Bridging Between Image-Based and Geometry-Based Graphics

Feathering / Compositing
Generalized Resampling
Rasterization

Compositing - basic version
This over that w/ as opacity
New Color = \(\alpha F + (1 - \alpha) B \)
\(\begin{array}{c}
\text{foreground} \\
\text{background}
\end{array} \)

Done per-pixel

Other per-pixel operations: \(c = f(c) \)
brighten, color correct, various enhancements, ...

Feathering
What happens if you change part of an image

Hard edge between new and old \(\Rightarrow \) hard edges attract the eye

Hack - make the transition gradual

\(\alpha = 0 \)
\(\alpha = 1 \)

Close tool, retouch brush, ... \(\Rightarrow \) lots of Photoshop tools
Generalized Resampling
Transform image
\[f(x, y) \Rightarrow x', y' \]
change positions, not colors (they get carried along)

This is re-sampling

Scaling is a special case

WARPING
Morphing - warp to align, blend to combine

2 parts of warping
1. how to define \(f : IR \rightarrow IR \)
2. how to re-sample
Why is generalized Re-Sampling hard:
- Pixels map to odd shapes
- Pixels map to different sizes
- Sizes vary - can have stretch and squish in some images

Algorithm 1 - Forward
- For each pixel $P(x, y)$, $x', y' = f(x, y)$
- $\text{dst}(x', y') = \text{src}(x, y)$
- What if x', y' not at an integer?
- What if scale up?
- What if scale down?

Better: Splat
- Splats are the resampling kernel
- Need to accumulate
- Had to get right...

Algorithm 2 - Reverse
- For each pixel $p \in \text{dst}(x', y')$
- $x, y = f^{-1}(x', y') \iff \text{need inverse}$
- $\text{dst}(x', y') = \text{sample}(\text{src}(x, y))$

Good: no gaps
- Point sampling easy
- Better sampling "averages" over region