
CS 559: Computer Graphics

Floyd-Steinberg Dithering

The Floyd-Steinberg dithering algorithm is an example of an error-diffusion technique. The
aim is to use simple threshold dithering on each pixel, but to accurately account for the errors in
brightness it induces. As a simple motivating example, consider a 50% gray image (an image with
every pixel exactly halfway between black and white in brightness). We would like the dithered
image to end up half black and half white, ideally with a black-white checker pattern at the pixel
level (as in the image below). This most accurately captures the 50% gray aspect using only black
and white pixel intensities. This cannot be done with simple thresholding, because in a 50% gray
image every pixel starts with the same intensity, so the result of a thresholding comparison must be
the same for every pixel.

The solution is to take into account the result of thresholding one pixel when thresholding its
neighbors. This is the essence of an error-diffusion algorithm: the error as a result of thresholding
one pixel is shifted to its neighbors where it influences their threshold operation.

First we must define the error, e. This is the difference between the target value of a pixel,
Iacc(i, j) and its value after thresholding, Iout(i, j). Specifically, e = Iacc(i, j) − t where t = 0 if
Iacc(i, j) < 0.5 and t = 1 if Iacc(i, j) ≥ 0.5. Iacc is the accumulated image. It starts off as the
input gray image in floating point format with pixel values ranging from 0 (black) to 1 (white). At
each step, the error, e, from one pixel is added to its neighbors using the following algorithm:

Iacc(i + 1, j) = Iacc(i + 1, j) +
7

16
e

Iacc(i + 1, j + 1) = Iacc(i + 1, j + 1) +
3

16
e

Iacc(i, j + 1) = Iacc(i, j + 1) +
5

16
e

Iacc(i − 1, j + 1) = Iacc(i − 1, j + 1) +
1

16
e

(assuming that the index j increases from top to bottom of the image, although it really doesn’t
matter in practice). Note that the error accumulates in the image Iacc, and that the value in Iacc may



go above 1 or below 0. That doesn’t matter. If one of the pixels in Iacc required above is off the
edge of the image, we ignore it.

The pixel (i, j) is thresholded and output: Iout(i, j) = 0 if Iacc(i, j) < 0.5 or Iout(i, j) = 1 if
Iacc(i, j) ≥ 0.5.

The algorithm proceeds by performing the above step on every pixel (i, j) in a zig-zag order.
All the even numbered rows (starting at 0) go left to right using the algorithm above. All the odd
numbered rows go right to left, using i − 1 every place where you see i + 1 and vice versa. When
it’s all done, every pixel in Iout has been filled and the image Iacc can be thrown away.

In the set of images on the next page, we show the images Iacc and Iout for a 4×4 50%-gray
image as the algorithm progresses.



0.5 0.5 0.50.5

0.5 0.5 0.50.5

0.5 0.5 0.50.5

Iacc

?

Iout

???

????

????

X 0.5 0.5

0.5 0.5

0.5 0.5 0.50.5

Iacc

?

Iout

???

????

???

X 0.377 0.5

0.482 0.5

0.5 0.5 0.50.5

Iacc

?

Iout

???

????

??

0.719

0.5310.656

0.604

X

0.443

X X 0.665

0.6 0.524

0.5 0.5 0.50.5

Iacc

?

Iout

???

????

?

0.604

X

0.514

X X X

0.537 0.419

0.5 0.5 0.50.5

Iacc

?

Iout

???

????0.604

X

0.514

X X X

0.721 X

0.5 0.526 0.6310.5

Iacc

?

Iout

???

???0.604

X

0.514

Iacc Iout

????

??

X X X

X X

0.5 0.439 0.5790.483

0.604

X

0.392

Iacc Iout

????

?

X X X

X X

0.524 0.512 0.5790.605

0.775

X

X

Iacc Iout

????

X X X

X X

0.454 0.512 0.5790.563

X

X

X

Iacc Iout

???

X X X

X X

X 0.512 0.5790.761

X

X

X

Iacc Iout

??

X X X

X X

X 0.408 0.579X

X

X

X

Iacc Iout

X X X

X X

X X 0.757X

X

X

X


