Reconstruction Theory

1. Make a signal w/ spikes
 LPF to get signal w/o HF
 \[\text{\ldots} \]

2. In practice
 \[\text{\ldots} \]
 \[\text{\ldots} \]
 or \[\text{\ldots} \]

Resampling - only evaluate this at particular places

Upscaling
- by factor of 3
 - pixel replication
 \[\text{\ldots} \]
 - connect dots
 \[\text{\ldots} \]

What about pre-filtering?
- already band-limited by reconstruction?

Interpolating vs. approximating reconstruction
- simple @ sample \(\Rightarrow \) guess value
Reconstruction Kernels

- blocky
- lerp = soft
- cubic spline = windowed sinc

2D Convolutions

Separability

Resampling

image has \(N \) samples want \(M \)

\[
\text{reconstruct} \quad (\text{f} \ast \text{f}) \quad (\text{filter}) \quad \text{sample}
\]

\[
\text{pre-filter}
\]

Do p 23

Work through an example

Edge Cases
Fourier

\[\text{simplification} \]

Intuitions: HF (square wave)

remove HF = soften hard edges

Spike Chain \[\text{LLLL} \rightarrow \text{LLLL} \]

Nyquist Shannon

Sample at \(\frac{1}{2} \) period

- ambiguous

Sample at less than \(\frac{1}{2} \) period

- OK

Goto 012

Show:

reconstruction = practice

pixel replication (box is a bad filter)

pixel