Lecture: Color

Michael Gleicher
December 2008
Notes – not for display
Based on old slides

Return to Color

• Took color for granted (assumed RGB)
• Color
• Quality of Light
 – Has a wavelength – not just an amount
 – Each photon has a wavelength
• Lots of photons = spectra of frequencies
• Can measure the spectrum of light
 – Graph wavelength vs. amount at the measurement
• Different spectra give different “color impressions”

Is RGB good enough?

• Need to understand why
• Sortof – gets close to all colors
 – Need better gamut
• No
 – Inconvenient for talking about color
 – Perceptually non-linear
 – Inconsistencies in what RGB means = no matching
 – Can’t get really vivid colors
 • Purples are particularly bad
 • Can’t be RGV – since violet sensitivity isn’t good
 • Old film had different gamuts
 – Robin hood in technicolor

Colors

• One dominant wavelength = pure color
• No dominant wavelength = “white” (or black/gray)
• What do we perceive?
 – Luminence (amount of light)
 – Color (dominant)
 – Purity of Color
• Complications
 – Differences in perception
 – Artist notions vs. physics vs. psychology

Sensing Color

• Different sensors have different sensitivities
 – Spectrum of sensor
 – Convolution with spectrum gives response
• Ideal photo sensor / real photo sensor
• Cameras – wide range sensor
 – Put filters in front of each CCD element
 – Different parts of spectra (R,G,B)
 – Bayer Mosaic (need to interpolate)
 – Foveon

Color Vision in Animals

• Rods = all the same
 – No color vision
• Cones = have different kinds
 – 1-chromat (can’t see color) -> Dogs
 – bi-chromat (2 different types) -> large mammals
 – Tri-chromat -> humans ***
 • Color blindness = lack of 1 type
 • Rare genetics condition gives a 4th type
 – Some birds have 4 or 5 types of cones
 • Ducks&Pigeons have 5, European starlings have 4
Distinguishing colors

- 1 sensor
 - All colors look the same
 - Combination of colors looks like any color
- Metamers – perceptually indistinguishable
- 2 sensors
 - Non-overlap case (what differences?)
 - Overlap case
 - Middle vs. combination of sides

Faking Colors

- Metamers allow for faking
- Two different overlapping cones respond
 - Some of each color?
 - Some of the in-between color
- Can fake responses using N "point" colors
- 2 cones = 2 frequencies
- Get either cone, or anything in overlap
- Colors outside of overlap can’t be faked

Gamut

- The range of colors that a device can represent
 - Perceptual range
- Device only shows some primaries
- Can only fake some colors

(normal) Human Vision

- 3 types of Cones
 - S (short wavelength) cones
 - M (mid wavelength) cones
 - L (long wavelength) cones
- Sort of RGB, but not quite
- Lots of overlap
- Far fewer S cones than L and M

Different Sensitivities

- Convert to gray requires scaling for sensitivities
 - R = 0.212671 * Y
 - G = 0.715160 * Y
 - B = 0.072169 * Y.

Before we go on…

What RGB means for this class

- We’ll do everything in RGB
- Can think about an image as 3 separate images
 - Intensity for R, for G, for B
- Could store as 3 separate images RRRRR, GGGG
- Could store RGBRGBRGBRGB
 - Generally do the latter
- Analogy with film (3 layers vs. 1 layer)
- 4th color isn’t a color – its alpha, transparency
 - More on that next time
How do we talk about color?

- Want to understand the gamut of displays
- Want to compare displays
- Want to understand limits of RGB

Limits of Color

- Limits on the colors you can see
 - Since some things will be equivalent
- Limits on the colors you can display
- Color matching
 - Try to give the same perceptual experience
- Problems:
 - All displays are going to be different
 - Different displays have different limits

Imaginary Primaries

- Can we excite just one type of cone?
 - No – there is overlap
 - Yes – shine 1 positive and 1 negative wavelength
 - Really need multiple wavelengths to do it
 - No – there’s no such thing as negative light
 - That’s why these are IMAGINARY primaries
- This is a thought experiment for analysis
- Could make LMS primaries (for LMS cones)
- But want to separate color from brightness

How much color can you see

- Assuming trichromatic (not color blind)
- Each type of cone gives a response
 - Range of sensation is 3D
- Imagine a color system with 3 primaries
 - Each exactly corresponds to one type of cone
- Amounts of each light = amounts of response
 - Color space is exactly perceptual

Tristimulus color spaces

- Good news: directly lets us describe all colors we can see (and only those colors)
- Bad news, not physically realizable
 - Because of cone overlap
 - Need negative amounts of light
 - Positive in main hump
 - Negative to cancel out others
- "Imaginary" light sources, good for analysis

Imaginary Primaries

- Can we excite just one type of cone?
 - No – there is overlap
 - Yes – shine 1 positive and 1 negative wavelength
 - Really need multiple wavelengths to do it
 - No – there’s no such thing as negative light
 - That’s why these are IMAGINARY primaries
- This is a thought experiment for analysis
- Could make LMS primaries (for LMS cones)
- But want to separate color from brightness
Perceptual Color Space

- Choose 3 primaries that do span human vision
 - Complete Gamut – can recreate any color
 - Not physically realizable (since has negative energies)
- CIE XYZ
 - Y is “lightness” – intensity w/o color
 - XZ are color directions
 - Look at 2D slices of constant brightness (since we’re just worried about color)
 - \(x = X/(X+Y+Z), y = Y/(X+Y+Z), x+y+z=1 \) (e.g. constant Y)

Determining Gamuts

- Gamut: The range of colors that can be represented or reproduced
- Overall range of colors has weird “tongue” shape (since xyz must be positive)
- Plot the matching coordinates for each primary. eg R, G, B
- Region contained in triangle (3 primaries) is gamut
- Really, it’s a 3D thing, with the color cube distorted and embedded in the XYZ gamut

Gamut Analysis

- Space of colors a device can reproduce depends on primaries
- Device reproduce linear combinations of primaries = space inside of points
- Different devices have different ranges
 - Print with more inks
 - Films with different formulations

Other Color Systems: YCC

- \(Y = \) Luminence
 - Could be R+G+B
 - Better to be .3R + .6G + .1B
- Redundant – so send just 2 colors
 - Or send color differences: \(Y-R, Y-G \)
- Why?
 - Video: luminance is most important, subsample chroma
 - Perceptually more uniform since corrected for sensitivity
 - Start to separate color (direction in 2D)

Subtractive Color

- Printers combine inks that filter light
 - Remove colors
- So far additive
 - Black + red + green = yellow
- Ink is subtractive
 - White – red = cyan, White-green=magenta, white-blue=yellow
- Use “subtractive primaries”
 - Cyan, Magenta, Yellow

Artist – Centric Systems

- Hue = “name” of color
 - Red, orange, yellow, …
 - Color wheel
 - Complements add up to white
- Saturation = purity
- Value = luminence
- HSV (hexcone) vs. HLS (double hexcone)
 - RGB Color Cube viewed from the end
- Cone shape
 - Value is zero, hard to talk about color
- More convenient way to talk about color (for artists)
Where color gets messy…

- Color reproduction is hard
- When you see something on a monitor, does it look like the real thing? (shopping)
 - When you buy a real object?
 - When you print it?
- How do you make sure that what your camera sees is what you see on the screen is what you see when you print?
- How do you interpret RGB?
- Color Management
 - Turns out to be a nightmare since each piece doesn’t know what the other parts of the end-to-end chain are going to do
 - Often assume monitor is cheap, adjusted wrong, …