Z-Buffer / Perspective Issues

Remember: Transformed \(Z \) is

simple version \(Z' = n + f - \frac{fn}{z} \)

\[
\begin{align*}
z &= n & z' &= n \\
z &= f & z' &= f \\
\end{align*}
\]

\[
\begin{bmatrix}
1 \\
1 \\
\frac{n+f}{n} \\
\frac{1}{n}
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 \\
1 \\
\frac{n+f}{n-f} \\
\frac{-fn}{n-f}
\end{bmatrix}
\]

\(Z' = \frac{n+f}{n-f} - \frac{fn}{(n-f)z} \)

in book negative since we look down the \(-z\) axis

Field of View vs. Focal Length

\[\theta \]

\(\text{gluPerspective (foey, aspect, near, far)} \)
Z-Buffer Issues

- Precision of Z - historically fixed point
 - can't be $-\infty$ to ∞
 - instead near -> far
 - since we're storing $\alpha \sim 1 - \frac{1}{Z}$
 - not uniformly spaced - want n-f to be small

- order independent?
 - usually
 - if $z = \left \text{last (or first) drawn wins} \right$
 - if z close? rounding error may make =
 - Z-Fighting (flicker as things move)

 transparency

 performance / overdraw
Shading / BRDF
- recap
 - emphasize independent of transport
 complex model \leftrightarrow primitive
 simple model \leftrightarrow fancy global transport

Triangles
 Gouraud
 Phong
 Shaders

OpenGL
 State Model
 glBegin
 Normal
 Vertex

What does glColor do?
Material Model
Lighting Setup

Transforms
 Lighting (must be after transforms)
Drawing