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Abstract

While motion capture is commonplace in character animation, of-
ten the raw motion data itself is not used. Rather, it is first fit onto a
skeleton and then edited to satisfy the particular demands of the an-
imation. This process can introduce artifacts into the motion. One
particularly distracting artifact is when the character’s feet move
when they ought to remain planted, a condition known as footskate.
In this paper we present a simple, efficient algorithm for remov-
ing footskate. Our algorithm exactly satisfies footplant constraints
without introducing disagreeable artifacts.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;
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1 Introduction

Real human motion usually containsfootplants, which are periods
of time when a foot or part thereof remains in a fixed position on
the ground. Processed motion capture data may fail to accurately
reproduce these footplants, introducing an artifact known asfoot-
skate. Since footplants are often the primary connection between a
character and the surrounding environment, even small amounts of
footskate can destroy the realism of a motion.

Footskate may be introduced to a motion in several ways. Some-
times the raw motion data itself is imperfect; for example, a sen-
sor may be miscalibrated. In such cases the motion can often still
be salvaged, but the footplants may be lost in the process. Foot-
skate can also be added even when the raw data is faithful to the
true motion. In standard animation pipelines motion data is usu-
ally mapped onto an articulated figure called askeleton. Since a
real human is not rigid, this mapping process can fail to fully pre-
serve footplants. Also, skeletal motion data is often edited in order
to adapt to the particular needs of an animation. Representative
editing operations include warping [Witkin and Popović 1995], re-
targeting [Gleicher 1998], path editing [Gleicher 2001], transition
generation [Rose et al. 1996], and various signal processing algo-
rithms [Bruderlin and Williams 1995]. These editing operations
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fundamentally involve adding only low-frequency changes to a mo-
tion, so high-frequency details like crisp footplants are either lost
entirely or only approximately preserved.

In light of this, there is a general need for an algorithm for enforcing
footplant constraints in skeletal motion capture data. In this paper
we introduce such an algorithm. Our method is simple and efficient
in that it requires no nonlinear optimizations and performs a fixed
amount of calculation on every frame. It is robust in that it is stable
for near-singular joint configurations and degrades smoothly as the
distance from a footplant constraint grows. Finally, the adjustment
applied to a given frame depends only on a fixed neighborhood of
surrounding frames. This makes our algorithm useful for online
applications that can accept a small time delay (1

2
–1 second), such

as animating background characters in a game or individuals in a
crowd simulation.

Most previous work has assumed rigid skeletons and balanced a
precarious tradeoff between satisfying constraints precisely and
avoiding sharp adjustments to joint rotations. We will demonstrate
that a perfectly rigid skeleton can make it quite difficult to reliably
meet both of these goals. For this reason we allow small changes
in the bone lengths of the skeleton. While the specific reasons for
choosing this approach will be covered in detail later, this decision
is unusual enough that we would like to explain up front why we be-
lieve it to be reasonable. First, since footplant cleanup is intended as
a postprocess, editing operations which require fixed bone lengths
are still usable. Second, support for variable bone lengths exists in
a variety of standard data formats (such as BVH, BVA, Acclaim,
and HTR [Lander 1998]) and animation packages (such as Poser,
Maya, and 3D Studio Max). Finally, variable bone lengths can be
seamlessly incorporated into traditional algorithms for specifying
how a skeleton drives a character’s mesh [Lewis et al. 2000].

The remainder of this paper is divided into four sections. In Sec-
tion 2, we define the footskate cleanup problem more precisely. In
Section 3, we review related work. We then describe our algorithm
in Section 4, present results in Section 5, and conclude with a brief
discussion in Section 6.

2 The Footskate Cleanup Problem

A skeletal motion is a function

M(t) = (pR(t),q0(t), . . . ,qk(t),o0(t), . . . ,ok(t)) (1)

wherepR is a 3-vector indicating the position of the root joint,qi

is the quaternion specifying the orientation of theith joint in its
parent’s coordinate system, andoi is a 3-vector defining the offset
of the ith joint in its parent’s coordinate system. We assume our
data is a regular sampling ofM into framesFi = M(i). Only the
lower body of the skeleton is relevant to our work; it is represented
with a standard model that is shown in Figure 1.

The footskate cleanup problem may now be stated as follows: given
a set of skeletal motion data annotated with footplant constraints,
enforce these constraints while disturbing the original motion as
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Figure 1: Our model of the lower body. Our method allows the heel and/or ball of
each foot to be planted over a set of frames. The toes are dealt with independently to
prevent floor penetration.

little as possible. A footplant constraint consists of requiring ei-
ther the heel or the ball to be planted over a set of frames. It is
possible for both the heel and ball of a foot to be planted simul-
taneously. A “disturbance” is any visually-distracting artifact not
already present in the motion. In particular, while smooth changes
generally preserve the integrity of a motion, sharp changes tend to
be quite noticeable even if they are numerically small. It is for this
reason that we allow the legs to stretch: as we will show in Sec-
tion 4, sometimes a smooth change to limb length is the best way
to avoid a sharp change in joint position or orientation.

Since we don’t consider constraints on the very tips of the toes,
motions like certain ballet movements are beyond the reach of our
framework. However, such motions are quite rare. Consider, for ex-
ample, that a typical “tiptoeing” motion really involves the weight
being supported on the toesand the end of the ball. In such cases
we need only plant the ball to produce the correct result. While we
don’t allow constraints on the toes, we do ensure that they don’t
penetrate the ground as a result of other constraints being satisfied.

Footplant constraints may be identified automatically using tech-
niques like those proposed by Bindiganavale [Bindiganavale and
Badler 1998; Bindiganavale 2000]. However, such methods can
be unreliable if the original data is noisy or the motion does not
have clear footplants, such as a runner skidding to a halt or a dancer
shuffling. Since our algorithm has no way of knowing if a particular
footplant constraintreally exists, artifacts may be introduced if the
constraints are incorrectly specified — a foot may slide into a plant
or appear stuck to the ground too long. In light of this, we use an
automated algorithm to identify footplants and then edit the results
by hand. In the context of the entire animation pipeline, we have
not found this user intervention unduly taxing.

Our footskate cleanup algorithm modifies the position (but not ori-
entation) of the root and the orientation of every other joint that is
not an end effector. It also allows changes to the offsets of the knees
and ankles or, equivalently, the lengths of the thigh and shin. The
foot itself (defined as the ankle together with the heel and ball) re-
mains rigid. While changes are allowed for every rotational degree
of freedom in the hips and knees, the knee and ball are adjusted
as if they were 1 DOF hinge joints. Any other degrees of freedom
exhibited by these joints are unchanged.

Our algorithm is not restricted to flat surfaces; sloped or uneven

surfaces are also acceptable. However, while we can place precise
footplants on such terrain, the algorithm does not adapt other mo-
tion qualities like how the character’s weight is loaded.

3 Related Work

Inverse kinematics (IK) is the general problem of determining the
values of skeletal parameters that place end effectors (or, more gen-
erally, joints) at specified locations with specified orientations. The
use of IK to drive articulated figure animation dates back to some
of the earliest systems, and problems like footskate have been a
concern from the beginning [Korein and Badler 1982; Girard and
Maciejewski 1985].

There are two broad classes of solutions to inverse kinematics prob-
lems: analytic and numerical. Numerical solutions are the most
general and are able to handle sophisticated constraints with com-
plex articulated figures. Welman [1989] presented a good survey
of computational techniques. Though powerful, numerical IK al-
gorithms suffer from many drawbacks. Since they require solving
systems of nonlinear equations, the solutions are computationally
expensive. Convergence is difficult to guarantee, and as the IK
problem is inherently ill-conditioned [Maciejewski 1990], the al-
gorithms can be unstable.

Analytic IK algorithms, in contrast, find closed-form solutions in
fixed amounts of time. However, these algorithms only exist for
comparatively simple skeletal configurations. One popular algo-
rithm [Tolani et al. 2000] provides a solution for a 7 DOF human
limb consisting of a 3 DOF rotational base joint, a 1 DOF central
joint, and a 3 DOF end effector. This algorithm has been incorpo-
rated into more complex IK solvers [Lee and Shin 1999; Shin et al.
2001]. As we will discuss in detail in Section 4, this algorithm can
produce artifacts as a result of the nonlinear relationship between
limb length and angle of the central joint. Our work presents a vari-
ant that addresses this difficulty.

One large class of related work involves using IK to match end-
effector goals that are specified directly from raw motion capture
data. Bodenheimer et al. [1997] fit raw data to a skeleton using
an optimization-based numerical IK algorithm that attempted to
simultaneously match both measured joint orientations and posi-
tions. Choi and Ko [2000] presented an online algorithm based
on inverse rate control that was specifically geared toward tracking
end-effector positions. Shin et al. [2001] extended this approach
to meet positional constraints that were smoothly phased in and
out based on proximity to important objects in the environment.
Many commercial motion processing systems give a user control
over how closely skeletal motion tracks the end-effector positions in
the original data [Kaydara Corporation 2001; Stripinis 2001; House
of Moves Studios 2001; Vicon Corporation 2001].

These approaches are all fundamentally different from ours in that
they involve tracking a data source; that is, they assume the exis-
tence of ground truth end effector locations. Hence there are no
provisions for editing the original data, as there is no correspond-
ing ground truth for the adjusted motion. Since we explicitly label
footplant constraints, our technique works whether or not there are
explicit target positions for the end effectors.

Like ourselves, other researchers have used per-frame IK to enforce
labelled constraints [Rose et al. 1998] and have blended the result-
ing adjustments into unconstrained parts of the motion [Monzani
et al. 2000]. While the types of constraints addressed in these works
are more general than ours, this comes at the expense of using nu-
merical IK techniques that are both slower than ours and possess
fewer guarantees about the continuity of the solutions.
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One way to combat the instabilities of numerical IK is to consider
larger windows of frames. Gleicher cast retargeting as a large op-
timization problem that enforced constraints over the entire motion
simultaneously [Gleicher 1997; Gleicher 1998]. Smoothness in the
motion adjustment, termed adisplacement map, was enforced by
defining the displacement map for each degree of freedom as a
spline and optimizing over the values of the knots (a similar tech-
nique was used by Rose et al. [1996]). The use of splines means
that constraints can only be approximately enforced. Also, as this
considers the entire motion, it is both computationally expensive
and inherently offline.

Lee and Shin [1999] presented an alternate retargeting method that
built a displacement map out of a hierarchy of splines. As this in-
volved repeated performing IK over the entire motion, and as this
IK involved a nonlinear minimization, it lacks the efficiency of our
method. Moreover, part of their IK algorithm involved the prob-
lematic single-limb IK solution mentioned in the third paragraph of
this section.

4 A Footskate Cleanup Method

The basic idea behind our method is simple. We process a mo-
tion sequentially, allowing us to handle both motions of a fixed size
and continuous streams of motion. All footplant constraints are
satisfied using an analytic IK algorithm. To maintain continuity be-
tween adjacent constraints, this algorithm incorporates information
from nearby constrained frames. To maintain continuity when a
constraint is turned on or off, we blend off the adjustments created
by the IK algorithm.

Our approach is divided into five phases:

1. Determine a position for each plant constraint.

2. For each constrained frame, compute global positions and ori-
entations for the ankles that satisfy the constraint positions
found in the previous step. Intuitively, we are “chopping off”
the foot and setting it so the constraints are satisfied. Care
is taken to ensure that adjustments to the original ankle con-
figurations change continuously between constrained frames.
Maintaining continuity into unconstrained frames is handled
later.

3. Calculate where the root should be placed so the ankle posi-
tions found in the previous step can be reached by extending
the legs. This goal is balanced with ensuring that the adjust-
ments made to the root are smooth, so in certain cases the
target ankle positions may be slightly out of reach. If so, the
residual distance may be covered by stretching the legs.

4. For each constrained ankle, adjust the leg so the ankle ends
up in the configuration found in step 2, using the root position
found in step 3. As much of the adjustment as possible is ac-
complished by modifying joint rotations, but in certain cases
the leg’s length is adjusted in order to avoid sharp changes in
orientation.

5. Steps 2-4 ensured that we added only smooth adjustments
to skeletal parameters when satisfying constraints. However,
there may still be discontinuities when constraints switch on
and off. In this final step we maintain smoothness in surround-
ing frames by smoothly dissipating the adjustments.

The computation for a single frame at each step in general requires
the results from the previous step over a neighborhood of nearby
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Enforced Constraints

Smoothed Frames

L2L2

L3L3

L4L4

Figure 2: The five phases of the footskate cleanup algorithm. First constraint positions
are determined. Next ankle configurations are found that satisfy these constraints. The
algorithm then adjusts the root position and leg parameters to place the ankles in these
target configurations. Finally, changes are blended off into unconstrained frames to
smooth out discontinuities. Each step requires results from the previous step over a
neighborhood of frames.

frames; see Figure 2. Larger neighborhoods provide smoother re-
sults at the expense of more computation and, for online applica-
tions, greater delay.

In the remainder of this section we will describe each step of the
algorithm and then conclude with a discussion regarding efficient
implementation.

4.1 Constraint Positions

Each frame may have plant constraints on the left heel, right heel,
left ball, and/or right ball. In some applications the location of each
plant is known a priori — for example, the character may be re-
quired to step on a pedal. In this case no calculation needs to be
performed. Other applications will only require that the joint be
planted somewhere on the ground. Since the motion is processed
sequentially, when handling frameFi the positions are known for
all constraints active on the previous frameFi−1. F−1 is defined
as having no constraints. There are two scenarios to consider. If a
joint J constrained inFi is also constrained inFi−1, the constraint
position inFi is the same as inFi−1. Otherwise the position ofJ
is averaged over the nextL1 frames. The result is projected onto
the ground (which may or may not be flat) to the pointcJ. Since
the foot is treated as a rigid piece, we must next check whether the
other jointJ ′ on the same foot is also constrained and has a known
positioncJ′ . If so,cJ is relocated to the closest point on the ground
wherecJ andcJ′ are the correct distance apart.

4.2 Ankle Position and Orientation

The second phase of the algorithm selects global ankle positions
and orientations forFi that satisfy the constraints found in the pre-
vious step. Care must be taken to ensure that adjustments to the
ankle configurations vary continuously. This step assumes known
constraint positions for all framesFi−L2 toFi+L2 .

An ankleA is calleddoubly constrainedif both its heel and ball
have plant constraints,singly constrainedif only one of its child
joints is constrained, andunconstrainedotherwise. We first address
the case whereA is doubly constrained with the heel constraint at
cH and the ball constraint atcB. In this caseA has one degree of
freedom in that when the heel and ball are at the constraint loca-
tions, the foot may rotate about the vectorcB − cH. The amount

3



To appear in the ACM SIGGRAPH Symposium on Computer Animation 2002

1)

3)

2)

Figure 3: The three cases to consider when blending off an adjustment. Thick black
lines represent original adjustments to the motion and thick grey lines represent new
adjustments added to blend off the originals. 1) There is a change in the forward
direction but not the backward. 2) There is a change in the backward direction but not
the forward. 3) There are changes in both directions.

of rotation is commonly called thefoot roll. If desired, the roll may
be set explicitly, perhaps to orient the foot flat on the floor. This
could be useful if the character is to traverse uneven terrain. Alter-
natively, the foot roll may be determined by selecting the roll angle
that givesA the global orientation closest to its original value. De-
fine Rot(a,b) as the shortest rotation that alignsa with b. Also,
let pH andpB be the original global positions of the heel and ball.
Then the target global orientation ofA is

QA
′ = Rot(pB − pH, cB − cH) ∗QA (2)

whereQA is the original global orientation. CapitalQ’s are used
to distinguish global orientations from orientations relative to the
parent coordinate system. The corresponding target global position
is p′A = cH − Q′

A(oH)). Here we use the shorthandq(v) to
represent rotating a vectorv by a quaternionq.

Next we consider the case whereA is singly constrained. Call the
constrained jointJ , its global positionpJ, and its constraint loca-
tion cJ. Given any orientation forA, we can always satisfy the
constraint simply by translatingA so J is at its target position.
Hence we could simply keepA’s current orientation and translate
it by cJ − pJ. However, this can lead to discontinuities if there is
a nearby frame withA doubly constrained, since thereA must in
general be rotated to allow the heel and ball to meet the constraint
positions. The solution is to blend off these added rotations. We
define a blend functionα(t) such thatα(0) = 1, α(1) = 0, and
dα
dt

(0) = dα
dt

(1) = 0. The latter two conditions ensure that the
blends haveC1 continuity at the beginning and end. The unique
cubic polynomial satisfying these conditions is

α(t) = 2t3 − 3t2 + 1 (3)

The algorithm proceeds as follows. We look forward and backward
L2 frames for the first frame in whichA is unconstrained or dou-
bly constrained. If we only encounter singly-constrained frames or
encounter an unconstrained frame before any doubly constrained
frames, we have amissin that direction; otherwise we have ahit. If
we have a hit in neither direction, we make no change — the adjust-
ment is the identity. Otherwise there are three cases (see Figure 3):

1. We have a hit in the forward direction but not the backwards
direction. Say that the adjustment we applied to the doubly-
constrained frameFi+k is δQi+k . Then the adjustment we
seek is

δQi = slerp(α(
k + 1

L2 + 1
), IQ, δQi+k), (4)

whereslerp is spherical linear interpolation andIQ is the
identity quaternion.

2. The same as (1), but interchanging backward and forward.

3. There are hits in both directions. In this case we compute
blends for the forward and backward directions as in the pre-
vious two steps and blend the results. Let the doubly con-
strained frame in the forward direction beFi+k and in the
backward direction beFi−j . If

δforward = slerp(α(
k + 1

L2 + 1
), IQ, δQi+k) (5)

and

δbackward = slerp(α(
j + 1

L2 + 1
), IQ, δQi−j), (6)

then the blended rotation adjustment is

δQi = slerp(α(
j + 1

j + k + 1
), δbackward, δforward). (7)

By applying the adjustment to the original global orientation, we
obtain the target global orientationQ′

A for the singly-constrained
ankle. It is possible that in this orientation the unconstrained joint
penetrates the floor; if this is the case, we adjustQ′

A by the smallest
rotation about the constrained joint that places the unconstrained
joint above the floor. As before, the target global position isp′A =
cJ −Q′

A(oJ).

The final case to consider is whenA is unconstrained. If an adja-
cent frame hasA constrained, then in generalA’s configuration will
be discontinuous between the two frames. However, since there are
no constraints onA, we are free to adjust the parameters for the leg
so as smooth out the discontinuity. This is simpler to accomplish
once the constraints have been satisifed; it will be discussed in Sec-
tion 4.5. For now we continue to focus on the issue of satisfying
F ′is constraints.

4.3 Root Placement

By this stage we have figured out target global positions and orien-
tations for the constrained ankles in framesFi−L3 to Fi+L3 . The
next step will adjust the legs to meet these targets. However, it may
be that the legs cannot reach the target ankle positions even when
fully extended. Hence we attempt to move the root by the smallest
amount that makes the target ankle positions reachable.

If only one ankle is constrained, we calculate the maximum leg
lengthlmax and compare with the distanceltarget of the target from
the root. If ltarget > lmax, we project the root onto the sphere of
radiusltarget centered aboutp′A − oH, whereoH is the hip offset.

If both ankles have constrained children, then we must project onto
the intersection of two spheres. This can be done as follows. First,
for each ankle projectpR onto the appropriate sphere. If only one
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Figure 4: If a target position is to be reached by the root without stretching the leg,
the root must be within the sphere centered on the target whose radius is equal to the
length of the leg at full extension. If both ankles have target positions, then the root
must be in the intersection of these two spheres. When constraints switch the projection
may move discontinuously, even if the root is stationary. For example, projecting the
root position (P) onto the sphere centered about the left ankle target at (L) produces a
point distant from the corresponding projections for the right ankle target (R) and both
targets (B).

result is in the3D intersection of the spheres, then this is the pro-
jection. If both are in the3D intersection, then select the clos-
est. Otherwise the point should be projected onto the circle defined
by the intersection of the surfaces of the spheres. Details on this
straightforward operation are in Shin et al. [2001].

As long as the same constraints hold, these projection operations
will preserve the continuity of the motion. However, a discontinuity
may be introduced if a constraint switches on or off. This is because
the projected root position can be very different in the single-ankle
case and the double-ankle case (Figure 4), causing the root to “pop”
from one frame to the next. Even small amounts of root popping
can be quite distracting, as a translation of the root joint moves the
entire body.

Attempting to generate smooth root displacements subject to
sphere-interiority constraints is a non-linearly constrained varia-
tional problem for which it is difficult to find a reliable and effi-
cient solution. For this reason we adopt a simpler solution to root
popping. Root translations are calculated independently for each
frame in the neighborhoodFi−L3 to Fi+L3 . We then compute a
weighted average over the block of constrained frames that contains
Fi. While this filtering may leave the root outside of the sphere(s),
the discrepancy is usually quite small, and we can still exactly meet
the ankle position constraints by slightly stretching the legs.

As in the previous section, there is still an opportunity for root pop-
ping when a frame with no constraints borders a frame with at least
one constraint. We address this possibility in 4.5.

4.4 Meeting the Target Ankle Configuration

Using the root position calculated in the previous step, all con-
straints onFi can be satisfied by adjusting the hip, knee, and ankle
parameters such that the target ankle positions and orientations are
met. We use a modified version of a standard single-limb IK algo-
rithm [Lee and Shin 1999; Tolani et al. 2000]; see Figure 5. We
will first describe the original algorithm. The global positions of
the hip, knee, ankle, and target ankle location are respectivelypH,
pK, pA, andpT. The lengths of the thigh and the shin are respec-
tively lt andls. Since the knee can only rotate about a single axis,
we are also interested in the lengthsl̃t and l̃s of the projections of
the thigh and shin into the plane defined by this axis. The knee is
first extended/contracted so the distance from the hip to the ankle
equals the distance from the hip to the target. The final knee angleθ
is chosen so as to satisfy the constraint that the knee must not bend

1) Initial Pose 2) Change Knee 
       Angle

3) Point Toward
       Target

4) Adjust Ankle 5) Stretch Leg

Figure 5: The five steps for attaining a target ankle position and orientation.

backwards. Using straightforward geometry, one can show

θ = arccos


 l2t + l2s + 2

√
l2t − l̃t

2
√

l2s − l̃s
2 − ‖pH − pT‖2

2l̃t l̃s




(8)

See Lee and Shin [1999] for a concise derivation.

The hip is now adjusted as follows. Let the new position of the
ankle bep̂A. The hip is rotated byRot(p̃A − pH,pT − pH) to
point the leg toward the target. If the length of the leg matches the
distance to the target, the ankle will end up atpT.

The hip may be rotated about the axisn̂ = pT − pH without
changing the ankle position. There are a variety of ways to exploit
this redundancy [Korein and Badler 1982]. In our implementation
we chose to make the global ankle orientation as close as possi-
ble to the target valueQ′

A found in Section 4.2. Let the current
global ankle orientation (incorporating the adjustments to the hip
and the knee) beQA. Then we seek a rotationφ aboutn̂ such
that if δQH = (cosφ

2
, n̂ sin φ

2
), thenδQHQA is as close as pos-

sible toQ′
A, where the distance between two quaternions is deter-

mined by the corresponding geodesic inS3. The solution, derived
in Shin et al. [2001], is as follows. WritingQA

′ = (w′,v′) and
QA = (w,v), define

β = arctan

(
ww′ + v · v′

wn̂ · v′ − w′n̂ · v + v′ · (n̂× v)

)
. (9)

Thenφ is either−2β + π or−2β − π, depending on which value
maximizes(δQHQA) · Q′

A (here the quaternions are treated as
Euclidean 4-vectors).

Having adjusted the hip and the knee, the single-limb IK concludes
by applying to the ankle the unique rotation that brings it to the
target global orientation.

If the skeletal parameters are varied continuously, this algorithm
produces continuous outputs. However, continuity alone does not
guarantee that small changes in the initial conditions produce sim-
ilarly small adjustments to the skeletal parameters. The culprit is
the nonlinear relationship between leg lengthl (the distance from
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Figure 6: The adjustment in knee angle necessary to extend the leg by 1% of its
maximum length versus the current length of the leg, expressed as a percentage of its
maximum length.

the hip to the ankle) and knee angleθ. By the law of cosines,
l2 = l2t + l2s − 2ltls cos θ. Since dl

dθ
(θ) = ltls sin θ

l
drops to zero as

θ → π, small changes in leg length can require comparatively large
changes in knee angle. Consider Figure 6, where we plot the knee
angle adjustment necessary to extend the leg by 1% of its maximum
length versus the current length of the leg. The sharp rise in the
graph manifests itself as an unnaturally fast extension/contraction
of the knee, which we term a “knee pop”. Even a minor knee pop
can stand out in a motion since it affects the shape of the entire leg.

The knee pop problem is fundamental to the geometry of the leg;
attempting to extend a nearly-straight leg is a poor way to increase
the reach of the ankle. The solution is to limit the amount we rotate
the knee when the leg is near full extension. We refer to this as
knee-damping. Knee-damping can be implemented as follows. Let
ρ ∈ (0, π) and definef(x) as follows:

f(x) = 1, x < ρ

α
(

x−ρ
π−ρ

)
ρ ≤ x < π

0, x ≥ π
(10)

Then if the original knee angle isθ0 and the adjustment to it is∆θ,
the final angleθ is

θ = θ0 +

∫ θ0+∆θ

θ0

f(x)dx. (11)

This has the effect of limiting the allowable rotation adjustment
when the leg is near full extension.

When we use knee damping, in general the ankle may not able to
reach its target position upon adjusting the knee. We might try to
fix this by translating the root, but this would produce the problems
discussed in the previous subsection: when constraints switch on
and off we can have discontinuities in the root position. Our solu-
tion is to adjust the length of the leg. If the actual distance from
the hip to the ankle isd and we require the distance to bed′, then
we replace the knee offsetoK with ( d′

d
)oK and the ankle offsetoA

with ( d′
d

)oA. With this length adjustment the ankle is always able
to exactly reach its target position.

If the leg is bent, then the ankle-to-hip distance is only affected
by a fraction of the length changes applied to the leg bones. How-
ever, we only adjust the bone lengths when the leg is nearly straight.

Original data

Known constraint positions

Known ankle orientations

Enforced constraints

Processed Frame

New Data Frame

L1+1

2L2+1

2L3+1

2L4+1

Figure 7: A schematic for an efficient online implementation of the footskate cleanup
algorithm. Four buffers are maintained to store, respectively, original frame data, ankle
configurations, constraint-enforced frames, and fully-processed frames. Each buffer
contains all the information necessary to create a single entry in the next buffer. Hence
every time a new frame enters the top buffer, a processed frame may be extracted from
the bottom buffer.

Thus almost all of the length adjustment goes directly into changing
the ankle-to-hip distance, and so usually only small length adjust-
ments are necessary. Moreover, these length changes are smoother
and smaller than the corresponding change to the knee and hence
are less distracting.

4.5 Final Processing

So far the discussion has focused on enforcing constraints for a par-
ticular frame. While we don’t introduce discontinuities when sat-
isfying constraints that hold over multiple frames, discontinuities
may still occur when a constraint becomes active or inactive. To
correct this, we blend off the adjustments generated to enforce con-
straints. The method is similar to how we calculated smooth target
ankle configurations in Section 4.2. We assume that all constraints
have been solved in the neighborhoodFi−L4 to Fi+L4 . For each
skeletal parameter inFi that wasnotadjusted to satisfy a constraint,
we scan forwards and backwards in the neighborhood until we ei-
ther run off the end or encounter a frame where that parameter was
adjusted to enforce a constraint. If there are no such frames in ei-
ther direction, the parameter is left unchanged. Otherwise we create
a new adjustment forFi by blending off the adjustment(s) we en-
countered in the scan. For parameters represented as quaternions,
this is done exactly as in Section 4.2. For parameters represented by
3-vectors, we replaceslerp with lerp, which linearly interpolates
the 3-vectors.

If a foot has at least one constraint, it is guaranteed to be above the
floor after that constraint is satisfied. However, a foot with no con-
straints may still penetrate the floor. If this is the case, we translate
the ankle by the smallest amount that places both the ball and the
heel above the floor and use the algorithm of section 4.4 to adjust
the rest of the leg accordingly. The continuity of the original motion
is preserved as long as the floor is smooth.

The final step is to ensure that neither of the toes penetrate the floor.
A positive toe rotation is defined as one that bends the toes up to-
ward the top of the foot when the skeleton is in a normal standing
posture. We apply the smallest positive rotation that places the toe
above the floor. In general this depends on the shape of the floor.
For flat surfaces, the toe position can be solved as follows. Letn
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be the normal defining the plane of rotation of the toes,c be the
vertical distance from the position of the ball to the floor, andvT

be the location of the toes relative to the ball. Then what we seek is
a vectorv′T that 1) has valuec in the vertical direction (y axis), 2)
has length‖vT‖, and 3) is orthogonal ton. If we define

η =
√

(n2
x + n2

z)(‖vT‖2 − c2) (12)

then the solution to this system of equations is

v′T = (
−cny ∓ nzη

n2
x + n2

z
, c,

−cnz ± nzη

n2
x + n2

z
) (13)

where the sign is chosen such that(v′T × vT) · n is positive.

4.6 Efficient Implementation

As shown in Figure 2, processing a single frame involves a calcu-
lation over a neighborhood of nearby frames. Since these neigh-
borhoods overlap, calculations will be needlessly repeated if each
frame is processed completely independently. A more efficient im-
plementation, depicted in Figure 7, is to maintain a series of buffers
that hold information pertaining to the different steps of the algo-
rithm. The first buffer holdsL1 + 1 frames of original data. Con-
straint locations are extracted from this and passed into a buffer of
length2L2 + 1. In this buffer the ankle configuration for the cen-
tral frame can be calculated using the methods of Section 4.2. The
result is then sent into the third buffer, which holds2L3 +1 frames.
The root translation for the central frame is set as in Section 4.3
and then the leg parameters are adjusted according to Section 4.4.
Finally, the constraint-solved frames are placed into a fourth buffer
of length2L4 + 1, where adjustments are blended off as described
in Section 4.5. At the center of this final buffer is a completely
processed frame.

Each buffer contains exactly the amount of information necessary
to calculate a single entry in the next buffer. Hence every time a
new data frame is added, one entry is added to the beginning of
each buffer and removed from the end.

5 Results

In this section we present some sample results for our footskate
cleanup algorithm. In our experimentsL1 was10 frames (a third
of a second) andL2, L3, andL4 were5 to 10 frames (a sixth to
a third of a second). The value ofρ in equation 10 was2.8 (about
160 degrees). Over all of our experiments, the maximum change
in leg length on a given frame was2.6% of the leg length at full
extension.

Our algorithm generates precise footplants on the specified frames.
Figure 8 compares an example of footskate with the correspond-
ing footplant produced by our algorithm. To get a better sense of
how successful our algorithm is, we have compared it to the cor-
responding algorithm in Kaydara’s FILMBOX 3, a popular soft-
ware package for processing motion capture. Data from an opti-
cal motion capture system was fit to a skeleton using both FILM-
BOX’s default settings and the “reach-feet” option, which tracks
end-effectors to reduce artifacts like footskate. We then applied
our footskate cleanup algorithm to FILMBOX’s default skeleton
fit. Figure 9 shows the height of the right ball as a function of time
for each motion. Due to errors in marker tracking and the skeleton-
fitting, FILMBOX both introduced minor root-popping and knee-

Figure 8: An example of footskate and the result after applying our algorithm. The
pictures show the location of the right foot over a portion of a walking motion.
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Figure 9: Three graphs of the height of the right ball in a segment of motion where the
actor turned around in place several times. The solid plot shows skeletal data generated
using FILMBOX’s defaults for fitting marker data to a skeleton. The dotted plot had
FILMBOX’s “reach-feet” mode activated, which executes their footskate solution. The
dashed plot shows the results of applying our algorithm to the default FILMBOX fit.

popping artifacts and generated small amounts of footskate. Our
algorithm met the footplants exactly while avoiding such artifacts.

Our algorithm’s comparative success is not terribly surprising since
it was given more information. While FILMBOX only had marker
data, our algorithm was supplied with the exact periods of time over
which footplants were to occur. Hence it is able to incorporate addi-
tional timing information (when footplants begin and end) and ge-
ometric information (where the foot is supposed to go, determined
by the shape of the ground).

We have tested our algorithm in a variety of contexts:

1. Motion Salvage.We received a motion from a motion capture
studio that was damaged because the actor adjusted his pants
during the shoot, thereby throwing off the calibration of some
of the markers. We used our algorithm to salvage the motion
by eliminating the considerable footskate while at the same
time not adding any new visible artifacts. Figure 10 shows
plots of the height of the right ball on the damaged motion
before and after applying our algorithm.

2. Retargeting. With footskate cleanup, simple retargeting op-
erations are possible. A scale factor is applied to the root
translation data in the original motion according to the dif-
ference in bone lengths between the original skeleton and the
target skeleton, and we enforce footplant constraints on the
result. While this is not a general solution to the retargeting
problem, in simple cases it suffices.

3. Path Editing. We have used our footskate cleanup algorithm
to successfully satisfy footplant constraints after applying the
path editing operation discussed in [Gleicher 2001]. Our al-
gorithm is a simple, efficient alternative to the spacetime op-
timization used in the original paper.
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Figure 10: The height of the right heel as function of time in a motion damaged due
to sensor calibration error (grey), along with the height of the right heel after running
our algorithm on this motion (black).

Our algorithm is quite fast; processing a 445 frame motion with
673 constraints required only 0.176 seconds (0.0966 milliseconds
per frame) on a 1.3 GHz Athlon personal computer.

6 Discussion

In this paper we have presented a simple, efficient, and online al-
gorithm for precisely enforcing footplant constraints in a motion
without adding visible artifacts. This algorithm is useful because it
increases the utility of other editing operations which destroy foot-
plants. Moreover, while in the past new editing algorithms have
had to explicitly address footskate, our cleanup algorithm frees fu-
ture algorithm designers from this additional burden.

We have focused exclusively on footplants, ignoring the possibility
of also constraining the hand positions. It would only be a minor ex-
tension to satisfy hand constraints by treating the arms in the same
manner as we treat the legs. The only step of the algorithm that
would be affected is when the root position is calculated, as in gen-
eral the root would have to be projected into the intersection of four
spheres [Shin et al. 2001]. We chose not to do this for the following
reasons. First, hand constraints are much rarer than foot constraints.
Second, the hand is far more complicated than the foot in that the
specific configuration of the fingers is typically important, whereas
individual toes usually need not be modelled. Third, the torso is
more of a factor in arm movement than in leg movement, and so the
simple IK used in this paper is unlikely to suffice.

The success of our algorithm was made possible by taking the
somewhat unusual measure of allowing small length changes in the
skeleton’s bones, whereas in most previous work the skeleton has
been strictly rigid. This leads to the interesting general question of
how various artifacts in a motion — footskate, over-stretched limbs,
sudden changes in joint orientation, etc. — may be balanced so as
to produce a desired change while minimizing visual disturbance.
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