a character sit down at a specific position, the “don’t turn” default behavior

should be ignored in composing the behaviors. This is achieved through event rules that specifically

delete the undesirable behavior from the composition.

3.4 Painting Interface

The situation-based approach puts an emphasis on environment design because the crowd’s

behavior depends on where a particular situation is located (for the case of spatial situation) and

what situations the characters are in. For specifying a particular situation on the environment, we

adopt apainting interface. This allows us to specify situations easily by drawing their regions on

the environment directly like drawing a picture on the canvas. Painting is particularly useful for

spatial situations. For non-spatial situations, we use standard techniques to select the characters to

whom the situation should apply.

50

Figure 3.6: Left: Spatial situations can be easily set by drawing directly on the environment. Situation

composition can be specified by overlaying regions.Right: Non-spatial situation can be set on the crowd

by grouping participants.

The painting interface is based on a layered structure where each layer represents a region for

a situation and is saved as a bitmap file. The layered structure makes situation composition easy

because it is done by overlapping several layers. Figure 3.6 shows the painting interface for spatial

and non-spatial situations.

3.5 Experiments

We have performed experiments on a PC with a 1.3GHz Athlon processor and 1GB of memory.

At the design stage of a crowd environment, a physical environment and situations that will be fixed

for the simulation are defined with the painting interface. At run-time, non-spatial situations and

run-time spatial situations are specified. The actual environment file is a Python script including

links for situation files which are also encoded as Python scripts. Once all the situations and

the environment are set, crowds are created either manually by the user or automatically by the

program, and then simulated.

51

To verify our approach, we tested our system on three different environments, which are the

street environment, the theater environment, and the field environment. To clarify the location of

situations within an environment, we put an identifying situation number in parenthesis and use

the numbers in the associated figures. The detailed explanation about the behavior function and

situation can be found in appendix.

3.5.1 Street Environment

We tested our approach on a typical street environment where a lot of characters are walking

on the street. In this environment, we made two crosswalks and two sidewalks on a city street

(Figure 3.7 and Figure 3.8). One crosswalk has a traffic sign and the other one does not. For the

crosswalk with a traffic sign, we composed two situations: the “crossing street” situation (1) and

the “traffic sign” situation (2). For the unsigned crosswalk, we just used the unsigned “crossing

street” situation (4). Also, in the middle of street away from the two crosswalks, we put an “in-a-

hurry” situation (3).

The more detailed specification of situations are follows:

• Crossing streetsituation (Goal : Make crowd crossing street)

1. Actions: no local actions.

2. Behavior functions: target findingbehavior function(Refer to the appendix for detail).

3. Sensors: no sensors.

4. Event rules: no event rules.

• Traffic signsituation (Goal : Make crowd crossing street depending on traffic sign)

1. Actions: no local actions.

52

2. Behavior functions: standingbehavior function andtarget findingbehavior function

(Refer to the appendix for detail).

3. Sensors: aneventsensor for capturing traffic sign.

4. Event rules: a rule for callingstandingor target findingbehavior function depending

the signal captured from the event sensor.

• in a hurrysituation (Goal : Make crowd run across the street)

1. Actions: running actions

2. Behavior functions: runningbehavior function that gives high probabilities on running

actions.

3. Sensors: no sensors.

4. Event rules: a rule for unplugs the running behavior function from behavior composi-

tion when the character finishes the crossing.

At the beginning of simulation, people are walking on the sidewalk. But when they meet the

crosswalks, they begin to respond to the situations. At the crosswalk with a traffic sign, they first

check the traffic sign using a sensor that is provided by the situation, and wait for the traffic signal

before crossing. At the crosswalk without a traffic sign, on the other hand, people just cross the

street. Meanwhile, if they are in the “in-a-hurry” situation, they cross the street without using

crosswalks. The “in-a-hurry” situation adds running transitions to the character’s state transition

graphs, allowing the crowd to run rather than walk when crossing in an unmarked area.

Due to the sampling strategy, some people who are trying to cross the street might be turning

back to the sidewalk at the middle of crosswalk. To solve this problem, we can adjust the weighting

constantα in equation 3.1 for the crossing behavior function so that once they are crossing the

street, they continue to walk until they reach the other side of crosswalk.

53

Crosswalk with traffic signal Crosswalk without traffic signalRoad

Sidewalk

3

12 4

Figure 3.7: Top: Plan of the street environment (numbers indicate situations).Bottom: 3D view of the

street.

3.5.2 Theater Environment

In this experiment, we made a complex theater environment in which there are four different

kinds of rooms. These rooms are a ticket booth, a lobby, a movie room, and restrooms. In each

room, we set several situations and have some of them overlapped and hence composed. Figure 3.9

shows the theater environment. The various regions are:

• Ticket booth: In the ticket booth, we set a “horizontal queue” situation (10) and a “follow”

situation (11). When characters enter the “horizontal queue” situation, they stand in a line

and try to buy a ticket, one by one. After that, they are guided by the “follow” situation and

enter the lobby of the theater.

• Lobby: In the lobby, we set two “gathering” situations (5, 6), a “stay-in” situation (9), an-

other “horizontal queue” situation (7), a “talk” situation (12) and three “vending machine”

54

Figure 3.8: Crowd behavior rendered in a game engine.

situations (8). Among the two gathering situations, one (5) is composed with a “talk” situa-

tion (12). For the case of (6), only a “gathering” situation is used. When characters meet the

“gathering” situation (6), they gather around for a predefined duration and then spread apart.

On the other hand, in the case (5), they gather around for the predefined duration as well,

but also sometimes show the talking behavior due to the “talk” situation. At the “vending”

machine situation, the crowd stops for a little while, and then moves forward. It is intended

to simulate purchasing something from the machine (we were limited by a few available mo-

tions). The “stay-in” situation covers the lobby and restrooms and keeps the crowd in those

areas before the movie time. This situation adds a signal sensor to all characters in the area.

If the signal from the sensor is off, they stay in the lobby or in the restrooms. Otherwise,

they move to the movie room through path planning.

55

1

3

2

5
6

9

10

7
8

11

Lobby

Ticket booth

Restroom

Movie room

Store
Vending machine

12

Figure 3.9: Left: Plan of the theater environment (the number indicates situations).Right: 3D view of

the theater.

• Restroom: In the restroom, we put three “bench” situations (3), and three “exclusive” sit-

uations (2). The “exclusive” situations prevent more than one person from getting into the

same restroom at the same time.

• Movie room: In the movie room, we set three “seat” situations (1). Each situation makes

seven characters sit down in the region, one on a seat. When people are in the situation, they

are provided empty sensors and proximity sensors. Using these sensors, they know which

seats are empty and which seats are occupied. If they find an empty seat, they move there

and sit down.

3.5.3 Field Environment

In order to show that situations can be set at run-time, we create a simple field environment

and put a relatively large crowd of 200 characters in the environment (Figure 3.10). At run-time, a

“follow” situation (1) is set by the painting interface. Due to this situation, the crowd flows through

56

1
2

Figure 3.10: Top Left: A crowd is reacting to a “follow” situation.Top Right: We set a “group”

situation on the crowd without adding any other behaviors.Bottom left: Due to the group situation, the

crowd spreads around (we have disabled the “follow” situation).Bottom right: People gather back when

we compose a “close” situation with the group situation.

the region and gathers at its end. At that point, we set a “group” situation (2) on the crowd (a non-

spatial situation). At the same time we disable the “follow” situation, which results in the crowd

spreading around. However, if we compose aclosebehavior function with the “group” situation,

they gather back.

3.5.4 Validation

For validating the ability of our approach to meet the scalability demand, we conducted three

experiments. First, we measured the average memory use of 500 characters for 2,000 simulation

steps as the situational complexity of the environment increased. We built up an empty room

57

with the painting interface and put an increasing number of randomly selected situations in the

environment. As we increased the number of situations, we computed the memory usage at each of

2,000 simulation steps before averaging across steps. To examine the rate of growth of simulation

time as a function of situational complexity, we repeated the experiment but this time computed

the average amount of time spent on animating the environment (excluding rendering) per frame of

motion, or 1
30

th of a second. The results are shown in Figure 3.11. The density of crowd was 10.0

and the physical complexity of environment was zero (no obstacles). Note that the complexity

grows slowly according to a function of the number of situations, suggesting our approach is

successful.

We also examined the cost of simulating increasing the number of characters with a fixed

number of situations (10). Again we averaged the time taken to simulate each frame of motion.

The density of crowd (10.0) and the complexity of environment (0.0) was same to the second

experiment. The results are shown in Figure 3.11. Even for 500 characters we can compute all

the behavioral and motion information in around 2.5ms, representing less than 7.5% of the itme

available for each frame.

Our simulation result confirmed that crowds showed particular local behaviors when they met

the situations. This validated the controllability demand. The painting interface was quite useful

for setting situation on the environment. As we showed in section 3.4, the painting interface

allowed us to set a particular situation directly on the environment by painting situation strokes

which were associated with the situation on the environment. The painting strokes were designed

at the preprocessing step. For implementation of situation strokes, we used the python script

wherein all information about the environment was encoded as a simple script and brought up

when we selected the situation stroke. The selected script was added to the main simulation script

which described the world and specification of where the situations were. In this way, we could

add any number of situations on the environment and control the local behaviors of crowd easily.

58

2 4 6 8 10
1.5

1.55

1.6

1.65

1.7

1.75

1.8
x 10

5

Avg memory use

of situations

M
e
m

o
ry

 u
s
e
 (

b
y
te

)

2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

Avg simulation time

of situations

S
im

u
la

tio
n

 t
im

e
(s

e
c)

Avg simulation time

of characters

100 200 300 400 500

S
im

u
la

ti
o
n
 t
im

e
 (

s
e
c
)

Figure 3.11: Top: The average memory use of 500 characters for 2,000 simulation steps.Middle: The

average simulation time of 500 characters for 2,000 simulation steps.Bottom: The average simulation time

of crowd with the fixed number of situations.

59

The convincingness demand was validated through the motion quality of individuals and proper

behaviors of crowd. In our experiments of the 3.5, we have showed that the character showed

no artifact such as pops in their motions and there was no collision between characters during

simulation.

3.6 Discussion

The situation-based simulation with the probability scheme introduced a new framework for

synthesizing virtual crowds in complex environments. At the high level, we use a situation-based

approach that provides a scalable mechanism to control the local behaviors of the crowd. At the

low level of the framework, we adopt a probability scheme that composes the influence of several

behaviors to drive a realistic motion synthesis system. We have demonstrated that our framework

can create complex crowd behaviors through the composition of situations and the composition of

behaviors while minimizing data stored in each character.

The first advantage of this approach is ease of authoring; it breaks the problem of character

design into the design of local activities, rather than one monolithic system. Second, re-use is

enhanced; the core behavior and actions can be used in any environment and the situation specific

modules can be shared wherever situations are shared. Third, efficiency is improved; at any given

moment a character has information only for the situation that he or she is in – not all of the

information for the entire environment. Finally, de-centralized control of characters makes overall

performance scalable, especially when a large crowd is simulated; each situation takes care of only

a small number of characters.

There are several ways in which we could improve our system. We have not experimented with

situations that control the density of the crowd or other multi-agent statistics. This could be done

with more intelligent situations that acted as simulation entities in their own right by dynamically

60

adjusting the behaviors they add to characters. From an efficiency standpoint, in our current system

we assume that all crowds go through the simulation step at the same time. In order to simulate a

massive crowd like 10,000 people, we need to avoid this work in some way, possibly by composing

longer pieces of motions that hence require less frequent transitions.

Finally, while our probabilistic composition framework is efficient and works well in the situa-

tions we have experimented with, it has limitations as the time scale of actions increases. In other

words, the character needs to remember more and more past states in order to piece together long

running actions. We would like to explore other mechanisms for combining behaviors.

Our method is a significant advance in scalable behaviors for characters. Architectures such

as ours will be essential for controlling the design complexity of virtual characters as the environ-

ments they populate continue to evolve.

The range of applications that our approach can simulate heavily depends on motion data. If

we don’t have available motion clips, we cannot show behaviors that use those motions. Also, our

agent architecture does not contain emotional status of agents. From the psychological standpoint,

the people’s behavior is mostly influenced by the internal status of them. In our approach, we do

not take care the behaviors driven by emotional motivation, which is limit the number of behaviors

we can simulate.

61

Chapter 4

Collision Detection Using MOBB Trees

In this chapter, we present an efficient collision detection algorithm between characters whose

motions are animated with motion capture data. This algorithm uses a novel MOBB tree repre-

sentation of motions to simplify motions in spatio-temporal domain and test the overlap between

them hierarchically. We first explain the background of collision detection in section 4.1. Sections

4.2 and 4.3 precisely define MOBB trees, describe their construction and present algorithms for

intersection testing. We close with several experiments and a discussion of future work in section

4.4.

4.1 Introduction

Data driven animation based on motion capture is a common way to animate human characters.

When multiple characters are animated this way, care must be taken to provide proper interaction

between them. A minimal requirement is that they do not interpenetrate. A better goal is that

two characters interact appropriately when they are close. In either case, when a system selects

captured motion clips for characters, it must check whether these motions will lead to the charac-

ters colliding so they can respond appropriately. This chapter presents algorithms for identifying

potential collisions between motion clips, and hence animated characters.

62

Figure 4.1: On the left, a sample frame of motion data from a clip used in our system. The skeleton is

bound by a vertical cylinder centered on its root position with a radius large enough to contain the limbs.

In the middle there is a 3D space-time visualization of two motions that do not intersect in time (vertical

axis) even though their paths cross in space. Each cylindrical bound is now a thin disk - a circle in space

extruded in time. On the right, part of the Motion Oriented Bounding Box (MOBB) for the motions. This

hierarchical structure bounds the motion in space-time and enables efficient collision queries.

When many characters are animated simultaneously, such as in crowd simulation, efficiency is

an important concern. Detecting interactions between fully articulated characters is computation-

ally intensive, and may be excessive if the application requires characters to maintain reasonable

seperations. We therefore focus on the use of a simplified character geometry; a bounding cylinder.

In cases where this simplification is unaccaptable, the efficient algorithms it affords can be used as

a culling step to identify potentially interacting characters.

Even with the simplified geometry, checking for interactions between characters on every frame

can be prohibitive if there are many characters. The problem is even worse if we are evaluating

potential choices for motions for each character. We therefore exploit the fact that data driven

animation often selects an entire clip of captured motion at once. We can, therefore, check entire

motions for collisions before they begin.

The motion clip collision problem considers two motions, along with their transformations that

place their starting points in space. One motion may have a time offset, for the event that the two

do not start simultaneously. A collision must be detected if at any time during the duration of

63

Figure 4.2: Three levels in an MOBB tree hierarchy. Boxes are split evenly in the time (vertical) dimension

going from one level to the next, and then spatial bounds are generated containing all the samples in that

time-slice.

the motions the bounding cylinders for the characters associated with the motions overlap. If the

characters are spatially disjoint, or at the same place at different times, there are no collisions.

To perform motion clip collision detection efficiently, we precompute a hierachical represen-

tation of each motion. We refer to our collision data structure as a Motion Oriented Bounding

Box (MOBB) tree (Figure 4.1, right). It is a space-time variant of OBB trees [GLM96] targeted at

skeletal motion clips, and it can be viewed as a continuous collision detection technique based on

hierarchies of swept volumes. The design of MOBB trees is motivated by several motion specific

properties: the character’s path is densely point sampled in time and can be arbitrarily shaped (Fig-

ure 4.1, center); the time steps are large compared to typical physically based simulation; the aim

is to avoid collisions entirely, so we require a yes/no intersection test and have no need for contact

points etc.; and characters are moving on the ground plane, so the problem is 2D with time (we

are looking for intersections between circles extruded in time – thin disks in space-time). These

properties primarily drive the way in which an MOBB tree is constructed, but also influence the

intersection testing algorithm.

64

4.2 MOBB Trees

The motion clip collision detection problem considers a pair of motions,ma(t) andmb(t). A

motion is a function that maps times to character poses. Because we simplify character geometry

as a cylinder, we consider motion functions as providing three values for any given time: the

position of the character in the plane(x, y) and the radius of the cylinder around the characterr.

For simplicity, we center the cylinder around the projection of the character’s root joint onto the

ground plane. We computer from the point on the character whose projection is furthest from this

position. When the character is assymetric, for example when carrying a large sword, the use of

the root as center leads to an oversized bounding cylinder. In practice, this has not been a problem.

In fact, we often use a fixed value forr.

Because we are working with data-driven animation, motions are representing by samples. We

assume, without loss of generality, that the first sample is at timet = 0. We also assume that the

motions are sampled finely enough that we need not consider interpolation between samples.

A collision detection test is given two motions,ma andmb, a 2D transformation for each,

Ta andTb, and a time offset for each,ta andtb measured in a global timeframe. Definetstart as

max(ta, tb) andtend,a andtend,b as the last sample inma andmb respectively. The test should return

a positive result (an intersection) if there exist sample times,

(tstart − ta) ≤ oa < tend,a

(tstart − tb) ≤ ob < tend,b

such that

‖Tama(oa)−Tbmb(ob)‖ < ra(oa) + rb(ob) (4.1)

In practice, the time offsets could be arbitrary real numbers, while the samples are discrete. We

therefore interpretma(oa) to be the sample from the time closest to but belowoa. An alternative is

65

to interpolatema, but our sample spacing is sufficiently fine with respect to the character’s speed

and size that this is unnecessary for the purposes of collision avoidance.

In 3D space-time, each sample is a short cylinder, axis aligned with the time dimension, the

center of the base at(m(t); t), radiusr(t) and height equal to the sample spacing,dt. Detecting a

collision is equivalent to identifying collisions between these space-time cylinders, appropriately

transformed.

An MOBB tree is a hierarchical bounding volume in 3D space-time. Each node in the hierarchy

is an oriented bounding box with one axis parallel to the time domain and the other two axes lying

in thexy-plane. This is equivalent to a 2D spatial OBB extruded in the time domain. Each node

bounds a set of samples fromtmin to tmax. The children of a node in the tree bound the subsets

of samples fromtmin to tmax−tmin

2
and tmax−tmin

2
to tmax. In other words, the hierarchy is built by

subdividing the volume at its midpoint in time.

The following sections describe how we construct a MOBB tree from a motion, and how we

intersect two MOBB trees.

4.2.1 Fitting MOBB Trees

MOBB trees are built in a manner analogous to standard OBB trees; given a sequence of

samples to bound, we must compute the orientation and dimensions of the box, and then recurse

on the two child sub-sequences. Note that in each node we store data defining a 2D OBB tree and

the time range, which can be thought of as the third dimension of the space-time box. Three levels

of an example tree are shown in Figure 4.2.

Given a set of sample points in 2D, the optimal oriented bounding box (OBB) can be computed

by computing the second order statistics of the points [GLM96]. In practice, we find it sufficient to

approximate the optimal box with one obtained by a simpler method. Figure 4.3 shows the result

of comparison between our axis aligned method and original second order statistics method.

66

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120
Comparison of Tightness of OBB tree

Motion

A
re

a

2nd Order Statistics

Local Aligned Method

Figure 4.3: Comparison between second order statistic method and our local aligned method.

Given a set of sample points, we choose the major axis of the OBB,a0, by subtracting the

location of the first sample,m(tmin) from that of the last,m(tmax), and normalizing:

a0 =
m(tmax)−m(tmin)

‖m(tmax)−m(tmin)‖
The minor axis is perpendicular:a1 = (−a0,y, a0,x).

To compute the dimensions of the box, we iterate over the samples and keep track of the max-

imal extents seen. To compute these, each sample is transformed into the box’s local coordinate

system andr(t) is added (subtracted) to get the maximal (minimal) extent in each dimension. If

dmax anddmin are the largest and the smallest extents found, then the center of the OBB is at

clocal =
dmax + dmin

2

67

and the dimensions of the box are

d =
dmax − dmin

2

The center is transformed back into global coordinates and stored, along witha0, a1 andd.

Each node also storestmax andtmin.

After computing the bound at one node, we divide the duration of the sample sequence in half.

Recursion stops when a fixed number of samples,nmin, remain and the samples are stored in the

node (OBBs are still computed and stored for leaf nodes). We experimented with various values for

nmin, ranging from 1 to 50. Optimal performance occurred atnmin = 10, which reflects the cost

of a 2D OBB intersection relative to computing the distance between two samples. Performance is

near best when one OBB test is equivalent tonmin

2
sample distance tests.

Standard OBB tree construction algorithms [GLM96] use second order statistics to determine

the box axes. We tested this method but found it gave essentially identical results (comparing box

area) as our method, which is simpler to implement.

4.2.2 Intersection Testing

Intersection testing of two MOBB trees is very similar to testing standard OBB trees. Note that

we are seeking only yes/no intersection queries, and hence can exit as soon as an intersection is

found. Input to the intersection test is two MOBB nodes,A andB, their 2D spatial transformations

from world coordinates,Ta andTb (rotation and translation) and the time offsets,ta andtb. An

example collision test is presented in Figure 4.4.

We first test that the nodes overlap in time: ifta + A.tmax < tb + tmin then the boxes do not

overlap in time (Figure 4.4(c)) and we can exit with no collision, and the same ifta + A.tmin >

tb + tmax. If temporal overlap is found, we testA’s andB’s 2D OBBs using separating axes

tests. There are only four axis tests required. If the OBBs do not overlap, there is no collision

(Figure 4.4(b) and (d)), otherwise we perform one of two actions (Figure 4.4(a) and (e)): if one of

68

the boxes is a leaf, we call a procedure to test the leaf against the other tree; otherwise we make

recursive calls to compare all the child nodes.

A leaf versus tree node test checks the time interval covered by the leaf against the time intervals

covered by the node’s children (Figure 4.5). If a child overlaps the leaf, we recurse on the child.

Recursion continues until we have two leaves, at which point corresponding samples are found

from A andB and the distance between them compared to the bounding radii. In other words, we

explicitly search for samples withoa andob satisfying Equation 4.1.

4.3 Unrestricted MOBB Trees

The MOBB trees described thus far always use the time axis as one of the OBB axes in 3D

space-time. This restriction can be relaxed, essentially treating the samples as regular 3D geometry

and building 3D OBBs to bound them. We refer to trees built in this manner as Unrestricted MOBB

trees, or UMOBB trees. UMOBB trees are expected to give tighter space-time bounds (Figure 4.6),

and hence require fewer tests to identify non-intersecting cases.

To determine the axes of the 3D OBB in space-time, we determine the first axis,a0, by subtract-

ing the space-time location of the first sample,(m(tmin); tmin) from that of the last,(m(tmax); tmax)

and normalizing (similar to the 2D case, but including the time dimension). We obtain a second

axis,a1, mutually orthogonal toa0 and the time dimension,(0, 0, 1). Finally,a2 = a0 × a1.

The dimensions of the box are found by transforming the sample points into the box’s coordi-

nate system, projecting the extents of the samples’ cylinders onto the axes and hence finding the

maximal projection across all samples. Figure 4.7 illustrates the projection. First we computer,

which is the vector with length equal to the disk’s radius,r, aligned witha0 in thexy-plane:

r = r
(a0,x, a0,y, 0)

‖(a0,x, a0,y, 0)‖

69

From the figure, we see that

min0 = −r · a0

min2 = r · a2

max0 = r · a0 + dt a0,t

max2 = −r · a2 + dt a2,t

The extents in the remaining direction,a1, are at distancer by construction. Taking the maximum

and minimum over all samples gives us the necessary information to compute the box origin and

dimensions. The node of an UMOBB tree stores the box properties (origin, axes, dimensions) in

addition totmin andtmax. Keeping the times allows for a fast early reject test when looking for

box intersections.

Intersection testing of UMOBB trees is essentially identical to that of MOBB trees, the only

difference being the use of 3D OBB tests. A 2D transformation plus a time offset becomes a 3D

space-time transformation by a applying the rotation about thet-axis and using the temporal offset

as a translation in thet dimension. Otherwise the algorithm is identical.

4.4 Validation

Fast collision detection between two motions is a crucial part for visual convincingness and

efficiency demand. To validate these demands, we performed a series of experiments to explore the

benefits of MOBB trees under an application workload. Our test environment is a crowd simulator

in which characters wander through the world avoiding collisions (Figure 4.8). The density of

crowd is 9.5 and the physical complexity of environment is 0.0 (no obstacles). The characters are

animated with a Snap-Together Motion [GSKJ02] style motion graph built from 51 motions. The

motions have an average length of only 2.1 seconds, or 63 frames. Withnmin = 10 (the number

of samples in a leaf node), the tree is very shallow – only 3 levels on average. This limits to some

70

Method Time (10−6s) # 2D # 3D # sample

MOBB 1 level 4.6 0.45 0 10.3

UMOBB 1 level 4.5 0 0.45 10.0

MOBB 2.3 1.7 0 0.91

UMOBB 2.2 0.16 1.53 0.77

Hybrid 1 2.1 0.40 1.34 0.77

Hybrid 2 2.0 1.5 0.25 0.81

Table 4.1: Results of our application-based experiment. See the text for a description of the methods.

The table shows average time per intersection query, the average number of 2D and 3D OBB tests per

intersection query, and the average number of sample-sample overlap tests. Note that, even though the

UMOBB contains no explicit 2D nodes, some 3D boxes end up aligned and hence are treated as 2D. This

explains the non-zero count for 2D tests in the UMOBB trees.

extent the benefits we see from a hierarchical method. The radius of the bounding sphere around

each character was fixed atr = 1.85 meters.

As a base case for comparison, we used MOBB trees that performed bounding box tests only

at the root, referred to as “1 level” trees in Table 4.1. These trees simulate a collision detection

method that tests an OBB bound for the entire motion, and then use binary search on time to

identify potentially overlapping samples (a hierarchy in time but not space). Our results hence

show the performance advantage gained from a hierarchy of bounds compared to an algorithm that

uses only a root bound but is otherwise intelligent about avoiding sample tests.

In addition to results for the “1 level”, MOBB and UMOBB trees, we also experimented with

two hybrid trees: one used an MOBB node for the root and UMOBB nodes for the rest of the tree;

while the other used a UMOBB node for the root and MOBB nodes elsewhere. These are listed as

“Hybrid 1” and “Hybrid 2” in Table 4.1.

71

Method Time (10−6s) # 2D # 3D # sample

MOBB 1 level 68.3 0.83 0 306

UMOBB 1 level 68.1 0 0.83 307

MOBB 5.9 27.5 0 4.15

UMOBB 6.8 0.62 21.6 3.10

Hybrid 1 6.8 1.45 20.8 3.10

Hybrid 2 6.0 26.7 0.83 4.15

Table 4.2: Results of our experiment using longer motion clips. The methods are described in the text.

The table shows average time per intersection query, the number of 2D and 3D OBB tests performed, and

the number of sample-sample overlap tests. We see MOBB trees slightly out-performing the unrestricted

tree, reflecting the relatively high cost of 3D OBB tests compared to 2D tests.

The experiments were performed on a PC running Windows with a 3.0GHz Athlon processor.

Each experiment ran for 2 minutes of simulated time. Approximately 80% of all queries returned

negative at the root node test, which is a sufficiently large percentage to make the fast but inaccu-

rate. The MOBB trees’ 2D OBB test performs very similarly to the more expensive UMOBB trees’

3D OBB test at the root node level (the results for “Level 1” testing). However, at nodes deeper

in the tree the MOBB boxes improve in fit, and they perform better than UMOBB nodes due to

their cheaper cost per test. The hybrid trees confirm this result. Overall then, in this environment

it matters little which hierarchical method we use.

The short motions of our target environment limit the performance gains available through a

hierarchical method. We see only around a factor of 2 improvement over a non-spatial (but still

temporal) hierarchy. Longer motions provide greater performance improvements, so we conducted

another experiment using a simulation style workload (in terms of percentage of positive tests) but

in an isolated test environment.

72

Our second experiment used 14 motions with an average length of 42 seconds. We performed

an identical set of 100,000 tests with each style of tree, each test using a random translation,

rotation and temporal offset on one of the motions. These tests were done on a 3GHz Pentium 4

PC running Linux. The results are in Table 4.2, and an example motion appears in Figure 4.9. On

longer motions, MOBB trees perform best by a small margin, and the almost identical performance

of the “Hybrid 2” trees (containing almost all MOBB nodes) supports the conclusion that faster

tests with looser MOBB bounds are preferable in this application to the slower UMOBB tests.

Regardless of the exact type of bounding tree, we consistently see roughly an order of magnitude

improvement. Intuitively, the motions are long enough to allow pairs to frequently start nearby

(meaning their root nodes overlap) and move away from each other (meaning that spatial testing

is effective when temporal is not). Figure 4.10 shows the result of time cost comparison among

MOBB, Frame-by-Frame and SweepOBBTree method (the density of crowd = 3.3 and the physical

complexity of environment = 0.0).

4.5 Discussion

We have presented a novel bounding volume methodology, Motion Oriented Bounding Box

trees, for motion capture clips that exploit a spatio-temporal hierarchy. In practice, we found that

a restricted form of OBB, with one axis aligned with time, formed the most effective bound for

motion data. Experimental tests confirmed that hierarchical bounds are more effective for longer

motions – short motions produce trees that are too shallow. Hence, hierarchical bounds are most

applicable in planning type applications where long sequences must be tested for intersection,

rather than highly reactive environments in which clips are typically short. In the former situation,

we saw an order of magnitude improvement in collision detection time, while in the latter case the

73

fastest approach is likely to be a binary search on time for overlapping samples, followed by direct

comparison of sample positions.

An extension we are exploring is the application of hierarchical bounds to sequences that are

temporally combined at run-time, as occurs in motion graphs. Combinations of short clips obvi-

ously produce longer ones, and hence suit our technique. It is insufficient to simply test each short

segment; better performance should result from combining small trees from the bottom up into

larger trees. Advances in this area will result in more realistic simulation of interactive characters,

and hence more engaging virtual worlds.

74

A00

B00

A00

B00
T ime

A10

B10

A10

B10

A10
B11

A10

B11

A11

B11

A11

B11

A11

B10

A11

B10

(b) (c)

(d) (e)

(a)

Figure 4.4: Testing two internal MOBB tree nodes,A00 and B00. The relative spatial and temporal

arrangement of the nodes is shown in (a). The algorithm first tests for temporal overlap, and then spatial

overlap. In this case there is an intersection, so the algorithm recurses with the four combinations of child

nodes. At the next level, tests (b) and (d) fail because there is no spatial overlap, test (c) fails because there

is no temporal overlap (no spatial test is done), and test (e) leads to further recursion.

75

A

B

A

B

Time

(a)

A10 B

A10

B

(b)

A11

B

A11

B

(c)

Figure 4.5: Testing an internal node against a leaf node. In (a), we have reached a leaf nodeB while at

a non-root nodeA in the other tree. The time range ofB is tested againstA’s children,A10 andA11. In

one case, (b), the time interval does not overlap, so we stop with no intersection found. In the other case,

(c), a temporal overlap is found so the algorithm recurses withA11 andB. Note that we do not perform a

spatial test in case (c); experiments found out it gave no advantage.

76

Figure 4.6: Three levels in an unrestricted MOBB (UMOBB) tree hierarchy. In this tree, bounding

volumes are 3D OBBs in space-time, removing the restriction that one axis aligns with the time dimension.

Boxes are still split evenly in the time dimension, but a 3D OBB is fitted to the samples. UMOBB trees have

tighter bounds than MOBB trees, but are more expensive to test for intersection.

P

min0

a2

a0

max2

min2

max0

dt

r

Figure 4.7: Computing the extent of a sample disk for a 3D space-time OBB. The disk has the center of

its base located at the sample point,p, with radius vectorr and heightdt. We must find the minimal and

maximal projections onto the axesa0 anda2. Note the asymmetry in the cylinder’s position.

77

Figure 4.8: Snapshot of the crowd simulation used to explore the performance of MOBB trees. The

environment is a 30×40 meter rectangle containing 100 characters.

Figure 4.9: One of the long motions used in our experiments. The motion clip is of someone walking in

circles.

78

10 20 30 40 50 60 70 80 90
1

2

3

4

5

6

7

8
x 10

5
Time Cost of MOBB vs. Frame by Frame Test

vs Sweep OBB Tree (3 agents, 12mx12m environment, 2min simulation)

Overlap Time Range

T
im

e
(s

e
c
)

Frame by Frame Test

MOBB Test

Sweep OBB Tree Test

Figure 4.10: Time cost comparison between MOBB and Frame-by-Frame and SweepOBBTree method.

79

Chapter 5

Constrained Motion Synthesis

This chapter represents the constrained motion syntheses algorithm, which corresponds to one

of the two motion syntheses at the low-level parts of two-level crowd simulation framework (Figure

1.1).

5.1 Introduction

This chapter presents a highly efficient algorithm for synthesizing realistic goal-directed mo-

tion for large numbers of characters. We focus on the important problem of character navigation,

and introduce an algorithm for creating motions that are collision-free and that precisely satisfy

constraints on duration, position, orientation, and body pose. For example, we might require mul-

tiple characters to meet (e.g., face each other) at a specified position and time, or we might require

a collection of characters to navigate through a building into a theater and then sit down in an array

of seats. Our algorithm is capable of animating entire groups of characters at better than real-time

rates, i.e., the motion for the group takes less time to generate than it takes to play. Given a higher-

level control mechanism for directing behaviors [HM95, HFV00, FBT99, MT01, BC97, SCG04],

our algorithm is well suited as a back end for efficiently generating detailed motion for each indi-

vidual character that meets specifications on where and when desired actions should occur.

80

To generate high-quality motion with low computational cost, we represent the space of possi-

ble motions with a motion graph generated through the method of Gleicher et al. [GSKJ03]. This

motion graph is a directed graph where each edge contains a clip of motion and nodes correspond

to character poses that are shared by the end of all incoming clips and the beginning of all outgoing

clips (Figure 5.1). By construction, any clip entering a node can be seamlessly connected to any

clip leaving that node simply by concatenating the clips. This makes synthesis highly efficient, and

it reduces the problem of creating a specific motion to finding an appropriate sequence of edges on

the motion graph.

To create motions that avoid collisions and satisfy user-defined constraints, we proceed in two

steps. We first use a fast path planner based on probabilistic roadmaps (PRMs) [KL94b] to navigate

through complicated environments and produce motions that approximately satisfy the constraints.

The result is then refined through a randomized search algorithm that yields a motion which ex-

actly conforms to the constraints. Many existing graph-based synthesis techniques also use search

algorithms to generate motions that satisfy constraints [AF02b, AFO03, GSKJ03, HGP04, KGP02,

LCR∗02b, LL04]. However, because new motions can only consist of static clips from a fixed set,

in general this approach cannot satisfy constraints exactly. For example, if a graph only contains

clips where a character turns in 30 degree increments, then that character can never end up facing

a direction that is not a multiple of 30 degrees. This can lead to fruitless, time-consuming searches

for motions that cannot exist. Rather than limiting synthesis to attaching fixed clips, we modify

the search to allow for a continual, gradual adjustment of the character’s position, orientation, and

speed in the synthesized motion. This has two important advantages:

1. The search algorithm has greater flexibility to accurately satisfy constraints.

2. Motions can be constructed more quickly because the search need not computeoptimal

motions, but rather motions that are “close enough.”

81

To provide guarantees on motion quality, we restrict the amount that a synthesized motion can be

adjusted. The adjustment tolerance provides a natural mechanism for striking a balance between

efficient synthesis and guarantees on motion quality. However, in practice, adjustments that are

small enough to be difficult to discern are sufficient to make constraint satisfaction reliable and

efficient.

The remainder of this chapter begins with describing our synthesis algorithm in detail in Sec-

tion 5.2 and then presents results in Section 5.3, and concludes with a brief discussion in Sec-

tion 5.4.

5.2 Synthesizing Motion

5.2.1 Overview

Given a group of characters and a set of constraints on each character’s configuration, our goal

is to synthesize motions for the individual characters such that all constraints are satisfied and no

collision occurs. Each constraint can specify a character pose, a positionp and orientationθ for

this pose, and a time interval[ta, tb] in which this configuration must be obtained (possiblyta = tb).

The time constraint can either be absolute (e.g., the character must arrive at a spot 3 seconds from

now) or relative to another character’s motion (e.g., the character must arrive at a spot within 1 sec

before or after another character). Not all of these components need to be specified — for example,

one might require a character to move to a particular spot without specifying a pose, orientation,

or time interval.

To avoid inter-character collisions, individual characters are processed sequentially, with char-

acters whose motions have already been planned treated as moving obstacles. This limits the size

of the search space and as a result is considerably more efficient and scalable than processing

all characters simultaneously. While in principle sequential processing may result in artificially

82

unsatisfiable constraints, typically there are many possible motions that satisfy a given set of con-

straints, and we have found that in practice sequential processing does not prevent sophisticated

group animations from being generated. The specific processing order is arbitrary except insofar

as is necessary to satisfy timing relationships — for example, if character A must arrive some-

where1s after character B, then B is processed first. We assume that the timing constraints have

no circular dependencies, so a feasible ordering always exists.

We represent the actions available to a character with a motion graph (Figure 5.1). Each edge

corresponds to a clip of motion, and any sequence of connected edges yields a seamless motion

composed of the corresponding sequence of clips. Every pose that the character can attain is con-

tained within the motion graph, and so we require each constraint pose to correspond with the

pose at some nodeN . Traditional synthesis methods based on motion graphs [AF02b, KGP02,

LCR∗02b] are inherently discrete in that they search for a sequence of available clips that meets

user-defined criteria. As noted in Section 5.1, this precludes constraints on continuous properties

(such as position, orientation, and duration) from being exactly satisfied, and finding a clip se-

quence with minimal deviation can require an expensive search. We instead allow the clips from

the motion graph to be continuously adjusted to alter a character’s position, orientation, and speed.

This strategy allows the constraints defined above to be exactly satisfied, and it yields shorter search

times since a raw sequence of clips need only sufficiently reduce constraint deviation, rather than

minimize it.

To produce a motion that satisfies a sequence of configuration constraints, it is sufficient to

consider the problem of constructing segments of motion that start in a specified configuration

(Ns, θs,ps) and end in a specified configuration(Ne, θe,pe) within a given time interval[ta, tb].

The full constraint sequence can then be satisfied by iteratively generating motion that travels from

the current configuration to the next configuration. To satisfy the constraints at an iteration, we

use a fast approximate planner to construct motions that navigate through the environment and

83

STEP LEFT FOOT

SIT

DOWN

SIT

PICK

UP

CARRY LEFT FOOT

PUT

DOWN

STAND UP

STEP RIGHT FOOT

CARRY RIGHT FOOT

Figure 5.1: An example motion graph. Edges are motion clips and nodes indicate frames where clips have

the same joint orientations and velocities.

then refine the result to produce a motion that exactly satisfies the constraints. More specifically,

the algorithm first constructs two “seed” motions: aforward motionMf that starts at(Ns, θs,ps)

and ends near (but in general not exactly at)(Ne, θe,pe), and abackwardmotionMb that ends

precisely in(Ne, θe,pe) and starts approximately at(Ns, θs,ps). A randomized search procedure

then adjusts these motions such that 1) they can be connected with adjustments to position, orien-

tation, and timing that are below a user-defined threshold and 2) the resulting motion satisfies all

constraints. This process is illustrated in Figure 5.2. The remainder of this section provides details

on howMf andMb are created (Section 5.2.2) and then how they are adjusted and connected

(Section 5.2.3).

84

AAA
AAAAA

AAA

AA

Initial and final constraints
A

C

Greedy forward and backward searches

B
A

B

B

C

BCA
A

A

A

C

Difference in node

configuration < ε?

Yes

No

A

C
B

A

B

B

C

BCCAA
AA

AA

C

A

A
A

Randomly select and replace a clip

A

C
B

A

B

B

C

BC

A

A
A

Find most similar nodes

A

C
B

A

B

B

CC

BC

Add displacement to merge nodes

1

2

3

4

5

Figure 5.2: An individual character’s motion is generated by computing motions that satisfy, respectively,

constraints on the initial and final configuration (steps 1 and 2) and then iteratively adjusting these motions

so they can be seamlessly connected while satisfying all constraints (steps 3 – 5).

85

Probabilistic Roadmap Way points

Start

Finish

Figure 5.3: Left: An example probabilistic roadmap.Right: A series of way points that connect a pair of

positions.

5.2.2 Creating the Seed Motions

For simplicity, we only discuss the construction ofMf ; Mb is handled identically, except

time flows in reverse. As in previous work [PLS03], we start by building a probabilistic roadmap

(Figure 5.3) to aid in navigating through the environment. Nodes in the roadmap are created by

randomly sampling positions on the ground that are outside of obstacles, and edges are created

between nodes that are within a threshold distance of each other and are mutually visible (i.e.,

the connecting line segment does not intersect any obstacles). Given desired starting and ending

configurations(Ps, θs,ps) and(Pe, θe,pe), nodes are added to the road map atps andpe and edges

are added to all visible neighbors. A shortest path fromps to pe is then found with Dijkstra’s

algorithm, resulting in a sequence of way pointsw1, . . . ,wn (Figure 5.3).

Once a sequence of way points is determined, a fast greedy planner guides the character through

successive way points such that it travels from the initial configuration toward the final configura-

tion. This planner continues until a local error measure does not decrease, and hence while it is

86

guaranteed to terminate, in general it will not produce optimal motion. This is acceptable because

only a rough initial motion is needed for the randomized search, and a fast approximate planner is

preferable to a slower planner that produces optimal (but still necessarily inexact) results.

The planner proceeds as follows. First, assume that the current target way point iswi, with

i < n. The planner iteratively selects the edge in the motion graph that brings the character closest

to wi without incurring collisions with the environment or higher-priority characters. This edge

is required to be within the subgraph corresponding to the character’s current locomotion state —

for example, in Figure 5.1, a character who has just picked up a box would be required to use one

of the “carry” edges. This subgraph is determined from annotations associated with the originally

data, which may be added semi-automatically [AFO03] as a preprocess. Collisions are detected

by placing minimum bounding cylinders around each character. Because the set of all possible

character poses is encoded in the motion graph, these bounding cylinders can be precomputed for

greater efficiency. If all possible edges increase the distance towi, thenwi is set to the current way

point and the planner attempts instead to reachwi+1.

When travelling to the final way pointwn = pe, the planner must also account for possible

constraints on target orientationθe and ending posePe. The latter constraint reduces to requiring

the motion to terminate in the nodeNPe that corresponds toPe. A similar greedy algorithm is

used, except 1) the next edge is selected so as to minimize a weighted sum of the position and

orientation errors, rather than just position errors, and 2) whenever the current motion terminates

atNPe, it is stored in a temporary variableMbest. Whenever the error stops decreasing, the current

Mbest is returned. If no value forMbest exists (because no motion terminating inNPe has been

encountered), then instead Dijkstra’s algorithm is used to find the path in the motion graph to

NPe containing the fewest edges. If multiple shortest paths exist, then ties are broken by greedily

selecting edges that minimize position/orientation error. Finally, if the orientation is unconstrained,

87

then only position error is considered, and if the final pose is unconstrained, then the planner simply

adds edges until the position/orientation error stops decreasing.

Note that the planner does not consider time constraints. These constraints are addressed in the

next stage of the synthesis process.

5.2.3 Adjusting and Merging the Seed Motions

The seed motionsMf andMb satisfy, respectively, the constraints on the character’s initial

and final configuration. Our goal is to merge them into a single motion that satisfies both of

these configuration constraints and, if specified, has a duration within the desired interval[ta, tb].

We start by finding frames inMf andMb where the character is in the same pose and where

the position and orientation of this pose are similar. Displacement maps are then added so the

position and orientation are identical. Finally, the adjusted motions are spliced together at these

frames to form a seamless new motion that begins and ends in the desired configurations, and the

speed of this motion is altered to conform to the time constraints. While this algorithm guarantees

that the constraints are satisfied, the result may look unrealistic if overly large changes are made.

Our strategy is to use a randomized search algorithm to perturbMf andMb such that they are

sufficiently similar at a pair frames and of sufficient duration that the necessary adjustments are

below a user-controllable tolerance. Figure 5.2 graphically depicts this process. The remainder of

this section explains our algorithm in greater detail.

Let Mf andMb be composed, respectively, ofnf andnb clips from the motion graph. The

ith clip of Mf is represented by a tuple{tf,i, If,i,pf,i, θf,i} containing the clip’s durationtf,i, the

indexIf,i of its starting node in the motion graph, and the positionpf,i and orientationθf,i of the

pose associated with this node. Thejth clip of Mb is represented similarly. We consider joining

Mf andMb at any point where they share a node from the motion graph. Let the subsection of

a motionM consisting of therth
1 clip through therth

2 clip beM[r1, r2], and consider the motion

88

formed by concatenatingMb[j, nb] onto the end ofMf [1, i]. We define the costCMf ,Mb
(i, j) of

creating this motion as a sum of position, orientation, and time errors, normalized by the motion’s

duration:

CMf ,Mb
(i, j) =

1

N(i, j)
(Ep(i, j) + α1Eθ(i, j) + α2Et(i, j)) , (5.1)

where

• N(i, j) is the total duration ofMf [1, i] andMb[j, nb], computed as
∑i

k=1 tf,k +
∑nb

k=j tb,k.

• Ep(i, j) is the distance between the end ofMf [1, i] and the start ofMb[j, nb], computed as

‖pf,i+1 − pb,j‖.

• Eθ(i, j) is the orientation difference, computed as|θf,i+1 − θb,j|, with numerical values as-

signed toθf,i+1 andθb,j such that this error is no greater than180◦.

• Et(i, j) is the time error. If the constraint time interval is[ta, tb], then Et(i, j) = 0 if

N(i, j) ∈ [ta, tb] and otherwiseEt(i, j) = min(|N(i, j)− ta|, |N(i, j)− tb|).

• α1 andα2 are scaling factors to relate the different error measures. In our implementation,

1cm ≈ 1◦ ≈ 1
30

s.

The costC ′ (Mf ,Mb) of connectingMf andMb is defined as the minimum value ofCMf ,Mb
(i, j)

over all indices where the terminating node ofMf [1, i] is the same as the starting node ofMb[j, nb].

C ′ (Mf ,Mb) = min
i,j:If,i+1=Ib,j

CMf ,Mb
(i, j) (5.2)

If a pose constraint exists on the start and/or end of the desired motion (as opposed to, for example,

just a position constraint), thenMf andMb will always share at least one node. Otherwise, it is

possible for them to share no nodes, in which caseC ′ (Mf ,Mb) = ∞.

Intuitively, C ′(Mf ,Mb) represents the amount of per-frame adjustment needed to seamlessly

spliceMf andMb and satisfy the time constraints. To preserve the realism of the original motion

89

data, we require this to be below a user-defined thresholdε (optionally, one might also limit the total

accumulated adjustment, but in our experience it is sufficient to consider the per-frame adjustment

C ′(Mf ,Mb); see Section 5.3). IfC ′(Mf ,Mb) > ε, thenMf andMb are perturbed through

a randomized search algorithm to produce a new pair of motions with a below-threshold cost.

The search proceeds by generatingnm perturbed motion pairs, checking as each pair is generated

whether the individual motions are collision-free and whether the splicing cost (Equation 5.2) is

belowε. If so, the search returns this motion pair. Otherwise, thekm lowest-cost pairs are retained

and the search continues. If the search fails to find a below-threshold motion pair after a user-

defined maximum number of iterationsNmax, then a warning is issued and the current lowest cost

pair is returned.

During the search, perturbed motion pairs are generated as follows. First, one of thekm motion

pairs from the previous search iteration is selected at random, unless it is the first iteration, in

which case only the original pair(Mf ,Mb) is available. Next, one of the two motions in this pair

is selected. A clipC is chosen at random from this motion and replaced with a new clipC′. In

order to ensure thatC′ joins seamlessly with the rest of the motion, it is required to originate and

terminate at the same nodes in the motion graph asC (this also means that the perturbed motion

begins and ends in the same poses, so pose constraints automatically remain satisfied). Because

the motion graph is constructed so as to have many more edges than nodes, in general there will

be many possible replacement clips. Let the change in the character’s position and orientation in

C be δpC andδθC, and letC’s duration beδtC. The actual replacement clipC′ is chosen with

a probability inversely proportional to its “distance” fromC, in terms of the relative change in

position, orientation, and time:

‖∆pC −∆pC′‖+ α1|∆θC −∆θC′|+ α2|∆tC −∆tC′ |

90

Once suitably perturbed forward and backward motionsM′
f andM′

b are found, they are joined

at the nodes calculated in Equation 5.2; see Figure 5.4. LetM′
f [1, i] andM′

b[j, n
′
b] be the motion

segments that will be joined, and let the difference in the final position and orientation ofM′
f [1, i]

and the initial position and orientation ofM′
b[j, n

′
b] be, respectively,δp andδθ. Also, letNf be the

duration ofM′
f [1, i], Nb be the duration ofM′

b[j, n
′
b], andδt be the smallest amount that must be

added toNf + Nb such that(Nf + Nb + δt) is inside the constraint time interval[ta, tb]. Lastly,

defineλ1 =
Nf

Nf+Nb
andλ2 = Nb

Nf+Nb
. The final motion is formed as follows:

1. Thekth frame ofM′
f [1, i] has its position and orientation adjusted byk−1

Nf−1
λ1δp and k−1

Nf−1
λ1δθ.

2. The kth frame of M′
b[j, n

′
b] has its position and orientation adjusted by− k−1

Nb−1
λ2δp and

− k−1
Nb−1

λ2δθ.

3. The adjustedM′
f [1, i] andM′

b[j, n
′
b] are concatenated.

4. The result is resampled so its duration is(Nf + Nb + δt).

By construction, the result is continuous and satisfies all constraints. A final test for collisions is

made on this new motion and, if the test fails, then the motion is discarded and the search algorithm

continues from where it left off.

5.3 Validation

Given constrains for individual, the motion synthesis that generates motions satisfying the

constrains exactly is the most important feature for controllability. This allows us to set various

constraints for character at any time as long as the constraints are legal (i.g, if the position constraint

is not in the obstacles). Fast synthesizing motions validates the efficiency demands as well because

it allows to synthesize a lot of characters simultaneously.

91

Start

Resample to Meet Time Constraints

Adjust Position/Orientation and Concatenate

M'

M'

f

b

M'fM'M'

M'bM'M'

Figure 5.4: M′
f andM′

b are joined at the nodes calculated in Equation 5.2 by adding displacements that

compensate for differences in position and orientation, and the result is then resampled to meet the time

constraints.

For validating of satisfying demands, we tested our algorithm using the motion graph shown

in Figure 5.1, which allowed characters to walk in various directions; sit down into and get up

from a chair; and pick up a box, carry it in various directions, and put it down. Altogether, the

motion graph contained 50s of motion data sampled at30Hz. In our experiments, we setε =

2cm/s = 2◦/s = 1
15

s/s, and the parameters for the search algorithm (see Section 5.2.3) were

nm = 200, km = 30, andNmax = 1000; for these values the search algorithm was always able to

find a motion pair that was within the adjustment tolerance and avoided collisions. We generated

several animations that required a large number of characters to perform certain tasks at specified

92

Figure 5.5: Experiment 1: 20 characters (grey) are required to arrive simultaneously in specified config-

urations (black).

Figure 5.6: Experiment 2: 70 characters are required to arrive at a set of positions in which they spell out

SCA.

positions, locations, and times; see Figures 5.5 through 5.9, Table 5.1 and Table 5.2 for a summary

of results.

In order to test our method on varying numbers of characters and densities of characters, for

Experiment 6 we created a contrived scenario where a number of characters are placed on a uniform

grid and are given target positions on a translation of this grid. The target for each character is

chosen such that each character’s path is of approximately the same length, but that the characters

must interact in order to meet their goals, as illustrated in Figure 5.10. This experiment allowed

us to test examples with large numbers of characters. When the spacing between characters is

93

Figure 5.7: Experiment 3: The character in black must start at the lower right, navigate through a set of

rooms filled with obstacles and other characters, and lift a box in the room at the upper right. The location

of the box is circled.

Figure 5.8: Experiment 4: 40 characters start in a theater lobby (top) and take their seats (bottom). Dark

sitting characters represent target poses, and light sitting characters are characters that are already sitting

down (e.g., obstacles).

94

Example # Characters Duration Synthesis Time

Average Total

1 20 14.8s 0.21s 4.2s

2 70 21.3s 0.18s 12.6s

3 1 83.3s 0.01s 0.01s

4 40 30.2s 0.35s 14.0s

5 20 23.6s 0.15s 3.0s

6a 300 25.3s 0.034s 0.86s

6b 500 25.6s 0.035s 0.90s

Table 5.1: Information relating to the animations shown from Figure 5.5 to Figure 5.9. The second column

states the total number of characters that were animated, the third column states the average duration of each

character’s motion, the fourth column states the average amount of time needed to synthesize the motion

for a character, and the final column states the total amount of time needed to synthesize all motions for all

characters. All experiments were performed on a PC with a 3.0Ghz processor and 1GB main memory. For

Experiment 6 (described below) we report results for representative trials with (6a) 300 characters and (6b)

500 characters.

Example Density of Crowds Physical complexity of Environment

1 5.6 0

2 5.3 5.3

3 5.6 0

4 10.5 27.2

5 8.2 8.2

6a 3.4 3.4

6b 5.6 5.6

Table 5.2: The density of crowds and the physical complexity of environments of experiment 1-6.

95

Figure 5.9: Experiment 5: 20 characters, initially sitting, must pick up a designated box in the second

room, place it in a designated position, and then return to their original seat. The top image shows initial po-

sitions (grey) and constraints poses (black). The lower image shows characters moving towards placement

goals, with constraint poses again shown in black.

sufficiently large that collision avoidance does not unduly restrict movement, our algorithm can

synthesize the motions for hundreds of characters faster than real time.

The speed of our algorithm depends upon the complexity of the scenario that is to be animated.

In particular, higher-density groups of characters (or, equivalently, more cluttered environments)

require additional time in order to avoid collision, both because collision detection is more time

consuming and because the search will typically explore a greater number of paths before finding

one that avoids collisions. To illustrate this, for Experiment 6 we created a series of scenarios

wherein motion was synthesized for a group of300 characters with different inter-characters spac-

ings. Figure 5.11 shows the average amount of time needed to plan the motion for an individual

character as a function of the grid spacing. At smaller grid spacings, the average synthesis time

increases because more paths are rejected during the random search due to collisions.

Different values ofε provide different tradeoffs between motion quality and synthesis speed

— larger values permit greater deviation from the raw graph-generated motions, but also allow the

96

Figure 5.10: The scenario tested in Experiment 6. Characters begin in grid formation (left) and are each

assigned a target on a translated version of this grid (right). Targets are chosen to keep each character’s path

approximately the same length. Specifically, if a character begins at position(i, j) on the original grid, then

it will be assigned a randomly perturbed position on the target grid. For example, the character indicated by

the dark grey triangle is assigned one of the target positions indicated by a dark grey square.

4 5 6 7 8 9 10 11 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Spacing Between Characters (m)

A
ve

rg
a
g
e
 S

yn
th

e
si

s
T

im
e
 (

se
c)

Figure 5.11: The average time per character needed to generate motion for300 characters in the scenario

of Experiment 6, as a function of the spacing between characters.

97

search to terminate more quickly because a larger range of motion pairs will be able to satisfy the

constraints. Figure 5.12 shows the time needed to synthesize the motion for all70 characters in

scenario2 at different values ofε; the shape of this graph was similar in the other scenarios. At

very small tolerances, relatively few motions can be made to satisfy the constraints, but at higher

tolerances a wider variety exists and the search hence can terminate sooner. However, eventually

the speed benefit of increasing the tolerance decreases, because sufficient flexibility already exists

to quickly find motions that satisfy the constraints, and the synthesis time becomes dominated by

other concerns like collision detection.

For collision detection between two paths, we compared the MOBB tree and simple frame-

by-frame technique in a simple environment. The size of environment was 30m x 40m, and we

randomly distributed characters in the environment and made each character has a random initial

and target constraint. As we increased the number of characters, we checked the average collision

detection time among characters. The result is shown in Figure 5.13.

We limit the amount of per-frame adjustment toε based on the intuition that longer motions

can tolerate larger overall adjustments if they are worked in gradually. However, if the total ac-

cumulated adjustment exceeds a certain amount, this approach breaks down. For example, a180◦

change in orientation will yield unrealistic results now matter how gradually it is introduced, be-

cause eventually the character will face opposite the direction of travel. This can trivially be

avoided by placing a second limitε′ on the total allowable adjustment. However, in our experi-

ments we found this to be unnecessary, because the amount that motions needed to be altered to

meet the constraints was effectively independent of the duration of the motions.

98

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ε

A
v

e
ra

g
e

 S
y

n
th

e
si

s
T

im
e

 (
se

c)

Figure 5.12: The average time per character needed to generate motion for70 characters in a typical

scenario, as a function of the allowable amount of motion adjustmentε.

5.4 Discussion

This chapter has presented an efficient algorithm for generating realistic goal-directed motion

for large numbers of characters. Our algorithm creates collision-free motion that precisely satisfies

constraints on pose, position, orientation, and duration. A fast PRM-based path planner is used

to construct rough motions that navigate through complex environments, and this is then refined

through a randomized search over a motion graph that explicitly incorporates continual, gradual

adjustments to a character’s position, orientation, and speed. The flexibility provided by these ad-

justments allows us both to precisely satisfy constraints and to reduce the time needed to construct

desired motions.

We have focused on the problem of character navigation, where the main technical challenge

is to guide a character through an environment such that it ends up in a particular configuration.

99

10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8
x 10

4

Comparision MOBB vs. Fame by Frame

of Characters

S
p

e
e

d
(s

e
c
)

MOBB

Frame-by-Frame

Figure 5.13: Comparison between MOBB trees and frame-by-frame technique in time cost for collision

detection.

For stationary tasks, such as manipulating objects or gesticulating during conversation, we assume

that a corresponding clip or known sequence of clips already exists. Also, to be able to reliably

satisfy constraints without destroying motion quality, our algorithm relies on constraints being

sufficiently sparse that the connecting motions can be meaningfully adjusted. For example, if the

character were constrained to be in a specific pose every second, then it is likely that satisfying all

of these constraints would require a very large value forε, which would in turn probably result in

unrealistic motion.

Our motion graph search algorithm does not generate optimal motion in the sense of minimiz-

ing deviation from the constraints. Instead, it finds motions that can be made to exactly satisfy

constraints by being adjusted within a user-specified tolerance, and all motions within this tol-

erance are considered equally suitable. In principle, this involves trading off motion quality for

100

computational speed, but in practice even a modest tolerance can significantly reduce searching

times without appreciably altering motion quality. Our search algorithm also assumes that the con-

straints fully specify what a motion should do, and that any motion that satisfies the constraints is

acceptable. This can sometimes lead to artifacts where characters, despite having smooth motion,

exhibit unusual behavior. For example, a character might not take the most direct path towards a

route, and indeed will intentionally wander if the time constraints require a lengthy motion. This

is a common limitation that is shared by existing graph-based synthesis algorithms which rely on

constrained minimization [AF02b, KGP02, LCR∗02b] — if the objective function and constraints

does not completely describe the desired properties of a motion, then undesirable behavior is in-

evitable. For scenes with many characters, however, we have found this to be less of a problem

because a viewer’s attention typically is not limited to a single individual, and hence longer-term

behavioral oddities are less noticeable.

The constraints used by our synthesis algorithm are produced by an external process, and it is

the responsibility of this process to ensure that these constraints are achievable. For example, it

should not require two characters to be at the exact same place at the same instant of time.

Our current methods are offline and hence not directly applicable to applications like games.

However, for more interactive assessment of the results the search can be broken into stages, first

generating motion that satisfies the initial configuration/time constraint of each character, then the

next constraint for each character, and so on. A more general extension to online applications is

left for future work. Also, a straightforward extension of this work is to employ smooth, continual

motion adjustments for collision avoidance, in addition to constraint satisfaction.

101

Chapter 6

Validation

This chapter presents an experiment that combines all the proposed techniques and validates

the demand satisfaction of the simulation results. In particular, our goal of this experiment is to

validate whether our methods can satisfy the four demandsat the same time.

6.1 A Virtual City

To validate the demand satisfaction of our two-level crowd simulation framework, we have

tested the framework on a particular target environment. The target environment is avirtual city

that consists of small blocks. Each block has four crosswalks, one bench, and one get-together

area. By copying and pasting this block on the environment, we could create a city as large as

we wanted. At the high-level of the framework, situations operate crosswalks, benches and get-

together areas. At the low-level, both the crosswalk situations and the get-together situations use

the probability scheme while the bench situations use the constrained-motion synthesis.

Figure 6.1 shows a target city environment and one block of the city with a detailed lay-out of

situation displacement. The size of each block is approximately 50m x 50m.

The behaviors that we would like to simulate for each situation are as follows:

• Crosswalk situation: People are crossing the street according to traffic signs. For this goal,

(1) thewaiting and thecrossingbehavior function, (2) asignal sensor for checking traffic

102

signs, and (3) arule for determining which behavior functions should be composed for a

given traffic sign are attached to the characters when they are in the crosswalk situation. To

control the crowd’s moving direction at a crosswalk, two opposite situations located between

roads are connected to each other to provide a target position for each character. Crowd

behaviors are determined by traffic signs, which we turn on and off manually, timers of

which turn themselves on and off automatically.

• Bench situation: Someone might need to rest for a while on a bench. The bench situation

plugs anemptysensor into characters so that they can check whether someone occupies

the bench or not. If it is empty, the characters call the constrained motion synthesis. The

bench situation provides information such as location and orientation of the bench to the

constrained motion synthesis. Then, the constrained motion synthesis creates a series of

motions that makes the characters exactly sit down on the chair. After spending a random

amount of time on the chair, the characters stand up and go away.

• Get-together situation: People often find an interesting place on the street. In this case,

they gather together at that place for a while. The get-together situation plugs theapproach

behavior function into the characters and makes characters gather together around the pre-

defined position. The time duration and the gathering position are given by the situation.

Once the time duration expires, the people disperse.

6.2 Results

We have tested our algorithm on a standard Pentium-IV PC (1G memory) that has a standard

graphics acceleration card. Figure 6.2 shows the snapshot of simulation in which 2,000 people

occupy the virtual city, and Figure 6.3 shows crowd behaviors that are more detailed and that

encompass the three situations.

103

Crosswalk

CrosswalkCrosswalk

Crosswalk

Bench

Get-together

Figure 6.1: Top: One block of a city; it contains four crosswalks, one bench and one get-together.Bot-

tom: A city that has 25 blocks from the copied and pasted block above.

104

Figure 6.2: Crowd (2,000 people) simulation on a city environment.

The validation of the four demands’ satisfaction is as follows:

• Scalability: To validate scalable memory demand, we have created 1,000 characters on the

city and computed the average memory use per a character for 2,000 simulation steps as

we increase the number of situations. The results are shown in Figure 6.4. As we can see

in the graph, the average memory use for a character grows very slowly even when the

number of situations increase. Underlying this outcome is the fact that each character can

be under only a few situations at the same time, and once he or she is out of the situations,

all information related to the situations leaves the character automatically. This fact limits

characters’ memory increase.

Scalable authoring is another specific demand of scalability. Because the situation encap-

sulates all information for particular local behaviors as a highly compact form, a big and

105

Figure 6.3: Top: People are crossing the street only when the traffic sign says “walk” (yellow box).

Middle: When a bench is empty, some people sit down on the bench.Bottom: People are getting together

at some place for a while.

106

0 50 100 150
1.65

1.655

1.66

1.665

1.67

1.675

1.68

1.685

1.69

1.695

1.7
x 10

5

Average Memory Use per a Character

of Situations

M
e

m
o

ry

Figure 6.4: The average memory use of 1,000 characters for 2,000 simulation steps.

complicated environment could be easily created through a simple copying and pasting of

existing situations. In this manner, we created the city environment by repeatedly copying

and pasting one block of the city, which contains a set of situations, onto the environment.

Our painting interface is quite useful in this case because it allows us to directly edit the

situations.

• Controllability : For control of the crowd flow, two opposingcrosswalksituations that are

located between the road connect to each other. As we can see in the Figure 6.1, the intersec-

tion in the middle of the block has four crosswalks, and eachcrosswalksituation is connected

with two other crosswalks across the street. When traffic signs change to “walk,” thecross-

ing behavior function obtains random positions of situations on the other side and sets those

positions as goal positions for characters. Then, thetarget-findingbehavior function gives a

107

high probability to the actions that make the characters cross the street and approach to their

target positions. In this way, we can control the crowd flow by simply turning the traffic

sign on and off, which meets the high-level controllability demand. The probability scheme

infuses variability into the crowd motion because the selection of subsequent actions occurs

through random sampling. Therefore, not all characters show the same motion pattern over

time.

Similarly, theget-togethersituation features theapproachbehavior function, which makes

crowds gather together around a pre-defined position by setting high probabilities for the

actions that occur close to that position.

Unlike crosswalk andget-togethersituations, where a character’s movements toward a par-

ticular position do not need to be exact, thebenchsituation uses the constrained-motion

synthesis because the character needs to sit down on a bench in a precise way. Even though

the bench can be located in anywhere and with arbitrary orientation, the simulation result

confirms that our constrained motion synthesis is able to find a series of motions that make

characters sit down on the bench in a precise way. In short, this result validated the control-

lability demand of the constrained motion synthesis techniques.

• Convincingness: First, the simulation results (please refer to the animation video) showed

that there was no collision between characters and that there was no discontinuity in the

synthesized motions of the crowd. This fact validates the visual convincingness demand.

Second, depending on the animator-installed environmental situations, crowds exhibited in

an appropriate way particular behaviors such as waiting, street crossing, and bench sitting.

This result validates the semantic-convincingness demand.

108

• Efficiency: The efficiency demand can be validated by checking the speed of algorithms.

Specifically, our goal was to speed up the efficiency of three algorithms, which relate to 1)

fast motion synthesis, 2) fast collision detection and 3) fast simulation performance.

First, table 6.1 shows the average time for collision detection and the constrained motion

synthesis relative to 1,000 characters for 2,000 simulation steps for validating the second and

the third algorithm. The density of crowds is 4.85 and the physical complexity of environ-

ment is 30.3. Remember that constrained motion synthesis was used for the bench situation,

where characters needed to find a series of motions before sitting down on the bench. Our

simulation result showed that our MOBB tree technique was around 2.2 times faster than

simple frame-by-frame method and the constrained motion synthesis technique could syn-

thesize motions in real time (more than 30 frames for a second). These two results validate

the second and third demand above.

Second, the overall simulation performance is validated through checking the total simula-

tion time as we increase the number of characters. The speed of algorithm is affected by

several factors. First, the density of crowd affects the overall performance significantly be-

cause the collision testing takes long time when a lot of characters cram together. Second,

the physical complexity of the environment is also closely related to the simulation speed

because synthesized motions should test for collisions with all objects in the environment.

Especially, the constrained motion synthesis might need many perturbations in the random

search process to avoid collision with other obstacles in the environment, which makes sys-

tem performance slow.

We have performed two experiments to test how the crowd density influences the overall

simulation performance. Our first experiment was the case when we increased the number

of characters while keeping the size of the environment fixed (increasing crowd density). Out

109

Efficiency Demand Average Speed

Fast Collision Detection through MOBB1.70695e-005 sec (frame-by-frame :3.74344e-005)

Fast Constrained Motion Synthesis 0.106 sec (total number of frame : 580)

Table 6.1: Average speed of collision detection and constrained motion synthesis of 1,000 characters for

2,000 time steps.

second experiment was the case when the crowd density was fixed (variable environment).

In these two experiments, the physical complexity of environment was fixed (30.3).

Fixed size of environment: Figure 6.5 depicts the average simulation time (excluding ren-

dering) of a crowd when, for 2,000 simulation steps, the crowd features a fixed number

of situations and a fixed size environment. The number of situations was 150 and the

size of the environment was 25 blocks. To obtain the average simulation time, we first

computed the time cost of a pre-defined number of characters for each time step, and

we averaged the time cost for 2,000 time steps. We repeated the experiment as we

increased the number of characters. As we can see in the graph (Figure 6.5), the sim-

ulation time increased slowly as we increased the number of characters until it reached

up to 3,500. However, when it exceeded 3,500, the slope of the graph got stiff be-

cause the density of the crowd was too high for the environment. At this moment, the

crowd simulation spent a great deal of time in collision detection among characters.

Our experiment showed that the density at this point was around 17.0.

Fixed crowd density: Figure 6.6 depicts the average simulation time when the environ-

ment applies a constant density to the crowd (15.0). For maintaining constant density,

the environment size should increase with crowd growth. As a result, the average sim-

ulation speed grew slowly (in a linear fashion) as the number of characters increased.

110

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

Average Simulation Time for 2,000 Time Steps

of Characters

S
im

u
la

ti
o

n
 T

im
e

(s
e

c
)

Figure 6.5: The average simulation time (excluding rendering time) of crowds with the fixed number of

situations (150) and the fixed size of environment for 2,000 simulation steps.

6.3 Discussion

The primary reason that the scalable authoring demand can be satisfied is that we embed the

Pythonscript language into our crowd simulation system. Inside the system, all situations can be

specified as simple Python scripts. By manipulating the scripts, we can add or delete situations as

we need to. The Python script language also facilitates the creation of rules of the situations. The

rules access a character’s memory in a way that determines which behavior functions should be

composed at any given moment.

The simulation speed is influenced heavily by crowd density in the environment. If the density

is too high, then it takes a long time to check collision between characters. This makes overall

system speed slow. Other crowd modelling techniques such as the particle-based-crowd model or

111

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

Average Simulation Time for 2,000 Time Steps

of Characters

S
im

u
la

ti
o

n
 T

im
e

(s
e

c
)

Figure 6.6: The average simulation time (excluding rendering time) of a crowd when that crowd has a

constant density (15.0) for 2,000 simulation steps.

the social force model are more desirable in this special case than is our method because these

other methods can specify physical force between characters easily. Unless our goal is to simulate

such “stuck-and-jammed” situations, fast simulation requires proper crowd density.

112

Chapter 7

Conclusion

7.1 Summary

Simulating crowds is a difficult task — not only because we need extra computational time

for animating many characters, but also because the crowd behaviors are highly complex, and

because it is hard for them to maintain the visual and semantic convincingness. This dissertation

has established four specific demands for crowd simulation (scalability, controllability, efficiency

and convincingness), and proposed a novel two-level crowd simulation framework that satisfied

these demands at the same time.

In the two-level crowd simulation framework, the high-level part was responsible for provid-

ing information to characters and the low-level part synthesized motions by using that information.

Specifically, the high-level part adopted the distributed crowd control mechanism calledsituations.

Each situation contained behavior functions, local motions, rules, sensors and constraints. All in-

formation was automatically augmented to the characters when they entered a particular region

in the environment or if they have a relationship with other people. This information leaves the

characters when they exit the situation. By using that information, at the low level, theprobabil-

ity schemeor theconstrained motion synthesiswas used for synthesizing motions for individual

characters. While the probability scheme applied to aggregate behaviors where the individual has

113

no specific constraints to satisfy (such as position or orientation), the constrained motion synthe-

sis generated motions for a specific individual that meets the constraints that either the animator

specifies directly or through situations.

To set the particular situation into the environment, we have adopted the easy-to-use painting

interface by which we could use to specify either a region that each situation affected or a group

of people who had a common relationship.

For fast collision detection between two motions in the motion-synthesizing step at the low

level, we proposed the MOBB tree representation of motion, which encapsulated the details of

motion into a simple bounding-box structure. To accelerate the test, we hierarchically tested the

collision between two bounding boxes, from the top node to the bottom node of the two MOBB

trees.

Throughout this dissertation, we made three primary contributions:

1. A scalable, controllable and convincing framework of crowd simulation:We introduced

a novel two-level crowd simulation framework. Chapter 3 presented the high-level situation-

based approach with the low-level probability scheme, which enabled us to simulate the

complicated crowd behaviors and, at the same time, to avoid complicating the character

architecture through both the situation composition and the probability composition. The

situation composition made it possible to emulate complicated situations where several sit-

uations influence crowds simultaneously, and the probability composition made it possible

to combine factors that affect the final action selection probabilistically. In addition, we

showed that the user-friendly painting interface improved the controllability and semantic

convincingness by setting every situation in the environment directly. The use of the graph-

based motion synthesis at the low level showed visually convincing motions of crowds. We

verified the demands by performing various experiments.

114

2. Fast collision detection between motions:Chapter 4 showed the fast collision detection

between characters through MOBB trees. The MOBB (Motion Oriented Bounding Box)

representation made it possible to encapsulate the detail of motion into a simple spatio-

temporal hierarchical tree. Our experiments confirmed the assertion that the use of MOBB

accelerated collision testing among many characters, which is an outcome that improved the

efficiency demand. Because bumping among characters is the most noticeable artifact that

weakens visual convincingness, we used this method to strengthen the visual convincingness.

3. Fast and accurate constrained motion synthesis for crowds:Chapter 5 illustrated the

constrained motion synthesis algorithm, which is one of the two action selection mechanisms

at the low-level. Given position, orientation, particular pose and time duration constraints for

a specific individual, our motion synthesis algorithm created a series of motions that exactly

met the constraints by performing efficient and fast random search on a structured motion

graph. The primary benefit of this algorithm was its ability to satisfy the controllability de-

mand. We could set arbitrary constraints on a character at any time as long as the constraints

were legal (e.g., not inside the obstacles). Fast solution finding also improved the efficiency

demand because hundreds of character motions could be synthesized at the same time. We

performed several experiments to validate our demand satisfaction.

Table 7.1 recaps the demand satisfaction of proposed techniques.

7.2 Applications

Our methods are appropriate for a variety of applications. For a special effect in a movie,

our constrained motion synthesis algorithm can create realistic animations of several hundreds of

characters in real time. In these scenes, the target constraints might be given to each character

automatically when he or she is at some particular situations, or when he or she is created. By

115

Scalability Controllability Efficiency Convincingness

Situation-Based Simulation

with Probability Scheme x x x

Collision Detection Using MOBB Trees x x

Constrained Motion Synthesis x x x

Table 7.1: Summary of demand satisfaction.

setting constraints serially for multiple characters, we can also make characters interact (e.g. fight)

with each other.

Our situation-based approach enables us to build a rapid prototype of wide-ranging virtual

environments easily. For example, a virtual shopping mall, a virtual theater, or a virtual street en-

vironment can be easily populated with crowds that react to the target environment appropriately.

This populating can be realized through the installation of specific situations into the environ-

ment. Such virtual environments can be used in many different ways. For urban planning, virtual

crowds provide information to architects that helps them to predict actual crowd movement before

a building’s construction is started. For police or military training with regard to the handling of

demonstrations or riots, virtual crowds in a virtual environment provide a realistic training environ-

ment. Virtual crowds provide important information to the psychology community as well because

members of the community study crowd behaviors as a particular research area.

Other than these applications, one application for which our method should undergo further de-

velopment is the online animation of user-controlled characters, such as the animation of characters

in a game. Current war strategy games need a lot of character movement. Unfortunately, current

character animation lacks convincing visual quality because the motions are created through a

hand-crafted key frame technique or though specific procedural techniques. Our graph-based mo-

tion synthesis, which uses a constructed motion graph, produces realistic character motions by

116

using motion-capture data. One drawback to the use of motion-capture data is the lack of respon-

siveness of user control. Since each motion clip is composed of a number of frames, all user control

inputs are ignored until the last frame of the current motion is shown, and this creates latency of

response between user input and actual animation of the character. Thus, to use motion capture

data for games, we need to develop specially designed tools for motions so that rapid transitions

can be made realistically.

Our situation-based approach is also quite useful for the development of a large complex game

environment. By associating a particular game scenario with a particular situation, we can make

characters follow the scenario. For example, if the main character enters some room, then all

enemy characters respond to the main character by following a pre-defined situation. The situation

specification might include motions, rules, sensors, and finite state machines for controlling the

main character’s enemy.

7.3 Limitations and Future Work

Our proposed techniques have some limitations. This section introduces the limitations of our

methods and discusses future research work.

7.3.1 Limits of the two-level crowd simulation framework

One limitation of our crowd simulation framework is with the natural flow control. For ex-

ample, if we want to simulate a large group of people exiting through small gates when some

emergent event happens, people might be in a panic and try to get to the gates as fast as they can,

which would cause a bottleneck. When a bottleneck occurs, an individual’s movement slows down

but still continues toward the gate to exit the gates one by one. Our situation might be able to

control the crowd so that they can stop walking when the bottleneck is predicted, but it cannot sim-

ulate this realistic flow. The primary reason is our graph-based motion synthesis. Our graph-based

117

motion synthesis cannot control the speed of the motions. Thus, we cannot set arbitrary speed of

the motion clips, which is required for animating slow walking motion when a bottleneck is an-

ticipated. Another drawback of fixed motion data is that we cannot control gait length of walking

motion, which is also required for bottleneck situations. Other crowd modelling approaches such

as a social force model is useful on this scene because an inter-agents force can be specified easily.

Another limitation of our approach is that spatial situation, assumes that the regions, associated

with the situations, do not change during simulation. However, for special cases, we need to change

the region dynamically. For example, if we want to simulate the crowd inside of a bus or a train,

the bus situation or the train situation should move in global coordinates depending on the location

of the bus or the train. Our current situations cannot simulate such special cases.

The ability to dynamically coordinate the local behavior of a group of people is another draw-

back of our simulation model. The non-spatial situation can specify the socially related local

behaviors to particular group of people easily. However, such situations are set before the simu-

lation begins, and once simulation begins, they cannot be changed to other non-spatial situations.

For some applications, we might need to change the current situation to other non-spatial situation

so that all group members can show different local behaviors. However, our current system does

not allow us to coordinate a series of different socially related behaviors over time.

7.3.2 Expressiveness

Our situation-based approach is quite general because it considers the social relationship among

crowds as well as the locational information effect. However, our current implementation cannot

simulate complicated human reasoning processes although human motion is a product of these

processes. People usually behave according to their internal state and condition. For example,

a person who is hungry tries to find a restaurant by looking around and sometimes checks road

signs. Our approach does not maintain internal emotional state in a character’s memory. This

118

lack of internal state limits the expressiveness of our approach. Our situation approach expresses

motions that are not initiated from the characters’s internal reasoning process. They can only

represent behaviors that are initiated by the their location and social relationships. This is inevitable

because we cannot specify the infinite number of internal states given the fact that one of our

goals is to create the crowds that are applicable to many different environments. For the same

reason, it is impossible to come up with infinite number of rules for specifying the relationship

between behaviors and internal status. If our goal is not to create generic crowds, we can relax our

requirement so that we can put a fixed size of storage for internal state for character. This storage

can be used for storing emotional states of character, and we can specify the special behaviors

which are associated with the internal states.

In our approach, there are only four different kinds of sensors, which are signal sensor, agent

sensor, empty sensor and proximity sensor. But, for some applications, we might require more

complicated sensors instead. For example, people try to avoid jammed situation when they walk.

To check the density of crowds, we might need a “density” sensor that captures how many people

there are in front of the character.

For animators, it is quite easy to set a particular situation to environment because we provide

a painting interface that enables them to specify the situations on the environment directly. But,

it might be hard for them to create a new situation and behavior functions. Our current behavior

functions are all hard-coded, and we do not provide user interfaces to create new behavior func-

tions. Providing a “template” behavior function and situation is able to improve the expressiveness

of our approach, which will be part of the future work.

7.3.3 Limits to Motion Data

The wide range of crowd behavior depends on the available motion clips. If there is no proper

motion, then the behavior, which is just a pattern of motion selection over time, cannot be shown.

119

Because it is infeasible for us to capture all required motions, we need to adjust current motion

clips so that we can use a small number of motions in various kinds of applications. For instance,

by using a small set of reaching motions, we should be able to create motions that have different

reaching points. In this case, motion blending or Inverse Kinematics (IK) technique makes it

possible to create new motions from the existing motions. However, for the crowd-simulation

problem, the fast processing of those techniques is in high demand, which is a fact that we will

leave for future research that needs to be conducted.

7.3.4 Off-line Constrained Motion Synthesis

Our current constrained motion synthesis is not on-line even though it is quite fast. A major

bottleneck that keeps the algorithm off-line is that the time is required to repeatedly search on the

motion graph when the initial seed paths are perturbed until they get close enough. One solution

that might result in an online algorithm hinges on the storing of intermediate perturbed motions in a

cache and reuse those motions when similar initial and target constraints are given to the character.

A similarity metric is required to check how closely the cache entries match up to the given new

constraints. If they are close enough, then it represents the cache-hit. Otherwise, it represents

the cache-miss. If the cache hit occurs, then the intermediate motions are retrieved and used for

finding motions that meet the constraints. Otherwise, random searching is performed for the given

new constraints.

7.3.5 Character Rendering

Our current approach does not consider the time needed to render the crowd even though the

experiments prove that rendering is the most time consuming job in crowd simulation [AW04].

The fast drawing of many characters requires a special rendering technique. The LOD (Level of

Detail) of character geometry or motion data reduce the rendering time significantly. In particular,

120

the LOD representation of motion data is quite useful because detailed motions are not necessary

for characters whose location is far from the camera. Hardware-supported skinning or animation

is another method for the improvement of the visual quality of crowds although these methods

might require an intermediate hardware control language such asCg or GLSL(OpenGL Shading

Language).

7.3.6 Intuitive User Interface

The user interface for crowd control presents another problem that needs to be solved. Our

painting interface is useful for controlling the local behavior of crowds, but it is not appropriate for

global control over crowds. For example, for the scene in which a large crowd is marching, the ani-

mator might need to control the crowd’s overall shape over time. In this case, the shapes of crowds

over time become constraints, and each individual should communicate with other characters to

maintain the constraints during simulation [AMC03]. Therefore, animators need an additional

user interfaces to set these shape constraints and the specification of particular behaviors while

the crowds are marching. For instance, a sketch-based interface is desirable for global shape con-

straints. In addition to this, we also need a way to specify particular behaviors for each character

during the simulation. A simple time-line interface might be the best choice for a single character,

however, when many characters are required, it is not reasonable to have a time-line for each char-

acter. Therefore, for multiple characters, user interface which is higher level and can be shared by

multiple characters is desirable. This problem is also left for future research.

121

LIST OF REFERENCES

[AC01] AYLETT R., CAVAZZA M.: Intelligent virtual environment-a state of the art report.
In Proceedings of Eurographics 2001 STARs(2001).

[AF02a] ARIKAN O., FORSYTH D. A.: Interactive motion generation from examples.ACM
Transactions on Graphics 21, 3 (2002), 483–490.

[AF02b] ARIKAN O., FORSYTH D. A.: Interactive motion generation from examples.ACM
Transactions on Graphics 21, 3 (2002), 483–490.

[AFO03] ARIKAN O., FORSYTH D. A., O’BRIEN J. F.: Motion synthesis from annotations.
ACM Transactions on Graphics 22, 3 (2003), 402–408.

[AI-] Ai-implant. http://www.biographictech.com/.

[AMBJ02] ABDEL-MALEK K., BLACKMORE D., JOY K.: Swept volumes: Foundations, per-
spectives, and applications.International Journal of Shape Modeling(2002). Sub-
mitted.

[AMC03] ANDERSON M., MCDANIEL E., CHENNEY S.: Constrained animation of flocks.
In SCA ’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on
Computer animation(Aire-la-Ville, Switzerland, Switzerland, 2003), Eurographics
Association, pp. 286–297.

[AW04] AHN J., WOHN K.: Motion level-of-detail:a simplification method on crowd scene.
In Proc. of the 2004 Computer Animatio and Social Agents(2004).

[BC89] BRUDERLIN A., CALVERT T.: Goal-directed dynamic animation of human walk-
ing. In Proceedings of ACM SIGGRAPH 89(Aug. 1989), Annual Conference Series,
ACM SIGGRAPH, pp. 233–242.

[BC97] BOUVIER E., COHEN E.: From crowd simulation to airbag deployment:particle
system, a new paradigm of simulation.Journal of Electronic imaging(1997), 94–
107.

122

[BEG∗04] BASCH J., ERICKSON J., GUIBAS L. J., HERSHBERGERJ., ZHANG L.: Kinetic
collision detection for two simple polygons.Computational Geometry 27, 3 (2004),
211–235.

[BH00] BRAND M., HERTZMANN A.: Style machines. InProceedings of ACM SIGGRAPH
2000(July 2000), Annual Conference Series, ACM SIGGRAPH, pp. 183–192.

[BLA02] BAYAZIT O. B., LIEN J., AMATO N.: Better group behaviors in complex environ-
ments using global roadmaps. InProceedings of the 2002 Artificial Life (ALIFE)
(Dec. 2002).

[BMdB03] BRAUN A., MUSSE S., DEOLIVERIA L., BODMANN B.: Modeling individual
behaviors in crowd simulation. InComputer Animation and Social Agents(CASA)
(2003).

[BMTT90] BOULIC R., MAGNENAT-THALMANN N., THALMANN D.: A global walking model
with real-time kinematic personification.Visual Computer 6, 6 (1990), 344–358.

[BUT04] BOULIC R., ULICNY B., THALMANN D.: Versatile walk engine.Journal of Game
Development 1, 1 (2004).

[BW95] BRUDERLIN A., WILLIAMS L.: Motion signal processing. InProceedings of ACM
SIGGRAPH 95(Aug. 1995), Annual Conference Series, ACM SIGGRAPH, pp. 97–
104.

[CK00] CHOI K.-J., KO H.-S.: On-line motion retargeting.Journal of Visualization and
Computer Animation 11(2000), 223–243.

[DHOO05] DOBBYN S., HAMILL J., O’CONOR K., O’SULLIVAN C.: Geopostors: a real-time
geometry/impostor crowd rendering system.ACM Trans. Graph. 24, 3 (2005), 933–
933.

[Ebe01] EBERLY D.: 3D Gamem Engine Design: a practical approach to real-time computer
graphics. Academic Press, 2001.

[FBT99] FARENC N., BOULIC R., THALMAN D.: An informed environment dedicated to the
simulaion of virtual humans in urban context. InProc. of EUROGRAPHICS 1999
(1999), Annual Conference Series, pp. 309–318.

[Feu00] FEURTEY F.: Simulating the collision avoidance behavior of pedestrians. InM.S
thesis(2000), Dept. of EE, the Univ. of Tokyo.

[FH93] FOISY A., HAYWARD V.: A safe swept volume method for collision detection. In
The sixth international Symposium of Robotics Research(1993), pp. 61–68.

123

[FMS98] FARENC N., MUSSE S. R., SCHWEISS E.: One step towards virtual human man-
agement for urban environment simulation. InProceedings of the ECAI Workshop on
Intelligent User Interfaces(1998).

[FMS00] FARENC N., MUSSES., SCHWEISSE.: A paradigm for controlling virtual humans
in urban environment simulations. InApplied Artificial Intelligence(2000), vol. 14,
pp. 69–91.

[FTT99] FUNGE J., TU X., TERZOPOULOSD.: Cognitive modeling:knowledge, reasoning
and planning for intelligent character. InProceedings of ACM SIGGRAPH 99(1999),
Annual Conference Series, ACM SIGGRAPH.

[FvdPT01] FALOUTSOS P., VAN DE PANNE M., TERZOPOULOSD.: Composable controllers
for physics-based character animation. InProceedings of ACM SIGGRAPH 2001
(July 2001), Annual Conference Series, ACM SIGGRAPH, pp. 251–260.

[FW01] FORBUS K. D., WRIGHT W.: Some notes on programming objects inThe Sims,
2001.

[Gle98] GLEICHER M.: Retargeting motion to new characters. InProceedings 0f ACM
SIGGRAPH 98(July 1998), Annual Conference Series, ACM SIGGRAPH, pp. 33–
42.

[GLM96] GOTTSCHALK S., LIN M. C., MANOCHA D.: OBBTree: A hierarchical structure
for rapid interference detection.Computer Graphics 30, Annual Conference Series
(1996), 171–180.

[GLM99] GOLDSTEIN S., LARGE E., METAXAS D.: Non-linear dynamical system approach
to behavior modeling. InApplied Artificial Intelligence(1999), vol. 15, pp. 349–364.

[GR96] GUO S., ROBERGEJ.: A high-level control mechanism for human locomotion based
on parametric frame space interpolation. InProc. of Eurographics Workshop on Com-
puter Animation and Simulation ’96(Aug. 1996), pp. 95–107.

[GSKJ02] GLEICHER M., SHIN H., KOVAR L., JEPSENA.: Snap-together-motion. InPro-
ceedings of ACM SIGGRAPH 2002 Symposium on Interactive 3D Graphics(2002),
ACM SIGGRAPH.

[GSKJ03] GLEICHER M., SHIN H. J., KOVAR L., JEPSEN A.: Snap-together motion: as-
sembling run-time animations. InProc. of the 2003 Symposium on Interactive 3D
graphics(2003), pp. 181–188.

[HFV00] HELBING D., FARKAS I., V ICSEK T.: Simulating dynamics feature of escape panic.
In Nature(2000), pp. 487–490.

124

[HGP04] HSU E., GENTRY S., POPOVIĆ J.: Example-based control of human motion. In
Proc.of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Anima-
tion (2004), pp. 69–77.

[HM95] HELBING D., MOLNAR P.: Social force model for pedestrian dynamics. InPhysical
Review(May 1995), pp. 4282–4286.

[HWBO95] HODGINS J., WOOTEN W., BROGAN D., O’BRIEN J.: Animating human athlet-
ics. InProceedings of ACM SIGGRAPH 95(Aug. 1995), Annual Conference Series,
ACM SIGGRAPH, pp. 71–78.

[JT05] JAMES D. L., TWIGG C. D.: Skinning mesh animations.ACM Transactions on
Graphics (SIGGRAPH 2005) 24, 3 (Aug. 2005).

[KGP02] KOVAR L., GLEICHER M., PIGHIN F.: Motion graphs. ACM Transactions on
Graphics 21, 3 (2002), 473–482.

[KKS03] K IM D., KIM H. K., SHIN S. Y.: An Event-Driven Approach to Crowd Simulation
with Example Motions. Tech. Rep. CS/TR-2003-186, KAIST, 2003.

[KL94a] KAVRAKI L., LATOMBE J.-C.: Randomized preprocessing of configuration space
for fast path planning. InIEEE Int. Conf. Robotics and Automation(1994), pp. 2138–
2145.

[KL94b] KAVRAKI L., LATOMBE J. C.: Randomized preprocessing of configuration space
for fast path planning. InProc. IEEE Int. Conf. on Robotics and Automation(1994),
pp. 2138–2145.

[KO04] KAMPHUIS A., OVERMARS M. H.: Finding paths for coherent groups using clear-
ance. InSCA ’04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics sympo-
sium on Computer animation(New York, NY, USA, 2004), ACM Press, pp. 19–28.

[Koe] KOEPPEL D.: Massive attack. http://www.popsci.com/popsci/science/article/
0,12543,390918-1,00.html.

[Kov04] KOVAR L.: Automated methods for data-driven synthesis of realistic and control-
lable human motion. Ph.D Thesis, Computer Sciences department, University of
Wisconsin-Madison(2004).

[KPS03] K IM T., PARK S., SHIN S.: Rhythmic-motion synthesis base on motion-beat analy-
sis. ACM Transactions on Graphics 22, 3 (2003), 392–401.

[KT98] KALLMANN M., THALMANN D.: Modeling objects for interaction tasks. In
Proceeding of Eurographics Workshop on Animation and Simulation 1998(1998),
pp. 73–86.

125

[KVLM03] K IM Y. J., VARADHAN G., LIN M. C., MANOCHA D.: Fast swept volume approxi-
mation of complex polyhedral models. InProceedings of the eighth ACM symposium
on Solid modeling and applications(2003), pp. 11–22.

[LCF05] LAI Y.-C., CHENNEY S., FAN S.: Group motion graphs. InSCA ’05: Proceed-
ings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation
(New York, NY, USA, 2005), ACM Press, pp. 281–290.

[LCR∗02a] LEE J., CHAI J., REITSMA P., HODGINS J., POLLARD N.: Interactive control of
avatars animated with human motion data.ACM Transactions on Graphics 21, 3
(2002), 491–500.

[LCR∗02b] LEE J., CHAI J., REITSMA P., HODGINS J., POLLARD N.: Interactive control of
avatars animated with human motion data.ACM Transactions on Graphics 21, 3
(2002), 491–500.

[LJC01] L I T., JENG Y., CHANG S.: Simulating virtual human crowds with a leader-follower
model. InProc. of Computer Animation(2001), The Computer Graphics Society and
the IEEE Computer Society, pp. 93–102.

[LL04] LEE J., LEE K. H.: Precomputing avatar behavior from human motion data. In
Proc. of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Anima-
tion (2004), pp. 79–87.

[LS99] LEE J., SHIN S. Y.: A hierarchical approach to interactive motion editing for human-
like figures. InProceedings of ACM SIGGRAPH 99(Aug. 1999), Annual Conference
Series, ACM SIGGRAPH, pp. 39–48.

[LWS02] L I Y., WANG T., SHUM H.-Y.: Motion texture: A two-level statistical model for
character motion synthesis.ACM Transactions on Graphics 21, 3 (2002), 465–472.

[mas] Massive software. http://www.massivesoftware.com/.

[MBC01] M IZUGUCHI M., BUCHANAN J., CALVERT T.: Data driven motion transitions for
interactive games. InEurographics 2001 Short Presentations(Sept. 2001).

[Men00] MENACHE A.: Understanding Motion Capture for Computer Animation and Video
Games. Academic Press, 2000.

[MG03] MOHR A., GLEICHER M.: Building efficient, accurate character skins from exam-
ples.ACM Transaction on Graphics 22, 3 (2003), 562–568.

[Mir96] M IRTICH B.: Impulse-based Dynamics for Rigid-Body Simulation. PhD thesis, Uni-
versity of California, Berkeley, 1996.

126

[MT01] MUSSES. R., THALMANN D.: Hierarchical model for real time simulation of vir-
taul human crowds. InIEEE Transaction on Visualization and Computer Graphics
(2001), pp. 152–164.

[OS94] OVERMARS M., SVESTKA P.: A probabilistic learning approach to motion planning.
In Proc. Workshop on Algorithmic Foundations of Robotics(1994), pp. 19–37.

[Per95] PERLIN K.: Real time responsive animation with personality.IEEE Transactions on
Visualization and Computer Graphics 1, 1 (Mar. 1995), 5–15.

[PG96] PERLIN K., GOLDBERG A.: Improv: a system for scripting interactive actors in vir-
tual worlds. InProceedings of ACM SIGGRAPH 96(Aug. 1996), ACM SIGGRAPH,
pp. 205–216.

[PLS03] PETTRÉ J., LAUMOND J.-P., SIM ÉON T.: A 2-stages locomotion planner for digital
actors. InSCA ’03: Proc. of the 2003 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation(2003), pp. 258–264.

[PSS02] PARK S. I., SHIN H. J., SHIN S. Y.: On-line locomotion generation based on mo-
tion blending. InProc. of the 2002 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation(2002), pp. 105–111.

[PSS04] PARK S. I., SHIN H. J., SHIN S. Y.: On-line motion blending for real-time locomo-
tion generation. InComputer Animation and Virtual Worlds 15(2004), pp. 125–138.

[RCB98] ROSE C., COHEN M., BODENHEIMER B.: Verbs and adverbs: multidimensional
motion interpolation.IEEE Computer Graphics and Application 18, 5 (1998), 32–
40.

[Rey87] REYNOLDS C.: Flocks, herds, and schools: A distributed behavior model. InPro-
ceedings of ACM SIGGRAPH 87(July 1987), Annual Conference Series, ACM SIG-
GRAPH.

[RKC02] REDON S., KHEDDAR A., COQUILLART S.: Fast continuous collision detection
between rigid bodies. InProceedings of Eurographics Conference(2002).

[RKL ∗04] REDON S., KIM Y., L IN M., MANOCHA D., TEMPLEMAN J.: Interactive and
continuous collision detection for avatar in virtual environments. InProceedings of
Virtual Reality Conference 2004(VR)(Mar. 2004), pp. 117–283.

[RKLM04] REDON S., KIM Y., L IN M., MANOCHA D.: Fast continuous collision detection
for articulated models. InIn Proceedings of ACM Symposium on Solid Modeling and
Applications(2004).

[RP04] REITSMA P., POLLARD N.: Evaluating motion graphs for character navigation. In
Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation
2004(Aug. 2004).

127

[SCG04] SUNG M., CHENNEY S., GLEICHER M.: Scalable behaviors for crowd simulation.
In Computer Graphics Forum (EUROGRAPHICS ’04)(2004), vol. 23, pp. 519–528.

[SE02] SCHÖDL A., ESSA I.: Controlled animation of video sprites. InProceedings of ACM
SIGGRAPH/Eurographics Symposium on Computer Animation 2002(Aug. 2002).

[SKG05] SUNG M., KOVAR L., GLEICHER M.: Fast and accurate goal-directed motion syn-
thesis for crowds. InProceedings of ACM SIGGRAPH/Eurographics Symposium on
Computer Animation 2005(2005), pp. 291–300.

[SMH05] STARCK J., MILLER G., HILTON A.: Video-based character animation. InACM
SIGGRAPH Symposium on Computer Animation(July 2005), ACM.

[Sof] Softimage—behavior. http://www.softimage.com/products/behavior/v2/default.asp.

[SSSE00] SCHÖDL A., SZELISKI R., SALESIN D., ESSA I.: Video textures. InProceedings of
ACM SIGGRAPH 2000(July 2000), Annual Conference Series, ACM SIGGRAPH,
pp. 489–498.

[ST05] SHAO W., TERZOPOULOSD.: Autonomous pedestrians. InSCA ’05: Proceed-
ings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation
(New York, NY, USA, 2005), ACM Press, pp. 19–28.

[Stu94] STURMAN D.: A brief history of motion capture for computer character animation.
In ”Character Motion Systems”, Notes for SIGGRAPH ’94, Course 9(1994).

[TC00] TECCHIA F., CHRYSANTHOU Y.: Real-time rendering of densely populated urban
environment. InEurographics Rendering(2000).

[TKOR05] THALMANN D., KERMEL L., OPDYKE W., REGELOUSS.: Crowd and group ani-
mation.Course Note - SIGGRAPH 2005(2005).

[TLC02a] TECCHIA F., LOSCOSC., CHRYSANTHOU Y.: Image-based crowd rendering.IEEE
Comput. Graph. Appl. 22, 2 (2002), 36–43.

[TLC02b] TECCHIA F., LOSCOSC., CHRYSANTHOU Y.: Visualizing crowds in real-time. In
Computer Graphics Forum(Nov. 2002), vol. 21.

[TLCC01] TECCHIA F., LOSCOSC., CONROY R., CHRYSANTHOU Y.: Agent behavior simu-
lator(abs): A platform for urban behavior develpment. InProceedings of GTEC 2001
(2001).

[UCT04] ULICNY B., CIECHOMSKI P., THALMANN D.: Crowdbrush:interactive authoring of
real-time crowd scenes.Proceedings of ACM SIGGRAPH Symposium on Computer
Animation 2004(Aug. 2004).

128

[UT01] ULICNY B., THALMANN D.: Crowd simulation for interactive virtual environment
and vrtraning systems.Proceedings of Eurographics workshop on Animation and
Simulation(2001), 163–170.

[WCP∗] WRAY R., CHONG R., PHILLIPS J., ROGERSS., WALSH. B.: A survey of cognitive
and agent architecture. http://ai.eecs.umich.edu/cogarch0/.

[WH95] WOOTEN W., HODGINS J.: Dynamic simulation of human diving. InProceedings
of Graphics Interface (GI’95)(May 1995), pp. 1–9.

[WH00] WOOTEN W., HODGINS J.: Simulating leaping, tumbling, landing, and balancing
humans. InIEEE International Conference on Robotics and Animation(2000), vol. 1,
pp. 656–662.

[WP95] WITKIN A., POPOVIĆ Z.: Motion warping. InProceedings of ACM SIGGRAPH 95
(Aug. 1995), Annual Conference Series, ACM SIGGRAPH, pp. 105–108.

[WP01] WATT A., POLICARPO F.: 3D Games:Real time rendering and software Technology.
Addison-Wesley, 2001.

129

APPENDIX
Behavior Functions

In this appendix, we describe several important behavior functions more in detail and gives a

complex behavior that need to compose several behavior functions. Remember that the basic goal

of behavior function is to implement conceptual notion of behavior by computing probabilities of

all current available actions.

A.1 Don’t turn behavior function

This behavior function implements a behavior that makes character walk as straight as possi-

ble. Given all available actions and the current actions, this behavior function computes the angle

between current action and all available actions. Depending on the angle, it returns different prob-

abilities. As the angle close to the 180 degree, which corresponds to straight line, the behavior

function returns a high probability.

Let’s say that current character position isPc ∈ R2 and previous position isPp ∈ R2 . Then,

for all available actionsA = {A1, A2, ...An}, the behavior function computes the anglesv(i)

between two normalized vectorPcPp and vectorPcP (Ai) where theP (Ai) is the 2D position of

the final frame of actionAi. The probabilityProb(i) of actionAi, where1 < i <= n, is then

computed by sigmoid function as defined as equation 3.1. Theα can be changed from 0.01 to 0.1

as a parameter.

130

Prob(i) = sigmod(v(i), α)

A.2 Collision behavior function

The collision behavior function prevents collision between characters. For this goal, this be-

havior function checks all available actions, returns zero probabilities for the actions that cause

collisions, and returns high probabilities for the other actions. As a preprocessing, we subdivide

the entire environment into a regular grid and make each cell of grid contain a list structure that

tells us which agents located in the cell. As the character moves around the environment, the list

structure of each cell is updated dynamically. The rough processing step of this behavior function

is as follows:

1. Given agentMyself, obtain the list of agents in neighbors with distanced from theMyself.

2. For each agent in neighbors, which we callNeighbors, call the collision detection function

MOBB (Myself, Prob, Neighbors).

3. TheMOBB checks the collision of all available actions ofMyself against current action of

Neighborsand returns probabilities. If collision is anticipated, then it sets zero toProb.

Otherwise, it sets one.

The MOBB function is described in Chapter 4.

A.3 ImageLookupbehavior function

Our simulation has a bitmap environment image that layouts the entire environment. The goal

of ImageLookupbehavior functions is to look into the environment image to see what the proba-

bility of a character being there is. This behavior function enable to prevent the collisions between

131

character and obstacles in the environment because it returns low-probability for actions that cause

collision with obstacles. For this purpose, the environment image is created as a greyscale image

in which the black color corresponds to area for obstacles whereas the white color represents to

“walkable” area of the environment. Suppose an agent has actionsA = {A1, A2, ...An}, then for

each actionAi, the ImageLookupbehavior function first obtains the pixel value,vi, of the image

at the location of final frame ofAi. Then, the behavior function converts the pixel value into

probabilityProb(i) by computing following equation.

Prob(i) = slope ∗ v(i)/max + intercept

whereslope andintercept are tuning parameters andmax is the maximum possible value of

the pixel. Theslope andintercept controls the probability linearly.

A.4 TargetFindingbehavior function

TheTargetFindingbehavior moves characters to their target positions as close as possible. Our

simulation adopts the PRM(Probabilistic Roadmap Method) as a global path planning algorithm.

Once a new target position is given to an agent, the agent issues a PRM query and obtains a

series of way pointsw = {w1, w2, ...wm} as a result which starts from the initial position and

ends at the target position. Given current way point,wc, which corresponds to the closest way

point to the current character position,TargetFindingbehavior function inputs all available actions

A = {A1, A2, ...An} and computes the distance between thewc and actionAi and sorts them in

reverse order. The behavior function sets high probabilities for actions whose distance is short, and

sets low probabilities for the other actions. To set the probability, this behavior function categorizes

the whole actions into several groupsG = {G1, G2, ...Gm} depending on distance from current

132

way point where the distance of groupGi is less than distance of groupGi+1. Then, it gives same

probability to all actions in the same group.

One problem is that we have to decide when we move the current way point to the next way

point. If it is too late, all standing-still actions get the highest probabilities once the character

arrives at the current way point, and it makes characters stop too often before they reach final

target position. We defines the minimum distancemindist for this purpose. If the distance from the

current character to the current way point is within themindist, then algorithm moves the current

way point to the next way point.

A.5 Stopbehavior function

Thestopbehavior function implements a behavior for making character stop to walk. Given all

available actionsA = {A1, A2, ...An}, the behavior function computes the distanced from the first

frame to the last frame of each motionAi. if the distanced of an action is smaller than threshold

value, then it represents a walking motion, therefore, the action gets high probability. Otherwise,

it gets low probability.

A.6 StayInBoxbehavior function

TheStayInBoxbehavior function traps crowds inside a particular area in the environment where

the area is specified as a polygon. Given all available actionsA = {A1, A2, ...An}, this behavior

function returns low probability to actions that moves character out of the area, and gives high

probability to action that moves inside the area. In theory, all frames of a motion should be inside

the area to get the high probability. But, it takes long time to check every frames of the motion.

Instead, we use the bounding box of the root node of MOBB tree. If the four vertices of the

bounding box are inside the area, then we assume that the motion does not move the character out

133

of the area. Whether or not a point(x, y) is inside a polygon is tested through following code:

(Refer to Graphics Gem IV)

//nPol : number of vertices of polygon

//xp : array of x coordinate of polygon

//yp : array of y coordinate of polygon

//x, y : sample point to be tested

int pnpoly(int npol, float *xp, float *yp, float x, float y)

{

int i, j, c = 0;

for (i = 0, j = npol-1; i < npol; j = i++) {

if ((((yp[i] <= y) && (y < yp[j])) ||

((yp[j] <= y) && (y < yp[i]))) &&

(x < (xp[j] - xp[i]) * (y - yp[i]) / (yp[j] - yp[i]) + xp[i]))

c = !c;

}

return c;

}

A.7 An example of complex behaviors

In this section, we give an example of complex behaviors which are composed of several simple

behavior functions described above. The goal of this behavior function is to move crowd from

randomly distributed initial positions to the specific region of the environment according to the

signal. Thismove-to-regionbehavior is composed of these following behaviors.

1. Collisionbehavior: prevents collisions between characters.

2. ImageLookupbehavior: prevents collision with obstacles.

3. TargetFindingbehavior: moves crowds to the target positions.

4. StayInBoxbehavior: traps crowds in a specific region.

Essentially, this behavior makes crowds wander around the initial region without collision and

keep checking the event signal. Once the signal is on, it moves the crowd to the target region(Figure

A.1).

134

Initial Configuration Target Configuration

Characters

Signal Signal

Figure A.1: An complexmove-to-regionbehavior.

A python script for the situation that controls the behaviors is following.

1. NAME = "MOVE_TO_REGION"

2. e = Situation(NAME)

#set capacity : -1=infinite

3. e.setCapacity(-1)

#region specification : x1-x4, y1-y4 = vertex positions

4. e.addSitPoint(x1,y1)

5. e.addSitPoint(x2,y2)

6. e.addSitPoint(x3,y3)

7. e.addSitPoint(x4,y4)

#add sensors : sx,sy = sensor position

8. s = SignalSensor(e,101)

9. s.setPos(sx,sy)

10. e.addSensor(s)

#add rules

11. e.addRules("move.py")

#add behaviors

12. e.addBehavior(CollisionBehavior("Collision"))

13. e.addBehavior(ImageLookupBehavior("ImageLookup"))

135

14. e.addBehavior(TargetFindingBehavior("TargetFinding"))

15. e.addBehavior(StayInBoxBehavior("StayInBox", x1,y1,x2,y2))

The line 3 specifies the capacity of the situation. If it is -1, then it means an infinite number.

Lines from 3 to 7 specify the vertex positions of a region of the situation. Lines from 8 to 10

specify an event sensor. Line 11 adds a rule for controlling behavior functions. Lines from 12 to

15 add the behavior functions. The order of adding behavior function (line 12-15) determines the

order of behavior composition. In the main simulation loop, when a character enters the situation,

the situation adds a sensor, a rule and behavior functions. Once the characters have a sensor, they

sense events happening in the environment. After they sense the events, the captured information

is stored in the character memory. Then, it calls the event rule (move.py) to decide which behavior

functions should be composed. The rule specification is following.

#a : agent , vm : agent’s memory

1. vm = a.getMem()

#get information from sensor

2. sense = a.getSensor(vm,101)

3. if sense.event() == 1:

4. a.setGoal(rx, ry)

5. a.BehaviorCompose(CollisionBehavior)

a.BehaviorCompose(ImageLookupBehavior)

a.BehaviorCompose(TargetFindingBehavior)

else :

6. a.BehaviorCompose(CollisionBehavior)

a.BehaviorCompose(ImageLookupBehavior)

a.BehaviorCompose(StayInBoxBehavior)

The lines 1 and 2 get the information from the sensor. If the sensed information turns out to

be “on” (line 3-4), the rule gets a random position from the target region and sets this position

136

as the goal position for the character (line 4). Then, in the behavior composition process, three

behavior functions (Collision, ImageLookupandTargetFinding) are composed to choose the next

action (line 5). If the signal is “off”, then other three behavior functions, (Collision, ImageLookup

andStayInBox), are composed (line 6). Due to theTargetFindingbehavior, the character chooses

actions that move him (or her) to the target position closer when the signal is “on”. On the other

hand, while the signal is “off”, theStayInBoxbehavior keeps him (or her) in the initial region.

