Panda3D Manual

Panda3D Manual: Main Page

Search

Table of Contents

I. Introduction to Panda
1. Installing Panda
I11. Panda Bootstrap
IV. Introductory Tutorials
A. A Panda "Hello World"
1. Starting Panda3D
2. Loading the Grassy Scenery
3. Controlling the Camera
4. Loading and Animating the Panda Model
5. Using Intervals to move the Panda
V. Programming with Panda
A. The Scene Graph
1. Scene Graph Manipulations
2. Common State Changes
3. Manipulating a Piece of a Model
4. Searching the Scene Graph
5. Render Attributes
6. Instancing
B. Panda Filename Syntax
C. The Configuration File
1. Accessing Config Vars in a Program
D. Actors and Characters
1. Loading Actors and Animations
2. Actor Animations
3. Attaching an Object to a Joint
4. Controlling a Joint Procedurally
E. Camera Control
1. The Default Camera Driver
2. Lenses and Field of View
3. Orthographic Lenses
F. Sound
1. Loading and Playing Sounds and Music
2. Manipulating Sounds
3. DSP Effects
4. 3DAudio
5. Multi-Channel
G. Intervals
1. Lerp Intervals
2. Function Intervals
3. Actor Intervals

file:///E}/manual /index.html (1 of 5)2006/11/21 sUxE 06:00:23

Panda3D Manual

4. Sound Intervals
5. Motion Path and Particle Intervals
6. Sequences and Parallels
7. Projectile Intervals
H. Tasks and Event Handling
1. Tasks
2. Event Handlers
3. Main Loop
I. Fog and Lighting
1. Fog
2. Lighting

3. Example
J. Text Rendering
1. Text Fonts
2. Text Node
3. OnscreenText
4. Embedded Text Properties
K. DirectGUI
1. DirectButton
DirectCheckButton
DirectDialog
DirectEntry
DirectFrame
DirectLabel
DirectOptionMenu
DirectScrolledList
DirectWaitBar
10. DirectSlider
11. DirectScrollBar
12. DirectScrolledFrame
L. Render Effects
1. Compass Effects
2. Billboard Effects
M. Texturing
1. Simple Texturing
Choosing a Texture Size
Texture Wrap Modes
Texture Filter Types
Simple Texture Replacement
Multitexture Introduction
Texture Blend Modes
Texture Order
Texture Combine Modes
10. Texture Transforms
11. Multiple Texture Coordinate Sets
12. Automatic Texture Coordinates
13. Projected Textures
14. Simple Environment Mapping

©ONOOAEWLDN

CONOOA~LN

file:///E/manual/index.html (2 of 5)2006/11/21 oUoE 06:00:23

Panda3D Manual

15. 3-D Textures
16. Cube Maps
17. Environment Mapping with Cube Maps
18. Dynamic Cube Maps
19. Automatic Texture Animation
20. Playing MPG and AVI files
21. Transparency and Blending
N. Pixel and Vertex Shaders
1. Shader Basics
2. List of Possible Shader Inputs
3. Shaders and Coordinate Spaces
4. Known Shader Bugs and Limitations
O. Finite State Machines
1. FSM Introduction
2. Simple FSM Usage
3. FSM with input
4. Advanced FSM Tidbits
P. Advanced operations with Panda's internal structures
1. How Panda3D Stores Vertices and Geometry
a. GeomVertexData
b. GeomVertexFormat
c. GeomPrimitive
d. Geom
e. GeomNode
2. Procedurally Generating 3D Models
a. Defining your own GeomVertexFormat
b. Pre-defined vertex formats
c. Creating and filling a GeomVertexData
d. Creating the GeomPrimitive objects
e. Putting your new geometry in the scene graph
3. Other Vertex and Model Manipulation
a. Reading existing geometry data
b. Modifying existing geometry data
c. More about GeomVertexReader, GeomVertexWriter, and
GeomVertexRewriter
d. Creating New Textures from Scratch
e. Writing 3D Models out to Disk
f. Generating Heightfield Terrain
Q. Panda Rendering Process
1. The Graphics Pipe
The Graphics Engine
The GraphicsOutput class
Graphics Buffers and Windows
Multi-Pass Rendering
Render to Texture
7. How to Control Render Order
R. Panda Utility Functions
S. Particle Effects

2 (1) 5o ()

filel///E/manual/index.html (3 of 5)2006/11/21 sUxE 06:00:23

Panda3D Manual

Using the Particle Panel
Particle Effect Basic Parameters
Particle Factories
Particle Emitters
5. Particle Renderers
T. Collision Detection
1. Collision Solids
Collision Handlers
Collision Entries
Collision Traversers
Collision Bitmasks
Rapidly-Moving Objects
Pusher Example
Event Example
Bitmask Example
10. Clicking on 3D Objects
11. Example for Clicking on 3D Objects
U. Hardware support
1. Keyboard Support
2. Mouse Support
3. Joystick Support
4. VR Helmets and Trackers
5. Jam-O-Drum
V. Math Engine
1. Matrix Representation
W. Physics Engine
1. Enabling physics on a node
2. Applying physics to a node
3. Types of forces
4. Notes and caveats
Motion Paths
Y. Timing
1. The Global Clock
Z. Networking
1. Datagram Protocol
a. Client-Server Connection
b. Transmitting Data
VI. Debugging and Performance Tuning
A. The Python Debugger
B. Running Panda under the CXX Debugger
C. Log Messages
D. Measuring Performance with PStats
E. Graphics Card Performance
VIl. Panda Tools
A. The Scene Graph Browser
1. Enhanced Mouse Navigation
B. The Scene Editor
C. Python Editors

hONR

©ONOGOAW®DN

X

file:///E|/manual/index.html (4 of 5)2006/11/21 oUoE 06:00:23

http://panda3d.org/wiki/index.php?title=Jam-O-Drum&action=edit
http://panda3d.org/wiki/index.php?title=Debugging_and_Performance_Tuning&action=edit

Panda3D Manual

VIII.

XI.
XI1.
XII1I.
XIV.
XV.

1. SPE
D. Pipeline Tips
E. Model Export
1. Converting from 3D Studio Max
Converting from Maya
Converting from Blender
Converting from Softimage
Converting from Milkshape 3D
Converting from GMax
Converting from other Formats
Converting Egg to Bam
9. Parsing and Generating Egg Files
F. Previewing 3D Models in Pview
G. Building a Self-Extracting EXE using packpanda
Building Panda from Source
A. Troubleshooting ppremake on Windows
B. Troubleshooting ppremake on Linux
C. Troubleshooting makepanda on Windows
D. Troubleshooting makepanda on Linux

N N

. Video Lectures

A. Disney Video Lectures

B. Scene Editor Lectures

C. Panda 3D Video Tutorial Series
APl Reference Materials
List of Panda Executables
More Panda Resources
FAQ
Examples Contributed by the Community
Start Guide For The Absolute Beginner

file:///E|/manual/index.html (5 of 5)2006/11/21 aUsE 06:00:23

Panda3D Manual

Panda3D Manual: Introduction to Panda

<<prev top next>=> Search

Panda3D is a 3D engine: a library of subroutines for 3D rendering and game development. The
library is C++ with a set of Python bindings. Game development with Panda3D usually consists
of writing a Python program that controls the Panda3D library.

Panda3D is unusual in that its design emphasis is on supporting a short learning curve and
rapid development. It is ideal whenever deadlines are tight and turnaround time is of the
essence.

For example, in a class called Building Virtual Worlds at the Entertainment Technology Center,
interdisciplinary groups of four students are asked to create virtual worlds in two weeks each.
Screenshots of their projects are visible throughout this site. Panda3D is what makes this rapid
turnaround possible.

Panda3D was developed by Disney for their massively multiplayer online game, Toontown. It
was released as free software in 2002. Panda3D is now developed jointly by Disney and
Carnegie Mellon University's Entertainment Technology Center.

Panda3D's Free Software License

Panda3D has a very simple License, which classifies as a free software license. That means

that with few restrictions, anyone is free to download and use Panda3D at will: for commercial
purposes, for teaching, or most any other use. Also importantly, anyone may view, use, and
alter the source code. This allows for a strong community to work together to improve the
engine.

Who is Working on Panda3D

There are a number of developers in the commercial and open-source community. Currently,
the two most active members of the development community are Disney and the
Entertainment Technology Center at Carnegie Mellon. Because both organizations have specific
goals, Panda3D must necessarily serve both:

. Disney's primary interest in Panda3D is commercial. Panda3D is being used in the
development of a number of Disney games and amusement-park exhibits. To serve
Disney's needs, Panda3D must be a fully-featured engine, capable of all the
performance and quality one expects in any 'A-grade' commercial title.

. The Entertainment Technology Center's primary goal is education. To serve the
Entertainment Technology Center's needs, Panda3D must be well-suited for use in
student projects. Since students have a unique talent for causing crashes, bulletproof
reliability is needed. Since projects only last one semester, the learning curve must be
very short, and prototyping must be very rapid.

As it turns out, the two sets of goals are complementary. The rapid development and high
reliability needed by the Entertainment Technology Center are also highly advantageous in a
game-development studio, since they lower development time and costs. The good visual

filel///E/manual/Introduction_to_Panda.1.html (1 of 2)2006/11/21 aUcE 06:00:25

http://panda3d.org/wiki/index.php?title=License&action=edit

Panda3D Manual

quality and full feature set needed by Disney to make a professional-quality game also turn
out to be useful in a university setting: with a broad range of features at their disposal,
students can explore their creativity more fully than they could with a more limited engine.

<<prev top next==>

| -

file:///E|/manual/Introduction_to_Panda.1.html (2 of 2)2006/11/21 aUcE 06:00:25

Panda3D Manual

Panda3D Manual: Installing Panda

<<prev top next>> Search

Panda3D comes as one file that includes everything that is needed to create and run Panda3D
applications. The tutorial, examples, models, and animations can be found in subdirectories
after the installation of Panda3D.

For panda programming practice, many Creative Commons Licensed egg files of models,
animations, and materials, all in many .zip files are available in the 3D Model Archive: 3D

Models

The Installation Process - Windows

If you have already installed panda previously, you should uninstall it before installing a new
version.

Your next step is to download the "Windows Installer” from the download page. Run the
installer, and follow the prompts. Next, proceed to the "Testing the Installation" section below.

The Installation Process - Linux

The easiest way to install panda is to use the RPM or DEB packages. This is only possible if
your version of Linux is one of the provided versions of Linux. If not, you will need to compile
from source. If there is an installer available, download and install the RPM or DEB appropriate
to your version of Linux.

It has been discovered that some of the DEB and RPM files work on versions other than the
one for which they were intended. For example, the package for Debian Sarge has also been
found to work with Debian Sid. If you have a slight variant of one of the supplied operating
systems, it may be easier to try the package before you bother with compiling panda yourself.

RPM files may be installed with the following command:

rpm-i fil ename.
rpm

DEB packages may be installed with this command:

dpkg -i fil enane.
deb

Where filename is the name of the file you downloaded. You need to be root to do either
installation.

file///E/manual/Installing_Panda.1.html (1 of 5)2006/11/21 aUoE 06:00:27

http://panda3d.org/artcats.php
http://panda3d.org/artcats.php
http://panda3d.org/download.php

Panda3D Manual

Testing the Installation

Panda comes with a program called "Greeting Card" that can be used to verify that panda is
working correctly.

If you are using Windows, the installer will run the greeting card for you. If you wish, you can
run it again from the start menu.

If you are using Unix, you need to do it manually. Change directory to sanpl es/ Greeti ngCard
and run ppyt hon Greeti ngCard. py. The manual procedure works under Windows as well.

Troubleshooting
If the test programs don't run, then usually, you need to update your video drivers.

If you are using Linux, your one useful step should be to install a small game called "Tux
Racer" - this game is included with most versions of Linux. This is a very simple OpenGL
game, not written in Panda. It is useful because it will tell you if OpenGL is working correctly.
If Tux Racer works (and runs fast), then Panda should work.

If you are using Windows, you have a choice between OpenGL and DirectX. Panda3D, by
default, is configured to use OpenGL. If you have a video card that doesn't support OpenGL
properly, you can try DirectX instead, by editing the panda configuration file.

If neither of these works, please report the problem to the Panda3D maintainers, using the
Panda3D forums.

Troubleshooting with ""Path Error Msg" for Windows Users

Sometimes, even after running the Panda installer, you will be unable to use the Panda3d
python interpreter PPython.exe from the command line. You would receive message like
"Ppython is not a recognised internal command" when typing "ppython yourPanda3Dscript.py"

Ok, on Window there is what is called the PATH. this is variable that hold predefined path for
some exe you want to be able to use from any folder without having to type the whole path.

For example if you installed Panda3D in C:\Panda3D then , since ppython (the panda3D
executable) is located in C:\Panda3D\bin, putting C:\Panda3d\bin in the path will allow you to
use" ppython myPanda3dScript.py from any folder of your PC without having to type the full
path ie "C:\Panda3d\bin\ppython.exe " myPanda3dScript.py.

How to put the path?

1)You have to make a right click on Workspace icon on your desktop and select Properties.
Then you choose the tab "Advanced". Then you click the Button "Environnment Settings".
(second button in the pane on Win2K).

file///E/manual/Installing_Panda.1.html (2 of 5)2006/11/21 aUoE 06:00:27

http://www.panda3d.org/forum

Panda3D Manual

System Properties 2 x|
Syztern Restore I Atormatic Updates Rernate |
General I Cornputer Mame I Hardware Advanced
You mugt be logged on az an Admiviztrator to rake most of these changes.
— Performance
Vizual effectz, proceszor scheduling, memon uzage, and wirtual memaorny
Settingz
— Uszer Profiles
Desktop settings related to your logon
Settingz
— Startup and Recowvery
Syztern gtartup, systern failure, and debuaging infarmation
Settingz
E nvironment Y anables Errar Reporting
aFk. Cancel Spply

2)Then if you are "Admin" on your PC , select the PATH line in the list under System
Variables , else select the PATH line in the list under "MyUserName" Variables. Modification to
perform is the same whatever PATH line you selected.

file///E/manual/Installing_Panda.1.html (3 of 5)2006/11/21 aUoE 06:00:27

Panda3D Manual

System Properties d e

Syztem FHestore I Autornatic pdates I Hemote |

Environment Yariables el

—User wariables for Dwight Raab

YWariable Walue -

iah A xL i hgma,

INCLUDE iZ:\Program Files\Microsoft Visual Studio ...

PATH iZ:\Program Files\S5H Communications 5...

TEMP Z:\Documents and Settings)Dwight Raa... ll
Mlew Edit | Delete |

—Swskem variables

Yariable Yalue -
MUMEER_OF_P... 1
05 Windows_MT

CWINDOW S sysbem 32 O VWINDOWS:
PATHEXT JCOM; EXE; BAT;. CMD; VES; WEE; . I5;. ...
PROCESSOR _A,., =86 l|

e Edit | Delete |

I
LIE N\ Program Files\Microsoft Visual Studio ... i
1

. oK, I Zancel =

3)Now double click the PATH (or Path) line. a small window opens with Variable Name=Path
and Variable Value = some folder paths separated by a ";". In there , just append "C:\panda3D
\bin;" at the end of the line. NB: this assume you installed Panda3D in C:\Panda3D else just
take the real path to your Panda3D\bin Folder.

file///E/manual/Installing_Panda.1.html (4 of 5)2006/11/21 aUoE 06:00:27

Panda3D Manual

System Properties d e

Syztem FHestore I Autornatic pdates I Hemote |

Environment Yariables ed
NEdit System variable 2]]|
Yariable nare: Path
Yariable value: ickTimelQTSyskem) C:\Panda3D-1.0.4\bin|
I Zancel |
—Swskem variables
YWariable Walue -
MUMBER_OF _P... 1
05 Windows_MT
Path W INDOWY S sy sbem 32 2 W IMDICWS)
FPATHEXT JZOM;LERE; L BAT; CMD; VMBS, MEBE; IS5,
PROCESSOR _A,., =86 l|
Mlew Edit | Delete |
. oK, | Zancel =

4) Validate by OK to close the small window then OK to close the Properties Panel.

5) Log off and Log on from your session (or reboot the PC), that's it!!!

Writing your First Program

Finally, it will be time to try writing your own program using the Panda3D library. The
Introductory Tutorials section will guide you through the process.

<<prev top next>> Search

file:///E|/manual/Installing_Panda.1.html (5 of 5)2006/11/21 sUsE 06:00:27

Panda3D Manual

Panda3D Manual: Panda Bootstrap

<<prev top next>> Search

Though Panda3D is easy enough, it needs some getting used to before you can understand the
manuals and examples.

Here are a few links, which should make understanding Panda3D easier:

. http://www.python.org/pycon/dc2004/papers/29/ This link gives you a very broad
overview of panda, which is helpful to more clearly understand the Introductory
examples.

. http://www.etc.cmu.edu/bvw/scripting/index.html (Note, currently not functional with
Panda3D-1.1.0)

Read this example once you are done with the introduction example following this
section. | found referring to the manual helpful and informative while working on this
example.

. The samples that come with the installation are also very informative and well
commented. They should be really helpful for people new to Panda3D.

. Have the Panda3D and BVW quick references handy while you are coding.

. http://www.gamasutra.com/features/20040128/goslin_pfv.htm A postmortem of

ToonTown built with Panda3D.

Having the API reference handy while reading the manual is also advisable, as the manual is
lacking explanations at times.

<<prev top next=> N

filel///E|/manual/Panda_Bootstrap.1.htm| 2006/11/21 aUsE 06:00:27

http://www.python.org/pycon/dc2004/papers/29/
http://www.etc.cmu.edu/bvw/scripting/index.html
http://www.gamasutra.com/features/20040128/goslin_pfv.htm

Panda3D Manual

Panda3D Manual: Introductory Tutorials

<<prev top next>> Search

This section of the manual includes some basic tutorials that will teach you the fundamentals
of using the Panda3D library.

Since all of these tutorials require you to use the Python scripting language, it would be a good
idea to familiarize yourself with Python before continuing.

Python is an interpreted, interactive, object-oriented language comparable to Java or Perl. It is
available on several platforms, including UNIX, Windows, OS/2, and Mac. Python also has a
large number of modules outside of the standard Python installation, and additional modules
can be created in C or C++. Because it is late-binding and requires minimal memory
management, it is an ideal language for rapid prototyping.

Panda 3D comes with a version of python that has all of the panda libraries hooked up to it.
To use Panda's python in windows:

1. Make sure the \bin directory inside your panda installation is on your PATH environment
variable.

2. Go into a command prompt and type: ppython <your program=

There are a lot of other resources available for programming in Python. Here is a list of some
of the best:

Links from the official python website:

. Official Website - http://www.python.org

. Current Python Documentation

. Python Documentation This is the version still being used in Panda3D.
. Python Tutorial. Written by Guido Van Rossum, the author of Python.

Here are some other good links for learning python:

. Programming in Python
o Byte of Python

o Python for Non-Programmers
o Dive Into Python
o Python 101

. Miscellaneous python documentation
o Python Examples and Sample Code

o The Standard Python Library
o Python Book List

file:///E}/manual/Introductory_Tutorials.1.html (1 of 2)2006/11/21 aUxE 06:00:28

http://www.python.org/
http://docs.python.org/
http://www.python.org/doc
http://docs.python.org/tut/tut.html
http://swaroopch.info/text/Byte_of_Python:Main_Page
http://honors.montana.edu/~jjc/easytut/easytut/easytut.html
http://diveintopython.org/
http://www.rexx.com/~dkuhlman/python_101/python_101.html
http://python.org/topics/learn/examples.html
http://www.effbot.org/zone/librarybook-index.htm
http://www.python.org/topics/learn/books.html

Panda3D Manual

<<prev top next=>>

| -

file:///E}/manual/Introductory _Tutorials.1.html (2 of 2)2006/11/21 aUsE 06:00:28

Panda3D Manual

Panda3D Manual: A Panda "Hello World"

<<prev top next>> Search

This tutorial is called "A Panda Hello World." It is a typical example of a simple Panda3D
program. Walking through this tutorial will enable you to obtain some limited familiarity with
the Panda3D API, without having to learn the entire thing.

The program that we are going to create will load up a small scene containing some grass and
a panda. The panda will be animated to walk back and forth over the grass.

<<prev top next>> Search

file///E/manual/A_Panda_%2522Hello_World%62522.1.htm| 2006/11/21 aUsE 06:00:28

Panda3D Manual

Panda3D Manual: Starting Panda3D

<<prev top next>> Search

To start Panda3D, create a text file and save it with the .py extension. PYPE and IDLE are
Python-specific text-editors, but any text editor will work. Enter the following text into your
Python file:

i mport direct.directbase.
DirectStart
run()

DirectStart loads most of the other Panda3D modules, and causes the 3D window to appear.
The run subroutine contains the Panda3D main loop. It renders a frame, handles the
background tasks, and then repeats. It does not normally return, so it only needs to be called
once and must be the last line in your script. In this particular example, there will be nothing
to render, so you should expect a window containing an empty grey area.

To run your program, type this at the command prompt:

ppyt hon fil enane.
py

If Panda3D has been installed properly, a gray window titled Panda appear. There is nothing
we can do with this window, but that will change shortly.

<<prev top next=>> Search

file:///E|/manual/Starting_Panda3D.1.html2006/11/21 aUxE 06:00:29

Panda3D Manual

Panda3D Manual: Loading the Grassy Scenery

<<prev top next=>>=> Search

With Panda3D running properly, it is now possible to load some grassy scenery. Update your
code as follows:

inmport direct.directbase.DirectStart

#Load the first environnment nodel
envi ron = | oader. | oadModel (" nodel s/
envi ronnent ")

envi ron. r epar ent To(r ender)

envi ron. set Scal e(0. 25, 0. 25, 0. 25)
envi ron. set Pos(-8, 42, 0)

#Run the tutori al

run()

The command | oader . | oadMbdel () loads the specified file, in this case the environment.egg

file in the models folder. The return value is a ‘NodePath’, effectively a pointer to the model.
Note that Panda Filename Syntax uses the forward-slash, even under Windows.

Panda3D contains a data structure called the scene graph. The scene graph is a tree
containing all objects that need to be rendered. At the root of the tree is an object named
render . Nothing is rendered until it is first installed into the scene graph.

To install the grassy scenery model into the scene graph, we use the method r epar ent To. This

sets the parent of the model, thereby giving it a place in the scene graph. Doing so makes the
model visible.

Finally, we adjust the position and scale of the model. In this particular case, the environment
model is a little too large and somewhat offset for our purposes. The set Scal e and

set Posi ti on rescale and recenter the model.

Go ahead and run the program. You should see this:

file:///E|/manual/Loading_the Grassy Scenery.l.html (1 of 2)2006/11/21 sUsE 06:00:30

Panda3D Manual

The rock and tree appear to be hovering. The camera is slightly below ground, and backface
culling is making the ground invisible to us. If we reposition the camera, the terrain will look
better.

<<prev top next>>=>

filel///E/manual/Loading_the Grassy Scenery.1.html (2 of 2)2006/11/21 aUnE 06:00:30

Panda3D Manual

Panda3D Manual: Controlling the Camera

<<prev top next>> Search

By default, Panda3D runs a task that enables you to move the camera using the mouse. The
keys to do this are:

. Left Button: pan left and right

. Right Button: move forwards and backwards

. Middle Button: rotate around the origin of the application

. Right and Middle Buttons: roll the point of view around the view axis

Go ahead and try this camera control system. The problem with this camera control system is
that it is sometimes awkward, it is not always easy to get the camera pointed in the direction
we want.

Instead, we are going to write a task that controls the camera's position explicitly. A task is
nothing but a subroutine that gets called every frame. Update your code as follows:

i mport direct.directbase.DirectStart
fromdirect.task i nport Task
fromdirect.actor inport Actor

i mport math

#Load the first environment nodel

envi ron = | oader. | oadModel (" nodel s/ envi ronnment ")
envi ron. r epar ent To(r ender)

envi ron. set Scal e(0. 25, 0. 25, 0. 25)

envi ron. set Pos(- 8, 42, 0)

#Task to nove the canera
def Spi nCaneraTask(task):

angl edegrees = task.tine * 6.0

angl er adi ans = angl edegrees * (math.pi / 180.0)

base. canmer a. set Pos(20* mat h. si n(angl er adi ans), - 20. O* mat h. cos
(angl er adi ans), 3)

base. caner a. set Hpr (angl edegrees, 0, 0)

return Task.cont

t askMgr . add(Spi nCaner aTask, " Spi nCaner aTask")

run()

The function t askMyr . add tells the panda task manager that it should call the subroutine

Spi nCaner aTask every frame. This is a subroutine that we have written to control the camera.
As long as the subroutine Spi nCaner aTask returns the constant Task. cont , the task manager
will continue to call it every frame.

The subroutine calculates the desired position of the camera based on how much time has

filel///E|/manual/Controlling_the_Camera.1.html (1 of 2)2006/11/21 aUcE 06:00:31

Panda3D Manual

elapsed. The camera rotates 6 degrees every second. The first two lines compute the desired
orientation of the camera, first in degrees, then in radians. The set Pos call actually sets the

position of the camera. The set Hpr call actually sets the orientation.

The camera should no longer be underground, and furthermore, the camera should now be
rotating about the clearing:

e [Searoh

filel///E|/manual/Controlling_the_Camera.1.html (2 of 2)2006/11/21 aUcE 06:00:31

Panda3D Manual

Panda3D Manual: Loading and Animating the Panda Model

<<prev top next>> Search

Now that the scenery is in place, we will now load an actor. Update your code to look like this:

inmport direct.directbase.DirectStart
fromdirect.task inmport Task
fromdirect.actor inport Actor

i nport math

#Load the first environnment nodel

envi ron = | oader .| oadModel (" nmodel s/ envi ronnment ")
envi ron. repar ent To(r ender)

envi ron. set Scal e(0. 25, 0. 25, 0. 25)

envi ron. set Pos(-8, 42, 0)

#Task to nove the canera
def Spi nCaner aTask(task):

angl edegrees = task.tinme * 6.0

angl eradi ans = angl edegrees * (math.pi / 180.0)

base. caner a. set Pos(20* mat h. si n(angl er adi ans) , - 20. O* mat h. cos
(angl er adi ans), 3)

base. caner a. set Hpr (angl edegrees, 0, 0)

return Task. cont

taskMgr . add(Spi nCaner aTask, " Spi nCaneraTask")

#Load the panda actor, and |loop its anination

pandaAct or = Actor. Act or (" nodel s/ panda- nodel ", {"wal k": " nodel s/ panda- wal k4"})
pandaAct or . set Scal e(0. 005, 0. 005, 0. 005)

pandaAct or . r epar ent To(r ender)

pandaAct or. | oop("wal k")

run()

The Act or class is for animated models. Note that we use | oadMbdel for static models, and
Act or only when they are animated. The two constructor arguments for the Act or class are

the name of the file containing the model, and a Python dictionary containing the names of the
files containing the animations.

The command | oop("wal k") causes the walk animation to begin looping. The result is a
panda walking in place, as if on a treadmill:

file:///E/manual/Loading_and_Animating_the Panda_Model.1.html (1 of 2)2006/11/21 aUxE 06:00:33

Panda3D Manual

file///E/manual/Loading_and_Animating_the_Panda_Model.1.ntml (2 of 2)2006/11/21 aUsE 06:00:33

Panda3D Manual

Panda3D Manual: Using Intervals to move the Panda

<<prev top next>> Search

The next step is to cause the panda to actually move back and forth. Add the following lines of
code:

inmport direct.directbase.DirectStart
from pandac. PandaMbdul es i nport *

fromdirect.task inport Task
fromdirect.actor inport Actor
fromdirect.interval.lnterval G obal inport *
i nport math

#Load the first environnment nodel

envi ron = | oader .| oadModel (" nodel s/ envi ronnment ")
envi ron. r epar ent To(r ender)

envi ron. set Scal e(0. 25, 0. 25, 0. 25)

envi ron. set Pos(-8, 42, 0)

#Task to nove the canera
def Spi nCaner aTask(t ask):
angl edegrees = task.tine * 6.0
angl eradi ans = angl edegrees * (nmath.pi / 180.0)
base. caner a. set Pos(20* mat h. si n(angl er adi ans), - 20. 0* mat h. cos(angl er adi ans) , 3)
base. caner a. set Hpr (angl edegrees, 0, 0)
return Task.cont

t askMgr . add(Spi nCaner aTask, " Spi nCaner aTask")

#Load the panda actor, and loop its animation

pandaAct or = Actor. Act or (" nodel s/ panda- nmodel ", {"wal k": " nodel s/ panda- wal k4"})
pandaAct or . set Scal e(0. 005, 0. 005, 0. 005)

pandaAct or . r epar ent To(r ender)

pandaAct or. | oop("wal k")

#Create the four lerp intervals needed to wal k back and forth
pandaPosl nt er val 1= pandaAct or . posl nterval (13, Poi nt 3(0, - 10, 0), startPos=Point3
éghégbgl?nterval2= pandaAct or . posl nt erval (13, Poi nt 3(0, 10, 0), startPos=Poi nt3
égha;ab??atervallz pandaAct or . hpr I nterval (3, Poi nt 3(180, 0,0), startHpr=Point3
éghgégézlntervaI2= pandaAct or . hpr I nterval (3, Poi nt3(0,0,0), startHpr=Point3
(180,0,0))

#Create and play the sequence that coordinates the intervals
pandaPace = Sequence(pandaPosl nterval 1, pandaHpr| nterval 1

pandaPosl nt erval 2, pandaHpr | nterval 2, nane = "pandaPace")
pandaPace. | oop()

run()

file:///Ej/manual/Using_Intervals to_move_the Panda.1.html (1 of 2)2006/11/21 aUcE 06:00:33

Panda3D Manual

Intervals are tasks that change a property from one value to another over a specified period of
time. Starting an interval effectively starts a background process that modifies the property
over the specified period of time. For example, consider the pandaPosl nt er val 1 above. When
that interval is started, it will gradually adjust the position of the panda from (0,10,0) to (O,-
10,0) over a period of 13 seconds. Similarly, when the pandaHpr | nt erval 1 is started, the

orientation of the panda will rotate 180 degrees over a period of 3 seconds.

Sequences are tasks that execute one interval after another. The pandaPace sequence above

causes the panda to move in a straight line, then turn, then in the opposite straight line, then
to turn again. The code pandaPace. | oop() causes the Sequence to be started in looping
mode.

The result of all this is to cause the panda to pace back and forth from one tree to the other.

<<prev top next>>

[

file:///Ej/manual/Using_Intervals to_move_the Panda.1.html (2 of 2)2006/11/21 aUcE 06:00:33

Panda3D Manual

Panda3D Manual: Programming with Panda

<<prev top next>> Search

The programming with panda section of the manual is designed to teach the basic concepts
associated with using panda.

<<prev top next>> Search

file:///E|/manual/Programming_with_Panda.1.html2006/11/21 aUcE 06:00:34

Panda3D Manual

Panda3D Manual: The Scene Graph

<<prev top next>> Search

The Scene Graph: a Tree of Nodes

Many simple 3D engines maintain a list of 3D models to render every frame. In these simple
engines, one must allocate a 3D model (or load it from disk), and then insert it into the list of
models to render. The model is not "visible" to the renderer until it is inserted into the list.

Panda3D is slightly more sophisticated. Instead of maintaining a list of objects to render, it
maintains a tree of objects to render. An object is not visible to the renderer until it is inserted
into the tree.

The tree consists of objects of class PandaNode. This is actually a superclass for a number of
other classes: Model Node, GeonNode, Li ght Node, and so forth. Throughout this manual, it is

common for us to refer to objects of these classes as simply nodes. The root of the tree is a
node called r ender . (Note: there may be additional roots for specialized purposes.)

Panda3D's "tree of things to render"” is named the scene graph.

What you Need to Know about the Hierarchical Scene Graph

Here are the most important things you need to know about the hierarchical arrangement of
the scene graph:

1. You control where objects go in the tree. When you insert an object into the tree, you
specify where to insert it. You can move branches of the tree around. You can make
the tree as deep or as shallow as you like.

2. Positions of objects are specified relative to their parent in the tree. For example, if you
have a 3D model of a hat, you might want to specify that it always stays five units
above a 3D model of a certain person's head. Insert the hat as a child of the head, and
set the position of the hat to (0,0,5).

3. When models are arranged in a tree, any rendering attributes you assign to a node will
propagate to its children. For example, if you specify that a given node should be
rendered with depth fog, then its children will also be rendered with depth fog, unless
you explicitly override at the child level.

4. Panda3D generates bounding boxes for each node in the tree. A good organizational
hierarchy can speed frustum and occlusion culling. If the bounding box of an entire
branch is outside the frustum, there is no need to examine the children.

Beginners usually choose to make their tree completely flat--everything is inserted
immediately beneath the root. This is actually a very good initial design. Eventually, you will
find a reason to want to add a little more depth to the hierarchy. But it is wise not to get
complicated until you have a clear, specific reason to do so.

file:///E)/manual/The_Scene Graph.1.html (1 of 3)2006/11/21 aUcE 06:00:34

Panda3D Manual

NodePaths

There is a helper class called NodePat h which is a very small object containing a pointer to a

node, plus some administrative information. For now, you can ignore the administrative
information; it will be explained in a later section of the manual. It is the intent of the panda
designers that you should think of a NodePath as a handle to a node. Any function that creates
a node returns a NodePat h that refers to the newly-created node.

A NodePath isn't exactly a pointer to a node; it's a "handle" to a node. Conceptually, this is
almost a distinction without a difference. However, there are certain API functions that expect
you to pass in a NodePath, and there are other API functions that expect you to pass in a node
pointer. Because of this, although there is little conceptual difference between them, you still
need to know that both exist.

You can convert a NodePath into a "regular" pointer at any time by calling nodePat h. node() .
However, there is no unambiguous way to convert back. That's important: sometimes you
need a NodePath, sometimes you need a node pointer. Because of this, it is recommended
that you store NodePaths, not node pointers. When you pass parameters, you should probably
pass NodePaths, not node pointers. The callee can always convert the NodePath to a node
pointer if it needs to.

NodePath-Methods and Node-Methods

There are many methods that you can invoke on nodepaths, which are appropriate for nodes
of any type. Specialized node types, like LODNodes and Cameras (for instance), provide
additional methods that are available only for nodes of that type, which you must invoke on
the node itself. Here are some assorted examples:

NODEPATH METHODS:
nyNodePat h. set Pos(x, y, z)
nyNodePat h. set Col or (banana)

LODNODE METHODS:
nmyNodePat h. node() . addSwi t ch(1000, 100)
nyNodePat h. node() . set Cent er (Poi nt (0, 5, 0))

CAVERA NODE METHODS:
nyNodePat h. node() . set Lens(Per specti veLens

()
nyNodePat h. node() . get Caner aMask()

Always remember: when you invoke a method of NodePat h, you are actually performing an
operation on the node to which it points.

In the example above, we call node-methods by first converting the nodepath into a node, and
then immediately calling the node-method. This is the recommended style.

file///E/manual/The_Scene Graph.1.html (2 of 3)2006/11/21 sUaE 06:00:34

Panda3D Manual

. |
<<prev top next>> - |

| -

file:///EJ/manual/The_Scene Graph.1.html (3 of 3)2006/11/21 aUsE 06:00:34

Panda3D Manual

Panda3D Manual: Scene Graph Manipulations

<<prev top next>> Search

The default scene graphs

By default, there are two different scene graphs created automatically when you start up
Panda3D. These graphs are referred to by their top nodes: render and render2d.

You use render most often; this is the top of the ordinary 3-D scene. In order to put an object
in the world, you will need to parent it to render (or to some node that is in turn parented to
render).

You will use render2d to render 2-D GUI elements, such as text or buttons, that you want to
display onscreen; for instance, a heads-up display. Anything parented to render2d will be
rendered on top of the 3-D scene, as if it were painted on the screen glass.

The coordinate system of render2d is set up to match that of the mouse inputs: the lower-left
corner of the screen is (-1, 0, -1), and the upper-right corner is (1, O, 1). Since this is a
square coordinate system, but the screen is usually non-square, objects parented directly to
render2d may appear squashed. For this reason, Panda3D also defines a child of render2d,
called aspect2d, which has a scale applied to it to correct the non-square aspect ratio of
render2d. Most often, you will parent GUI elements to aspect2d rather than render2d.

Finally, you may see references to one other top-level node called hidden. This is simply an
ordinary node that has no rendering properties set up for it, so that things parented to hidden
will not be rendered. Older Panda3D code needed to use hidden to remove a node from the
render scene graph. However, this is no longer necessary, and its use is not recommended for
new programs; the best way to remove a node from render is to call nodePath.detachNode().

Loading models

You can load up a model with a filename path, in the Panda Filename Syntax, to the model's

egg or bam file. In many examples, the filename extension is omitted; in this case, Panda will
look for a file with either the .egg or .bam extension.

myNodePat h = | oader. | oadModel (' ny/ pat h/ t o/ nodel s/ nmyModel .
egg’)

If you want to load multiple copies of a particular model, you can avoid re-reading the disk
each time:

filel///E|/manual/Scene_Graph_Manipulations.1.html (1 of 3)2006/11/21 aUcE 06:00:35

Panda3D Manual

teapot1l = | oader. | oadMbdel Copy(' t eapot .
egyg’)
teapot 2 = | oader. | oadMbdel Copy(' t eapot .
egyg’)
teapot 3 = | oader. | oadMbdel Copy(' t eapot .
egyg’)

The first time you call loadModelCopy() for a particular model, that model is read and saved in
a table in memory; on each subsequent call, the model is simply copied from the table,
instead of reading the file.

The above calls are appropriate for loading static models; for animated models, see Loading
Actors and Animations.

Reparenting nodes and models

One of the most fundamental scene graph manipulations is changing a node's parent. You
need to do this at least once after you load a model, to put it under render for viewing:

nyModel . r epar ent To
(render)

And to remove it again:

nyModel . det achNode
(0

As you become more comfortable with scene graph operations, you may find yourself taking

more and more advantage of a deeply nested scene graph, and you may start to parent your
models to other nodes than just render. Sometimes it is convenient to create an empty node
for this purpose, for instance, to group several models together:

dummyNode = render. attachNewNode(" Dumy Node
Nane")

nmyModel . r epar ent To(duntry Node)

myQ her Model . r epar ent To(dunmmyNode)

Since a node inherits its position information from its parent node, when you reparent a node
in the scene graph you might inadvertently change its position in the world. If you need to
avoid this, you can use a special variant on reparentTo():

filel///E|/manual/Scene_Graph_Manipulations.1.html (2 of 3)2006/11/21 sUcE 06:00:35

Panda3D Manual

nmyModel . wr t Repar ent To
(newPar ent)

The "wrt" prefix stands for "with respect to". This special method works like reparentTo(),
except that it automatically recomputes the local transform on myModel to compensate for the
change in transform under the new parent, so that the node ends up in the same position
relative to the world.

Note that the computation required to perform wrtReparentTo() is a floating-point matrix
computation and is therefore inherently imprecise. This means that if you use wrtReparentTo()
repeatedly, thousands of times on the same node, it may eventually accumulate enough
numerical inaccuracies to introduce a slight scale on the object (for instance, a scale of 1, 1,
0.99999); if left unchecked, this scale could eventually become noticeable.

Beginners tend to overuse this method; you should not use wrtReparentTo() unless there is a
real reason to use it.

<<prev top next>>

=

file:///E|/manual/Scene_Graph_Manipulations.1.ntml (3 of 3)2006/11/21 aUxE 06:00:35

Panda3D Manual

Panda3D Manual: Common State Changes

<<prev top next=>>=> Search

Two of the most common changes are position and orientation.

nyNodePat h. set Pos(X, Y,
2)
myNodePat h. set Hpr (H, P,
R)

By default in Panda3D, the X axis points to the right, the Y axis is forward, and Z is up. An
object's rotation is usually described using Euler angles called Heading, Pitch, and Roll
(sometimes called Yaw, Pitch, and Roll in other packages)--these specify angle rotations in
degrees. (If you are more comfortable using quaternions, the set Quat () method can be used

to specify the rotation as a quaternion.)
You can change an object's size, either uniformly, or with a different value of x, y, and z.

nmyNodePat h. set Scal e(uni f or m
nmyNodePat h. set Scal e(SX, SY,
SZ)

Sometimes it is convenient to adjust a single component individually:

myNodePat h. set X(X)
myNodePat h. set Y(Y)
nyNodePat h. set Z(2)
myNodePat h. set H(H)
nyNodePat h. set P(P)
nyNodePat h. set R(R)
myNodePat h. set Sx
(SX)

myNodePat h. set Sy
(SY)

myNodePat h. set Sz
(S2)

Or all at the same time:

nmyNodePat h. set PosHpr Scal e(X, Y, Z, H, P, R, SX, SY,
SZ)

file:///E|/manual/Common_State Changes.1.html (1 of 4)2006/11/21 sUsE 06:00:36

Panda3D Manual

You can also query the current transform information for any of the above:

nyNodePat h. get Pos

()
nmyNodePat h. get X()

nmyNodePat h. get Y()
nmyNodePat h. get Z()

Also, by using the functions set Tag() and get Tag() you can store your own information in
key value pairs. For example:

nyNodePat h. set Tag(' Key', 'Val ue')
obj ect =nyNodePat h. get Tag(' Key') #returns
' Val ue'

As a more advanced feature, you may also set or query the position (or any of the above
transform properties) of a particular NodePath with respect to another one. To do this, specify
the relative NodePath as the first parameter:

nmyNodePat h. set Pos(ot her NodePat h, X, Y,
Z)
nmyNodePat h. get Pos(ot her NodePat h)

Putting a NodePath as the first parameter to any of the transform setters or getters makes it a
relative operation. The above set Pos() means to set myNodePath to the position (X, Y, 2Z2),

relative to otherNodePath--that is, the position myNodePath would be in if it were a child of
otherNodePath and its position were set to (X, Y, Z). The get Pos() call returns the position

myNodePath would have if it were a child of otherNodePath.

It also important to note that you can use the NodePath in its own relative sets and gets. This
maybe helpful in situations where you are concerned with distances. For example:

if you want to nove nyNodePath 3 units foward in the x
nmyNodePat h. set Pos(myNodePat h, 3, 0, 0)

These relative sets and gets are a very powerful feature of Panda's scene graph, but they can
also be confusing; don't worry if it doesn't make sense right now.

The | ookAt () method rotates an model to face another object; that is, it rotates the first
object so that its +Y axis points toward the second object. Note that a particular model might

file:///E|/manual/Common_State_Changes.1.html (2 of 4)2006/11/21 sUaE 06:00:36

Panda3D Manual

or might not have been generated with the +Y axis forward, so this doesn't necessarily make a
model "look at" the given object.

nmyNodePat h. | ook At
(ot her Qoj ect)

Color changes are another common alteration. Values for color are floating point numbers
from O to 1, O being black, 1 being white.

myNodePat h. set Col or (R, G B,
A

If models have textures, they may not be distinguishable or even visible at certain color
settings. Setting the color to white may restore the visibility of the texture, but it is better to
simply clear the current color settings.

nmyNodePat h. cl ear Col or
()

Note the fourth component of color is alpha. This is usually used to indicate transparency, and
it is usually 1.0 to indicate the object is not transparent. If you set the alpha to a value
between 0 and 1, you can fade the object to invisible. However, in order for the alpha value to
be respected, you must first enable transparency:

myNodePat h. set Tr anspar ency(Transpar encyAttri b.
MAl pha)

The parameter to setTransparency() is usually Tr anspar encyAttri b. MAl pha, which is ordinary
transparency. You can also explicitly turn transparency off with Tr anspar encyAttri b. MNone.
(Other transparency modes are possible, but that is a more advanced topic. Some older code
may pass just O or 1 for this parameter, but it is better to name the mode.) If you don't
explicitly enable transparency first, the alpha component of color may be ignored. Be sure you
don't enable transparency unnecessarily, since it does enable a more expensive rendering
mode.

Setting an object's color completely replaces any color on the vertices. However, if you have
created a model with per-vertex color, you might prefer to modulate the object's color without
losing the per-vertex color. For this there is the set Col or Scal e() variant, which multiples the

indicated color values by the object's existing color:

file:///E|/manual/Common_State_Changes.1.html (3 of 4)2006/11/21 sUaE 06:00:36

Panda3D Manual

nyNodePat h. set Col or Scal e(R, G B,
A

One use of setColorScale() is to apply it at the top of the scene graph (e.g. render) to darken
the entire scene uniformly, for instance to implement a fade-to-black effect.

Since alpha is so important, there is also a method for scaling it without affecting the other
color components:

nmyNodePat h. set Al phaScal e
(SA)

To temporarily prevent an object from being drawn, use hi de() and show() :

nmyNodePat h. hi de

0
nmyNodePat h. show

0

Any object that is parented to the object that is hidden will also be hidden.

<<prev top next>>

file:///E|/manual/Common_State Changes.1.html (4 of 4)2006/11/21 sUsE 06:00:36

Panda3D Manual

Panda3D Manual: Manipulating a Piece of a Model

<<prev top next>> Search

Every model, when loaded, becomes a Mbdel Node in the scene graph. Beneath the Model Node
are one or more GeomNodes containing the actual polygons. If you want to manipulate a piece

of a model, for instance, if you want to change the texture of just part of a model, you need a
pointer to the relevant geomnode.

In order to obtain such a pointer, you must first ensure that the relevant geometry is in a
GeomNode of its own (and not merged with all the other geometry). In other words, you must

ensure that panda's optimization mechanisms do not cause the geometry to be merged with
the geometry of the rest of the model. While normally this optimization is a good thing, if you
want to change textures on a specific part of the model (for example, just a character's face)
you will need this geometry to be separate.

There are two different ways that you should do this, according to the type of model it is.
Animated (skeleton animation) models

If your model is animated via keyframe animation in a package such as 3DSMax or Maya--that
is, the sort of model you expect to load in via the Actor interface--then Panda will be

aggressive in combining all of the geometry into as few nodes as possible. In order to mark
particular geometry to be kept separate, you should use the egg- opt char program.

The name "optchar” is short for "optimize character”, since the egg-optchar program is
designed to optimize an animated character for runtime performance by removing unused and
unneeded joints. However, in addition to this optimization, it also allows you to label a section
of a model for later manipulation. Once you have labeled a piece of geometry, Panda’'s
optimization mechanisms will not fold it in to the rest of the model.

Your first step is to note the name of the object in your modeling program. For example,
suppose you want to control the texture of a model's head, and suppose (hypothetically) the
head is labeled "Sphere01" in your modeling program. Use egg-optchar to tell panda that
"Sphere0l1" deserves to be kept separate and labeled:

egg-optchar -d outputDir -flag SphereOl=t heHead nodel File. egg ani mL.. egg ani n2.
€gg

Note that you must always supply the model file(s) and all of its animation files to egg-optchar
at the same time. This is so it can examine all of the joints and determine which joints are
actually animated; and it can remove joints by operating on all the files at once. The output of
egg-optchar is written into the directory named by the "-d" parameter.

The "-flag" switch will ensure that panda does not rearrange the geometry for the named
polyset, folding it into the model as a whole. It also assigns the polyset a meaningful name.
Once you have labeled the relevant piece of geometry, you can obtain a pointer to it using the

file///E/manual/Manipulating_a Piece of_a Model.1.html (1 of 2)2006/11/21 aUcE 06:00:37

Panda3D Manual

fi nd method:

nmyModel sHead = nmyModel . find("**/
t heHead")

With this nodepath, you can manipulate the head separately from the rest of the model. For
example, you can move the piece using set Pos, or change its texture using set Text ur e, or for

that matter, do anything that you would do to any other scene graph node.
Unanimated (environment) models

Other kinds of models, those that do not contain any skeleton or animations, are not optimized
as aggressively by the Panda loader, on the assumption that the model's hierarchy was
structured the way it is intentionally, to maximize culling (see Pipeline Tips). Thus, only certain
nodes are combined with others, so it's quite likely that an object that you modeled as a
separate node in your modeling package will still be available under the same name when you
load it in Panda. But Panda doesn't promise that it will never collapse together nodes that it
thinks need to be combined for optimization purposes, unless you tell it not to.

In the case of an unanimated model, the way to protect a particular node is to insert the
<Mbdel > flag into the egg file within the particular group. The way to do this depends on your

modeling package (and this documentation still needs to be written).

<<prev top next=>= - I

file:///E/manual/Manipulating_a_Piece of a Model.1.html (2 of 2)2006/11/21 aUxE 06:00:37

Panda3D Manual

Panda3D Manual: Searching the Scene Graph

<<prev top next>> Search

It is often useful to get a handle to a particular node deep within the scene graph, especially to
get a sub-part of a model that was loaded from a single file. There are a number of methods
dedicated to finding entrenched nodes and returning the NodePaths.

First, and most useful, is the Is() command:

nodePat h. | s
0)

This simply lists all of the children of the indicated NodePath, along with all of their children,
and so on until the entire subgraph is printed out. It also lists the transforms and Render

Attributes that are on each node. This is an especially useful command for when you're

running interactively with Python; it's a good way to check that the scene graph is what you
think it should be.

The two methods fi nd() and fi ndAl | Mat ches() will return will return a NodePat h and a
NodePat hCol | ecti on respectively. These methods require a path string as an argument.

Searches can based on name or type. In its simplest form this path consists of a series of node
names separated by slashes, like a directory pathname. When creating the string each
component may optionally consist of one of the following special names, instead of a node

name.
* Matches exactly one node of any name
*x Matches any sequence of zero or more nodes

+typename Matches any node that is or derives from the given type
-typename Matches any node that is the given type exactly

=tag Matches any node that has the indicated tag

—tag=value Matches any node whose tag matches the indicated value

Standard filename globbing characters, such as *, ?, and [a-z] are also usable. Also the @@
special character before a node name indicates that this particular node is a stashed node.
Normally, stashed nodes are not returned. @@>*, by extension, means any stashed node.

The argument may also be followed with control flags. To use a control flag, add a semicolon
after the argument, followed by at least one of the special flags with no extra spaces or
punctuation.

-h Do not return hidden nodes
+h Return hidden nodes
-s Do not return stashed nodes unless explicitly referenced with @@

filel///E|/manual/Searching_the Scene_Graph.1.html (1 of 3)2006/11/21 aUsE 06:00:38

Panda3D Manual

+s Return stashed nodes even without any explicit @@ characters
-i Node name comparisons are not case insensitive: case must match exactly

Node name comparisons are case insensitive: case is not important. This affects
+i matches against the node name only; node type and tag strings are always case
sensitive

The default flags are +h-s-i.

The find() method searches for a single node that matches the path string given. If there are

multiple matches, the method returns the shortest match. If it finds no match, it will return an
empty NodePath. On the other hand, fi ndAl | Mat ches() will return all NodePaths found,

shortest first.

nodePat h. fi nd(" <Pat h>")
nodePat h. fi ndAl | Mat ches
(" <Pat h>")

Some examples:

nodePat h. fi nd(" house/
door")

This will look for a node named "door", which is a child of a node named "house", which is a
child of the starting path.

nodePat h. find("**/
red*")

This will look for any node anywhere in the tree (below the starting path) with a name that
begins with "red".

In addition there are also the methods get Par ent () and get Chi |l dren() . get Parent () returns
the NodePath of the parent node. get Chi | dren() returns the children of the current node as a
NodePathCollection(use get Chi | drenAsLi st () if you want them as a List).

get Chi | dr enAsLi st Example

for child in nodePath. get Chi |l drenAsLi st ():
print child

filel///E|/manual/Searching_the Scene Graph.1.html (2 of 3)2006/11/21 aUcE 06:00:38

Panda3D Manual

some examples:

#if you wanted to search up the Scene Graph until you found a certain
node
whi | e nodePat h. get Parent () ! =soneAncest or:
nodePat h=nodePat h. get Par ent ()
nodePat h=nodePat h. get Par ent ()

For more information and a complete list of NodePath functions please see the API reference.

<<prev top next>>

file:///E|/manual/Searching_the_Scene_Graph.1.html (3 of 3)2006/11/21 aUcE 06:00:38

http://panda3d.org/apiref.php?page=NodePath

Panda3D Manual

Panda3D Manual: Render Attributes

<<prev top next>> Search

Panda uses a set of attributes to define the way geometry is rendered. The complete set of
attributes in effect on a given node is called the RenderState; this state determines all the
render properties such as color, texture, lighting, and so on.

These individual attributes can be stored on any node of the scene graph; setting an attribute
on a node automatically applies it to that node as well as to all of the children of the node
(unless an override is in effect, but that's a more advanced topic).

It is possible to create these attributes and assign them to a node directly:

nodePat h. node() . set Attrib
(attribut eObject)

But in many cases, especially with the most commonly-modified attributes, you don't need to
create the attributes directly as there is a convenience function on NodePath (e.g. nodePat h.

set Fog()) that manages the creation of the attributes for you; there will also be a
corresponding clear function on NodePath to remove the attribute (nodePat h. cl ear Fog()).

The following is a list of the attributes available in Panda3D as of the time of this writing, along
with the primary NodePath method to set them, and/or a reference to the manual page that
describes the attribute in more detail:

AlphaTestAttrib =

ClipPlaneAttrib nodePath.setClipPlane(planeNode)
ColorAttrib nodePath.setColor(r, g, b, a)
ColorBlendAttrib -

ColorScaleAttrib nodePath.setColorScale(r, g, b, a)
ColorWriteAttrib -

CullBinAttrib nodePath.setBin(‘binName', order)
CullFaceAttrib nodePath.setTwoSided(flag)
DepthOffsetAttrib
DepthTestAttrib nodePath.setDepthTest(flag)
DepthWriteAttrib nodePath.setDepthWrite(flag)

FogAttrib nodePath.setFog(fog); See Also: Fog

LightAttrib nodePath.setLight(light); See Also: Lighting
MaterialAttrib nodePath.setMaterial(material)

RenderModeAttrib nodePath.setRenderMode(RenderModeAttrib.Mode)
ShaderAttrib nodePath.setShader(shader); See Also: Using Cg Shaders

filel///E/manual/Render_Attributes.1.html (1 of 2)2006/11/21 aUsE 06:00:38

http://panda3d.org/apiref.php?page=RenderModeAttrib

Panda3D Manual

nodePath.setTexGen(stage, TexGenAttrib.Mode); See Also: Automatic

TexGenAttrib Texture Coordinates

nodePath.setTexTransform(TransformState.make(mat)); See Also:

TexMatrixAttrib Texture Transforms

nodePath.setTexture(tex); See Also: Simple Texturing and Multitexture

TextureAttrib Introduction

TransparencyAttrib nodePath.setTransparency(TransparencyAttrib.Mode)

<<prev top next>>

| =

file:///E/manual/Render_Attributes.1.html (2 of 2)2006/11/21 sUsE 06:00:38

Panda3D Manual

Panda3D Manual: Instancing

<<prev top next>> Search

In the musical "A Chorus Line," the most well-known scene is when about 50 identical-looking
young women line up left-to-right across the stage, and they all kick-left-kick-right in unison.
To implement this in Panda3D, you might do this:

for i in range(50):

dancer = Actor.Actor("chorus-1ine-dancer.egg", {"kick":"Kkick.
egg"})

dancer. | oop("ki ck™)

dancer . set Pos(i *5, 0, 0)

dancer . reparent To(render)

Here is the scene graph that we just created:

tender

dancer 1 dancer 2 L dancer 50
offset=(0,0,0) offset=(50,0) offset= (245 0,0)

This works fine, but it is a little expensive. Animating a model involves a lot of per-vertex
matrix calculations. In this case, we're animating 50 copies of the exact same model using 50
copies of the exact same animation. That's a lot of redundant calculation. It would seem that
there must be some way avoid calculating the exact same values 50 times. There is: the
technique is called instancing.

The idea is this: instead of creating 50 separate dancers, create only one dancer, so that the
engine only has to update her animation once. Cause the engine to render her 50 times, by
inserting her into the scene graph in 50 different places. Here is how it is done:

file:///E}/manual/Instancing.1.html (1 of 6)2006/11/21 sUsE 06:00:40

Panda3D Manual

dancer = Actor.Actor("chorus-Iine-dancer.egg", {"kick":"Kkick.
egg”})
dancer .| oop(" ki ck")
dancer . set Pos(0, 0, 0)
for i in range(50):
pl acehol der = render. attachNewNode(" Dancer - Pl acehol der ")
pl acehol der . set Pos(i *5, 0, 0)
dancer . i nst anceTo(pl acehol der)

Here is a diagram of the scene graph we just created:

render

placeholder 1 placeholder 2 P e, placeholder 50
offset= (0,0,0) offset= (50,0 offset= (245,0,0)

dancer 1
offset= (00,0

the actual shape ofthe scene graph

It's not a tree any more, it is a directed acyclic graph. But the renderer still traverses the
graph using a recursive tree-traversal algorithm. As a result, it ends up traversing the dancer
node 50 times. Here is a diagram of the depth-first traversal that the renderer takes through
the graph. Note that this is not a diagram of the scene graph - it's a diagram of the renderer's

path through the scene graph:

filel///E|/manual/Instancing.1.html (2 of 6)2006/11/21 sUaE 06:00:40

Panda3D Manual

render

placeholder 1 placeholder 2 PP e placeholder 50
offset=(0,0,0) offset=(5,0,0) offset= (245 0,0)

dancer 1 dancer 1 dancer 1
offset= (0,00 offset= (0,00 offset=(0,0,0)

path of renderer's recursive traversal

In other words, the renderer visits the dancer actor 50 times. It doesn't even notice that it's
visiting the same actor 50 times, rather than visiting 50 different actors. It's all the same to
the renderer.

There are 50 placeholder nodes, lined up across the stage. These are called dummy nodes.
They don't contain any polygons, they're little tiny objects used mainly for organization. In this
case, I'm using each placeholder as a platform on which a dancer can stand.

The position of the dancer is (0,0,0). But that's relative to the position of the parent. When the
renderer is traversing placeholder 1's subtree, the dancer’s position is treated as relative to
placeholder 1. When the renderer is traversing placeholder 2's subtree, the dancer's position is
treated as relative to placeholder 2. So although the position of the dancer is fixed at (0,0,0),
it appears in multiple locations in the scene (on top of each placeholder).

In this way, it is possible to render a model multiple times without storing and animating it
multiple times.

Advanced Instancing

Now, let's go a step further:

file:///E|/manual/Instancing.1.html (3 of 6)2006/11/21 sUsE 06:00:40

Panda3D Manual

dancer = Actor.Actor("chorus-Iine-dancer.egg", {"kick":"Kkick.
egg”})
dancer .| oop(" ki ck")
dancer . set Pos(0, 0, 0)
chorusline = NodePat h()
for i in range(50):
pl acehol der = chorusli ne. att achNewNode(" Dancer - Pl acehol der ")
pl acehol der . set Pos(i *5, 0, 0)
dancer . i nst anceTo(pl acehol der)

This is the exact same code as before, except that instead of putting the 50 placeholders
beneath r ender, | put them beneath a dummy node called chor usl i ne. So my line of dancers

is not part of the scene graph yet. Now, | can do this:

for i in range(3):
pl acehol der = render. att achNewNode("Li ne-
Pl acehol der ")
pl acehol der. set Pos(0, i *10, 0)
chorusline.instanceTo(pl acehol der)

Here is the scene graph | just created:

filel///E|/manual/Instancing.1.html (4 of 6)2006/11/21 sUaE 06:00:40

Panda3D Manual

render

line-placeholder 1
offset=(0,0,07

line-placeholder 2

offset=(0.10,0)

line-placeholder 3
offset=(020,0;

]

"x.

|

r””””-

| charsline |

placehnldeH placehnlderz placehulderﬁﬂ

offeet= (0,0 offeet= (5,0 nﬂ’set— (2440
dancer1
offset= (0,0 III]l

the actual shape of the scene graph

But when the renderer traverses it using a recursive tree-traversal algorithm, it will see 3
major subtrees (rooted at a line-placeholder), and each subtree will contain 50 placeholders
and 50 dancers, for a grand total of 150 apparent dancers.

Instancing: an Important Caveat

Instancing saves panda quite a bit of CPU time when animating the model. But that doesn't
change the fact that the renderer still needs to render the model 150 times. If the dancer is a
1000 polygon model, that's still 150,000 polygons.

Note that each instance has its own bounding box, each is occlusion-culled and frustum-culled
separately.

The NodePath: a Pointer to a Node plus a Unique Instance ID

If 1 had a pointer to the chorus-line dancer model, and | tried to ask the question "where is the
dancer," there would be no well-defined answer. The dancer is not in one place, she is in 150
places. Because of this, the data type pointer to node does not have a method that retrieves
the net transform.

file:///E|/manual/Instancing.1.html (5 of 6)2006/11/21 sUsE 06:00:40

Panda3D Manual

This is very inconvenient. Being able to ask "where is this object located" is fundamental.
There are other incredibly useful queries that you cannot perform because of instancing. For
example, you cannot fetch the parent of a node. You cannot determine its global color, or any
other global attribute. All of these queries are ill-defined, because a single node can have
many positions, many colors, many parents. Yet these queries are essential. It was therefore
necessary for the panda3d designers to come up with some way to perform these queries,
even though a node can be in multiple locations at the same time.

The solution is based on the following observation: if I had a pointer to the chorus line-dancer
model, and | also had a unique identifier that distinguishes one of the 150 instances from all
the others, then | could meaningfully ask for the net transform of that particular instance of
the node.

Earlier, it was noted that a NodePath contains a pointer to a node, plus some administrative
information. The purpose of that administrative information is to uniquely identify one of the
instances. There is no method Node: : get Net Tr ansf or m but there is a method NodePat h: :

get Net Transf or m Now you know why.

To understand how NodePath got its name, think about what is necessary to uniquely identify
an instance. Each of the 150 dancers in the graph above corresponds to a single path through
the scene graph. For every possible path from root to dancer, there exists one dancer-instance
in the scene. In other words, to uniquely identify an instance, you need a list of nodes that
starts at the leaf and goes up to the root.

The administrative information in a nodepath is a list of nodes. You can fetch any node in the
list, using the NodePat h: : node(i) method. The first one, node(0), is the node to which the

NodePath points.

Search

file:///E|/manual/Instancing.1.html (6 of 6)2006/11/21 cUxE 06:00:40

Panda3D Manual

Panda3D Manual: Panda Filename Syntax

<<prev top next>> Search

For easier portability, Panda3D uses Unix-style pathnames, even on Microsoft Windows. This
means that the directory separator character is always a forward slash, not the Windows
backslash character, and there is no leading drive letter prefix. (Instead of a leading drive
letter, Panda uses an initial one-letter directory name to represent the drive.)

There is a fairly straightforward conversion from Windows filenames to panda filenames.
Always be sure to use Panda filename syntax when using a Panda3D library function, or one of
the panda utility programs:

WRONG
| oader. | oadModel ("c:\\Program Fi | es\\ My Gane\\ Mbdel s\ \ Model 1.
egg”)

CORRECT:
| oader .| oadModel ("/c/ Program Fil es/ My Gane/ Model s/ Model 1. egg")

Panda uses the Fi | enane class to store Panda-style filenames; many Panda functions expect a

Filename object as a parameter. The Filename class also contains several useful methods for
path manipulation and file access, as well as for converting between Windows-style filenames
and Panda-style filenames; see the API reference for a more complete list.

To convert a Windows filename to a Panda pathname, use code similar to the following:

from pandac. PandaModul es i nport Fil enane
winfile = "c:\\ MWGane\\ Mddel 1. egg"
pandafile = Filenanme.fronmOsSpecific
(winfile)

print pandafile

To convert a Panda filename into a Windows filename, use code not unlike this:

from pandac. PandaModul es i nport Fil enane
pandafile = Fil enane("/c/ MyGane/ Model 1.
egg”)

winfile = pandafil e.toGsSpecific()

print winfile

The Filename class can also be used in combination with python's built-in path manipulation
mechanisms. Let's say, for instance, that you want to load a model, and the model is in the

filel///E|/manual/Panda_Filename_Syntax.1.html (1 of 2)2006/11/21 aUcE 06:00:41

Panda3D Manual

"model" directory that is in the same directory as the main program's "py" file. Here is how
you would load the model:

i mport sys, o0s
from pandac. PandaModul es i nport Fil enane

get the location of the 'py' file I'm running:
nmydi r = os. pat h. abspat h(sys. pat h[0])

convert that to panda's uni x-style notation
nydir = Fil ename. fromOsSpeci fic(mnmydir).getFull path()

now | oad the nodel
nodel = | oader.| oadModel (nydir + "/nodel s/ nynodel .

egg”)

<<prev top next=>>=>

| -

file:///E|/manual/Panda_Filename Syntax.1.html (2 of 2)2006/11/21 aUcE 06:00:41

Panda3D Manual

Panda3D Manual: The Configuration File

<<prev top next>> Search
In the etc subdirectory, you will find a configuration file Config.prc. This controls several of
Panda's configuration options - does it use OpenGL or DirectX, how much debugging output
does it print, and so forth. The following table lists several of the most commonly-used
variables.
Variable Values Default Details
Specifies which graphics GSG to
. pandagl .
load-display pandagl use for rendering (OpenGL or
pandadx8 .
DirectX 8)
L . Specifies the size of the
win-size Pixels x y 800 600 Panda3D window
Specifies the onscreen
win-origin Pixels x y 100 O placement of the upper left
corner of Panda3d window
#Ht Enables full-screen mode (true
fullscreen #f
#f or false)
undecorated #Ht 4 Removes border from window
#f (true or false)
cursor-hidden #Ht 4 Hides mouse cursor (true or
#f false)
Shows the fps in the upper right
#Ht
show-frame-rate-meter # #f corner of the screen (true or
false)
audio-cache-limit number 32 limits the number of sounds you
can load
fatal Sets notification levels for
error various Panda3D packages to
1) warning . control the amount of
SRS [P CEE info Lulis information printed during
debug execution (fatal being least,
spam spam being most)
Adds specified directory to the
model-path Directory name list of directories searched when
loading a model or texture
Adds specified directory to the
sound-path Directory name list of directories searched when
loading a sound
Allows the loading of file types
load-file-type ptloader for which converters have been
written for in pandatool

file:///E/manual/The_Configuration File.1.html (1 of 2)2006/11/21 aUcE 06:00:41

Panda3D Manual

Loads the appropriate audio
drivers. Miles is a propriertary
audio, so only select that option
if you currently have it.

fmod_audio
audio-library-name miles_audio fmod_audio
null

Enables directtools, a suite of
. #Ht #Ht . . .
want-directtools . interactive object/camera
#f line commented out . .
manipulation tools
Enables support for usin
#t #t PP 9

e 1 AL T™
want-tk i line commented out Tkinter/PMW (Python&€ ™s

wrappers around TK)

You can get a more complete list of available config variables at runtime (once you have
imported DirectStart), with the Python command:

cvMyr. listVari abl es

0

<<prev top next>>

-

file:///E/manual/The_Configuration File.1.html (2 of 2)2006/11/21 aUxE 06:00:41

Panda3D Manual

Panda3D Manual: Accessing Config Vars in a Program

<<prev top next>> Search

Panda3D uses a configuration file named Config.prc. Panda supplies functions to easily read
values out of Config.prc, and to alter their values in memory (the modified values are not
written back out to disk). The ability to read an alter configuration settings programmatically
has two major uses:

1. Storing your own configuration data.
2. Tweaking Panda's behavior.

By "storing your own configuration data," | mean that your game might have its own settings
that need to be stored. Rather than writing your own configuration file parser, you might
consider adding your configuration data to the panda configuration file instead.

Suppose hypothetically that you are writing an online game, and your online game connects to
a server. You need a configuration file to tell you the name of the server. Open up the "Config.
prc” file and add the following line at the end of the file.

ny- gane- server pandagane.
com

Note that | invented the variable name "my-game-server" out of thin air, this variable is not
recognized by panda in any way. Therefore, this line has no effect on panda whatsoever.

To manipulate this variable programmatically, use code not unlike the following, which creates
an object of class Confi gVari abl eStri ng and then manipulates it using the methods

set Val ue and get Val ue:

from pandac. PandaMbdul es i nport ConfigVari abl eString

nmyganeserver = ConfigVari abl eString("my-gane-server","127.0.0.1")

print "Server specified in config file: ", myganeserver. get Val ue

0

allow the user to change servers on the comand-Ii ne:
if (sys.argv[l]=="--server"): myganeserver.set Val ue(sys. argv|[2])

print "Server that we will use: ", nyganeserver. getVal ue()

The second parameter to the ConfigVariableString constructor is the default value that should
be returned, in case the line "my-game-server" does not appear in any Config.prc file. There is
also an optional third parameter, which is a description of the purpose of the variable; this
string will be displayed when the user executes the command print cvMyr.

file///E|/manual/Accessing_Config_Vars in_a Program.1.ntml (1 of 3)2006/11/21 aUcE 06:00:42

Panda3D Manual

The types of configuration variable are:

ConfigVari abl eStri ng
Confi gVari abl el nt

Confi gVari abl eBool

Confi gVari abl eDoubl e
Confi gVari abl eFi | enane
Confi gVari abl eLi st

Confi gVari abl eSear chPat h

Most of these follow the same form as ConfigVariableString, above, except that the default
value (and the parameter from setValue() and getValue()) is of the indicated type, rather than
a string. The two exceptions are ConfigVariableList and ConfigVariableSearchPath; these types
of variables do not accept a default value to the constructor, since the default value in both
cases is always the empty list or search path.

To display the current value of a particular variable interactively (in this example, for a string-
type variable), type the following:

print ConfigVariableString(' my-game-
server')

Panda3D will automatically load any *.prc files it finds in its standard config directory at
startup. You can view a list of the files it has actually loaded with the following command:

pri nt
cpMyr

It is helpful to do this to ensure that you are editing the correct Config.prc file.

Sometimes, it is desirable to load an additional configuration file from disk, by giving an
explicit filename. To do so, use "loadPrcFile". Note that Panda Filename Syntax uses a forward

slash, even under Windows:

from pandac. PandaModul es i nport
| oadPrcFil e
| oadPrcFil e("config/ Config.prc")

The filename you specify is searched for along the model-path, in the same way that an egg or
bam file is searched for when you use | oader . | oadModel () .

You can also use "loadPrcFileData™ to load a string that you define in your Python code, as if it

file///E|/manual/Accessing_Config_Vars in_a Program.1.ntml (2 of 3)2006/11/21 aUcE 06:00:42

Panda3D Manual

were the contents read from a disk file. The | oadPr cFi | eDat a() call requires two parameters;

the first parameter is an arbitrary string name to assign to this "file" (and it can be the empty
string if you don't care), while the second parameter is the contents of the file itself. This

second parameter should contain newlines between variable definitions if you want to set the
value of more than one variable.

For example, let's say that panda's configuration file contains this line:

full screen
0

By default, panda programs will run in a window, not fullscreen. However, if you do this:

f r om pandac. PandaMbdul es i nport

| oadPr cFi | eDat a

| oadPrcFil eData("", "fullscreen 1")
i nport direct.directbase.DirectStart

Then by the time you load di rect . di rect base. Di rect St art, you will have changed the

fullscreen-flag to true, and your program will run full-screen. There are other ways to go to
fullscreen, this is not necessarily the most straightforward, but it illustrates the point.

<<prev top next=>= - I

file:///E/manual/Accessing_Config_Vars in_a Program.1.html (3 of 3)2006/11/21 aUcE 06:00:42

Panda3D Manual

Panda3D Manual: Actors and Characters

<<prev top next>> Search

Panda3D supports both skeletal animation and morph animations. Panda's egg file format can
contain an animatable model, a recorded sequence of animations, or both.

The python class Act or is designed to hold an animatable model and a set of animations.

Since the Actor class inherits from the NodePath class, all NodePath functions are applicable to
actors.

Note that Act or is actually a high-level interface to a set of lower-level classes. It is not

recommended to use these lower-level classes directly, with one exception: the Model class is
easy to use directly as long as you don't plan to animate the model. You can therefore
eliminate a bit of overhead by using a Model instead of an Actor for your static objects.

This section assumes you have a valid egg file which has an animatable model, and some
additional egg files containing animations. To learn how to convert a model into an egg file see
the Model Export section.

<<prev top next>=> Search

file///E/manual/Actors_and_Characters.1.html2006/11/21 cUaE 06:00:43

Panda3D Manual

Panda3D Manual: Loading Actors and Animations

<<prev top next>> Search

The Actor class must be imported before any loading or manipulation of actors.

fromdirect.actor inport
Act or

Once the module is loaded, the actor object must be constructed, and the model and
animations must be loaded:

nodePat h = Actor. Actor ()

nodePat h. | oadModel (&€~ Model Pat ha€ ™

nodePat h. | cadAni ns({a€ " Arbitrary Nanmela€ ™ &€ ™ni mati on Path 1a
€M)

nodePat h. | cadAni ns({&a€~ Arbitrary Nanme2a€ ™ &€ ™ni mati on Path 2a
€7)

Loading each animation requires a tuple: the name one is giving the animation and the path to
the animation. This entire process can be shortened to a single command:

nodePat h = Actor. Actor (' Model Path', {
"Ani mati on Nane 1':' Ani mati on Path
1,
"Ani mati on Nane 2':' Ani mati on Path
2',
})

Animations may also be unloaded using the same tuple used in creating them.

nodePat h. unl cadAni ms({"' Ani mati on Nane':"' Ani mati on
Path'})

Although this is a rarely-used technique, it is possible to assemble a character model out of
several separate pieces (separate models). If this is the case, then the pieces must contain
bones that can be attached to each other. For example, if you have a robot consisting of a set
of legs and a swappable torso, and if you want to glue them together at the waist, then the
legs model should contain a bone "waist", and the torso model should also contain a bone
"waist". You can then attach them together:

file:///E/manual/Loading_Actors_and_Animations.1.html (1 of 2)2006/11/21 aUscE 06:00:43

Panda3D Manual

nodePath = Actor. Actor ({
"l egs' : ' Robot Legs. egg’,
"torso' :' Robot Torsol. egg’,
}. {' dance':' Robot Dance. egqg' })

nodePat h. att ach
("legs',"'torso', ' waist')

<<prev top next>>

-

file:///E/manual/Loading_Actors_and_Animations.1.html (2 of 2)2006/11/21 aUsE 06:00:43

Panda3D Manual

Panda3D Manual: Actor Animations

<<prev top next>> Search

Since the Actor class inherits from NodePath, everything that can be done to a NodePath, such
as reparent To() and set Pos(), etc., may also be done to an Actor. In addition to the basic

NodePath functionality, Actors have several additional methods to control animation. In order
for Actors to animate, their pointer (variable) must be retained in memory. The following is
only a brief introduction; see the API reference for a complete list.

Basic animation playing

Animations may either be played or looped. When an animation is played, the actor goes
through the animation once. When an animation is looped, the animation will play
continuously. There is no tweening done between the last and the first frame, so if an
animation is going to be looped, it needs to be constructed with that thought in mind. Finally,
animations may be stopped at any point. When an animation is stopped, the actor will stay in
the position it stopped on.

actor. play(' Ani mati on Nane')
actor. | oop(' Ani mati on Nane')
actor. stop()

You may use the pose() method to tell an actor to hold a particular frame of the animation.
Frames are numbered beginning at O.

act or. pose(' Ani mati on Nane',
Fr ameNumnber)

Posing an actor to a frame doesn't automatically specify the start frame of the next starting
animation. Instead, if you don't want to start at the first frame, you can specify these using
the optional parameters f r onfr ane and t oFr ane to the methods pl ay() and | oop() :

actor.play(' Animation Nane', fronfFrane = 10)
actor. | oop(' Ani mati on Nane', fronfrane 24, toFranme = 36)

However, the loop method does have another optional parameter called rest art, which is 1

by default, meaning the animation will restart from the beginning. If you pass it O instead,
then the animation will begin looping from the current frame:

file///E/manual/Actor_Animations.1.html (1 of 3)2006/11/21 sUaE 06:00:44

Panda3D Manual

actor. pose(' Ani mati on Nane', 30)
actor.|l oop(' Ani mati on Nane', restart = 0, fronFrane = 24, toFrame = 36)

Play rate

The animation play rate may be set to any floating point value, which can be used to speed up
or slow down the animation. This is a scale factor on the base animation rate; 1.0 means to
play the animation at its normal speed, while 2.0 plays it twice as fast, and 0.5 plays it at half
speed. It is also possible to play an animation backwards by specifying a negative play rate,
for instance -1.0.

actor. set Pl ayRat e(newPl ayRat e, ' Ani mati on Nane')

Blending

Multiple different animations for an actor may be played at the same time, and the animations
blended together at runtime. The net result is that, each frame, the actor ends up somewhere
between the different poses it would be in for each contributing animation, if each animation
were playing independently.

Note that in blend mode each contributing animation still affects the actor's entire body. If you
want to play one animation on, say, the left arm, while a different animation is playing on the
legs, then you need to use half-body animation, which is different from blending.

To use blending, you must first call enabl eBl end() to activate the blending mode and indicate

your intention to play multiple animations at once. While the actor is in blend mode, playing a
new animation does not automatically stop the previously playing animation. Also, while in
blend mode, you must explicitly specify how much each animation contributes to the overall
effect, with the set Contr ol Ef f ect () method (the default for each animation is 0.0, or no

contribution). For example:

act or. enabl eBl end()

actor.setControl Effect (' ani mati onl', 0.2)
actor.setControl Effect (' ani mati on2', 0.8)
actor. | oop(' ani mati onl')

actor. | oop(' ani mati on2')

The above specifies that 20% of animationl and 80% of animation2 will be visible on the
character at the same time. Note that you still have to start both animations playing (and they
can be playing from different frames or at different play rates). Starting or stopping an
animation in blend mode does not change its control effect; you must set an animation's
control effect to 0.0 if you don't want it to have any more affect on the actor.

When you call st op() in blend mode, you can stop a particular animation by name, if you

file///E/manual/Actor_Animations.1.html (2 of 3)2006/11/21 aUaE 06:00:44

Panda3D Manual

want; or you can stop all of the animations by calling st op() with no parameters:

actor.stop('ani mati onl')

Note that specifying an animation name to stop() is only meaningful when you are in blend
mode. When not in blend mode, actor.stop() will always stop whatever animation is currently
playing, regardless of the animation name you specify.

When you are done using blending and want to return to the normal mode of only playing one
animation at a time, call di sabl eBl end() :

act or . di sabl eBl end()

Actor Intervals

Another way to play an animation on an actor is to use an Actorinterval, which gives you a lot

more frame-by-frame control over the animation, and is particularly useful when building a
complex script using Intervals. However, the Actorinterval interface is a little bit slower than
the above interfaces at runtime, so you should prefer the more fundamental interfaces unless
there is a good reason to use Actorlnterval.

The Task manager

On a more complex program, you may find that Animations can not be loaded from any point
in your program. In any application there needs to be exactly one call to run(), and it should
be the last thing you do after starting up. This starts the task manager. Think of this as the
main loop of the application: your startup procedure is to set up your loading screen, start any
initial tasks or intervals, hang any initial messenger hooks, and then go get lost in run().
Thereafter everything must run in a task, in an interval, or is a response to a message. This is

true for both animations and sound.

<<prev top next>>=>

file///E/manual/Actor_Animations.1.html (3 of 3)2006/11/21 aUaE 06:00:44

Panda3D Manual

Panda3D Manual: Attaching an Object to a Joint

<<prev top next>> Search

If an actor has a skeleton, then it is possible to locate one of the joints, and attach an object
to that joint:

nyNodePat h = act or NodePat h. exposeJoi nt (None, " nodel Root ", " Joi nt
Nane")

This function returns a nodepath which is attached to the joint. By reparenting any object to
this nodepath, you can cause it to follow the movement of the joint.

The string "modelRoot" represents the name of the model node - the string "modelRoot" is
usually the correct value.

The string "Joint Name™ represents the name of the joint. Typically it would be something like
"Femur", or "Neck", or "L Fingerl". This is usually set inside the modeling package. For
example, in MAX, each object in the scene has a name, including the bones. If necessary, you
can determine the joint names by scanning the egg file for strings like <Joi nt > Fenur .

= oo [Searoh

filel///E/manual/Attaching_an_Object_to_a Joint.1.ntml2006/11/21 aUoE 06:00:45

Panda3D Manual

Panda3D Manual: Controlling a Joint Procedurally

<<prev top next>> Search

Sometimes one wishes to procedurally take control of a model's joint. For example, if you wish
to force a character model's eyes to follow the mouse, you will need to procedurally take
control of the neck and head. To achieve this, use controlJoint. Caution: the behavior of
controlJoint is not entirely straightforward, so be sure to read this entire section.

nmyNodePat h = act or. control Joi nt (None, "nodel Root ", " Joi nt
Nane")

This creates a dummy node. Every frame, the transform is copied from the dummy node into
the joint. By setting the transform of the dummy node, you can control the joint. Normally,
one would want to use set Hpr to rotate the joint without moving it. The dummy node is

initialized in such a way that the joint is in its default location, the one specified in the model's
eqgg file.

You must store a local (not global) transform in the dummy node. In other words, the
transform is relative to the joint's parent bone. If you are controlling the forearm of a model,
for instance, the transform will be relative to the upperarm.

The string "modelRoot" represents the name of the model node - the string "modelRoot" is
usually the correct value.

The string "Joint Name" represents the name of the joint. Typically it would be something like
"Femur", or "Neck", or "L Fingerl". This is usually set inside the modeling package. For
example, in MAX, each object in the scene has a name, including the bones. If necessary, you
can determine the joint names by scanning the egg file for strings like <Joi nt > Fenur.

Beginning in Panda3D version 1.2, you can also use the call actor.|istJoi nts() to show the
complete hierarchy of joints.

Cautions and limitations

. controlJoint only works when an animation is playing on the joint. The animation of the
controlled joint is completely overridden. However, the animated movement of other
joints continues normally. In other words, you have to create an animation for the
model, and the animation must manipulate the joint you wish to control. If the
animation ends, the control stops as well. If the animation is restarted, you regain
control.

. controlJoint works by setting up some internal structures that must be in place before a
given animation has been started the first time. Thus, it is important to make all of
your controlJoint() calls for a particular model before you make the first call to play(),
loop(), or pose().

. controlJoint cannot be undone. Once you call controlJoint, the joint in question is
forever under application control; the animation channels no longer affect the joint. If
you need to restore animation control to a joint in your application, one strategy would
be to load two copies of the Actor, and only call controlJoint on one of them. When you

file:///E|/manual/Controlling_a_Joint_Procedurally.1.html (1 of 2)2006/11/21 sUcE 06:00:45

Panda3D Manual

want to restore animation control, swap in the other Actor. A different strategy might
be to create a new, dummy joint in your character that doesn't have any animation on
it anyway, and only call controlJoint on that dummy joint.

These limitations are due to the implementation of the animation subsystem. Eventually, we
hope to remove the these quirks in controlJoint.

<<prev top next>>

-

file:///E|/manual/Controlling_a_Joint_Procedurally.1.html (2 of 2)2006/11/21 aUsE 06:00:45

Panda3D Manual

Panda3D Manual: Camera Control

top next>>

<<prev

Panda3D's camera is considered a PandaNode. It can therefore be manipulated as any other
node.

The actual camera is defined in ShowBase as a NodePath named base. cam There is also a

plain node above the camera, which is a NodePath called base. caner a. Generally you want to
control the base. caner a NodePath with your code.

<<prev top next=>>

=

file:///E|/manual/Camera_Control.1.html2006/11/21 aUcE 06:00:46

Panda3D Manual

Panda3D Manual: The Default Camera Driver

<<prev top next>> Search

By default, panda runs a task that enables you to move the camera using the mouse. This task
will conflict with any code you write to move the camera. The task controls the camera by
updating the camera's position every frame to where the mouse thinks it should be. This
means that any other code that directly controls the camera will not seem to work, because it
will be fighting the mouse for control.

If you want to move the camera directly under show control, you must first disable the camera
control task and then the camera will move as expected.

base. di sabl eMouse

0

The ShowBase class contains some handy methods to allow the user control over the camera.
The useDri ve() command enables keyboard and mouse control. Both control systems move

only on the x and y axes, so moving up and down along the z axis is impossible with these
systems.

The keyboard system uses the arrow keys. Up moves the camera forward, and down move it
back. The left and right arrows turn the camera.

The mouse system responds whenever any button is held. If the pointer is towards the top of
the sceen, the camera moves forward. If it is towards the bottom, the camera moves
backwards. If it is on either side, the camera rotates to that direction. The speed the camera
moves is determined by how far from the center the mouse pointer is. Additionally, there is
another command that allows control based on trackball mice.

base. useDri ve()
base. useTr ackbal |

0

ShowBase also provides the method oobe() to give you to control of the basic camera node

(base.cam) with the mouse/trackball while the code continues to move the camera node (base.
camera). This can be useful for debugging purposes. The word stands for "out-of-body
experience" and is handy for giving you a God's-eye view of your application at any point in
development. The method is a toggle; call it once to enable OOBE mode, and then again to
disable it.

base. oobe

0

file///E/manual/The_Default_Camera_Driver.1.html (1 of 2)2006/11/21 aUcE 06:00:46

Panda3D Manual

oobeCul | () is a variant on oobe(), and it works similarly, except that it still culls the scene as

if the camera were still in its original position, while drawing the scene from the point of view
of your camera’s new position. So now you can view the scene from your "out of body"
placement, and walk around, and you can see things popping in and out of view as your view

frustum moves around the world.

top next>=>

file:///E/manual/The_Default_Camera_Driver.1.html (2 of 2)2006/11/21 aUaE 06:00:46

Panda3D Manual

Panda3D Manual: Lenses and Field of View

<<prev top next>> Search

Every Camera has a Lens object that defines the properties of its view. For simple applications,
you do not need to think about the lens; you will probably be happy with the default lens
properties. However, you will occasionally want to adjust some properties of the lens, such as
its field of view, and there are several interfaces to do this, depending on how you want to
think about the lens.

When you start Panda3D, a default camera and lens are created for you automatically. The
default camera object is stored in base. cam (although by convention, if you want to move the

default camera you should manipulate base. caner a instead), and the default lens is base.
canlLens.

This default lens will almost always be a perspective lens--that is, an instance of the class
Per spect i veLens--unless you have done something to change it to another kind of lens. A
perspective lens is by far the most common kind of lens used, and it behaves the same way
the physical lens in a camera works, or for that matter the same way the lenses in our eyes
work:

The illustration above shows a camera with an ordinary perspective lens observing a model in
the world. The camera can only see the part of the world that falls within the black lines; this
area is called the lens frustum.

In the picture, you can also see the image that the lens is capturing (and that image is shown

file:///E)/manual/Lenses and Field of View.1.html (1 of 4)2006/11/21 aUcE 06:00:48

Panda3D Manual

upside-down, just as it would be in a real, physical camera). This image is just for the
purposes of illustration; it isn't really part of a Panda3D camera. It is included to help show the
relationship between a Panda3D lens and a real, physical lens.

There are several different properties that can be set on a PerspectiveLens. Not all of them are
independent; setting some properties will change the values of other properties. Here is an
illustration:

A. This point is the nodal point or eyepoint of the lens. It is also (usually) the origin, that is,
the (0O, 0, O) point of the camera that holds the lens. Normally (in a default Z-up coordinate
system), the lens will be looking down the +Y axis, so in the above illustration the +Y axis
extends to the right from point A. The plane containing the nodal point, perpendicular the
viewing direction (that is, the plane corresponding to the vertical line through point A), is
called the camera plane.

Although it is possible to change the nodal point or view direction of a lens to some point other
than (0, 0, 0) or some direction other than down the +Y axis, it is usually simplest and best
just to move the entire camera using the basic NodePath operations like setPos() and setHpr

0.

B. This angle is the field of view, or fov, of the lens. You can easily change this by setting a
new value in degrees with | ens. set Fov(angl e) . Making the field of view smaller will bring

things in closer, like a telephoto lens; it will also diminish the visible effects of perspective.
Making the field of view larger will open up the view to more objects, like a wide-angle lens; it
will also increase the visible distortion of perspective. The field of view must be greater than O
degrees and less than 180, but values greater than 90 will seem extremely distorted. (In the
real world, perspective lenses rarely go wider than 80 degrees, and that's pretty wide.) The
default field of view is 40 degrees, which is usually a pretty comfortable viewing angle.

file///E/manual/Lenses and_Field_of_View.1.html (2 of 4)2006/11/21 aUcE 06:00:48

Panda3D Manual

There is actually a separate horizontal field of view and vertical field of view, both of which
may be independently controlled with the two-parameter form of setFov: | ens. set Fov

(horizontal Angl e, vertical Angl e). Using the two-parameter form will change the aspect

ratio of the lens (see below). Normally, you would set the field of view using only the one-
parameter form, which sets the horizontal field of view directly, and automatically recomputes
the vertical field of view to preserve the same aspect ratio.

C. This distance is called the near distance or near plane of the lens. Objects that are closer
than this to the camera plane will not be rendered. You may set the near distance as small as
you like, but it must be greater than O; and the smaller you set it, the greater the likelihood
that you will observe an artifact called Z-fighting, a shimmering of objects that are off in the
distance. The default near distance is 1.0, which for many scenes is a reasonable compromise.
Of course, the most appropriate value for your scene depends on the nature of the scene (as
well as the measurement units in which your scene is modeled).

You may change the near distance at any time with the call | ens. set Near (di st ance) .

D. This is the far distance or far plane of the lens. Similar to the near distance, objects that
are farther than this from the camera plane will not be rendered. You may set this as large as
you like, but like the near distance, setting it too large may result in Z-fighting. (However, the
near distance value has a much greater impact on Z-fighting than the far distance value,
because of the nature of the math involved.) The default far distance is 1000.0, which is
appropriate for small scenes; you may need to set it larger if you have a large scene.

You may change the far distance with the call | ens. set Far (di st ance) . Since the near

distance and far distance are often changed at the same time, there is a convenience function
to set then both: | ens. set Near Far (near Di st ance, farDi stance).

E. This size is the film size of the lens. This is only an abstract concept in Panda3D; it is
designed to simulate the actual film size of a physical lens. In a real, physical camera, the lens
casts light onto a piece of film behind the lens, and the size of the film impacts the effective
field of view of the lens via a mathematical formula that every photographer knows (and which
I won't repeat here). In Panda3D, you will probably ignore the film size, unless you are a
photographer, or you want to set up a virtual lens that exactly matches the properties of some
real, physical lens.

You can specify the film size with | ens. set Fi | nSi ze(wi dth) or |l ens. set Fi | n5i ze(wi dt h,
hei ght) . Like field of view, the film size has two components, a horizontal film size and a

vertical film size. Also like field of view, if you specify both components at once it will change
the aspect ratio of the lens, but if you set only the width, Panda will automatically compute
the height to keep the aspect ratio the same.

Setting the film size defines the units to be used for some of the other advanced lens
properties, such as the focal length (below) and the lens offset. For instance, a 35mm
camera exposes a rectangle on the film about 24mm x 36mm, so if you wanted to simulate a
35mm camera, you would use | ens. set Fi | nSi ze(24, 36). This establishes that your film
units are in millimeters, so you could then specify a lens with a focal length of 50mm using

| ens. set Focal Lengt h(50) . (Setting both the film size and the focal length like this would

automatically calculate the field of view; see below.)

file///E/manual/Lenses and_Field_of_View.1.html (3 of 4)2006/11/21 aUcE 06:00:48

Panda3D Manual

F. This distance is the focal length of the lens. Like film size, this is only an abstract concept
in Panda3D, but it is a very important concept in a real, physical camera. Technically, it is the
distance between a lens's nodal point or camera plane and its focal plane or film plane, and it
affects the field of view of the lens. In real photography, lenses are typically described by their
focal length, rather than by their field of view. You can set the focal length via | ens.

set Focal Lengt h(di st ance) .

G (not pictured). The final important property of a lens is its aspect ratio. This is the ratio of
the width to the height of the image produced by the lens. It is almost, but not quite, the
same as the ratio of the horizontal field of view to the vertical field of view. (It is not quite
this, because a perspective lens is not linear in proportion to the angle.) Normally, you will
want the aspect ratio of the lens to match the aspect ratio of your window; if it is something
different, the image may seem stretched or squashed.

You can set the aspect ratio explicitly via | ens. set Aspect Rati o(rati o). For instance, if you
open a window that is 800 pixels wide and 300 pixels tall, you might want to call | ens.
set Aspect Rati 0(800.0 / 300.0).

Interplay of lens properties

Note that, as mentioned above, several of these properties are interrelated. In particular, the
field of view, focal length, and film size are closely tied together. Setting any two of these
three properties will implicitly define the third one.

Panda will let you set all three of these properties as often as you like, but only the last two
properties you set will be important. That is, if you set field of view and film size, Panda will
calculate the focal length. If you set film size and focal length, Panda will calculate the field of
view. If you set focal length and field of view, Panda will calculate the film size.

Also, the aspect ratio can be set either implicitly, by using the two-parameter set Fov() or
set Fi |l nSi ze() methods, or explicitly, by directly specifying it with set Aspect Rati o() . If you

set the aspect ratio explicitly, Panda will recompute your vertical field of view and vertical film
size to match.

<<prev top next=>> Search

file///E/manual/Lenses and_Field_of_View.1.html (4 of 4)2006/11/21 aUcE 06:00:48

Panda3D Manual

Panda3D Manual: Orthographic Lenses

<<prev top next>> Search

The previous page described the PerspectivelLens class, and the various properties of a
perspective lens, especially its field of view. There is another kind of lens that is frequently
used in 3-D rendering, but it doesn't have a field of view in the same sense at all. This is an
orthographic lens.

In an orthographic lens, there is no perspective--parallel lines viewed by the lens don't
converge; instead, they remain absolutely parallel in the image. While a Per specti veLens

closely imitates the behavior of a real, physical camera lens, there is no real lens that does
what an Ot hogr aphi cLens does. An Ot hogr aphi cLens, therefore, is most useful for special

effects, where you want that unnatural look, or to emulate the so-called 2A%4-D look of several
popular real-time strategy games, or strictly to render 2-d objects that shouldn't have any
perspective anyway. In fact, the default camera created for the render2d scene graph, which
is used to draw all of the onscreen GUI elements in Panda, uses an OrthographicLens.

Since an orthographic lens doesn't have a field of view angle, the | ens. set Fov() method does
nothing. To adjust the amount that the orthographic lens sees, you must adjust its film size.
And unlike a PerspectivelLens, the film size units are not arbitrary--for an OrthographicLens,
the film size should be specified in spatial units, the same units you used to model your scene.
For instance, the film size of the OrthographicLens in the above illustration was set with the
call | ens. set Fi | nSi ze(20, 15), which sets the film size to 20 feet by 15 feet--because the

scene is modeled in feet, and the panda is about 12 feet tall.

Another nice property of an orthographic lens is that the near distance does not have to be

file:///E|/manual/Orthographic_Lenses.1.html (1 of 2)2006/11/21 aUxE 06:00:48

Panda3D Manual

greater than zero. In fact, it can be negative--you can put the near plane behind the camera
plane, which means the camera will see objects behind itself. The OrthographicLens for
render2d is set up with set Near Far (- 1000, 1000), so it will render any objects with a Z value

between -1000 and 1000. (Of course, in render2d almost all objects have a Z value of 0, so it
doesn't matter much.)

If you like, you can change the default camera to use an orthographic lens with something like
this:

| ens = Orthographi cLens()
| ens. setFil nSi ze(20, 15) # or whatever is appropriate for your

scene
base. cam node() . set Lens(| ens)

Note that using an orthographic lens can be nonintuitive at times--for instance, objects don't
get larger as you come closer to them, and they don’'t get smaller as you get farther away--so
it may be impossible to tell your camera is even moving!

<<prev top next>>

| -

file:///E|/manual/Orthographic_Lenses.1.html (2 of 2)2006/11/21 sUcE 06:00:48

Panda3D Manual

Panda3D Manual: Sound

<<prev top next>> Search

Open source Panda3D uses a commercial sound library called FMOD to play sound. If your
program is not intended to make any money, and is not charged for in any way, then you may
use FMOD in it for free.

FMOD is a very capable multi-platform sound engine. FMOD supports various types of sound
files - MP3, WAV, AIFF, MIDI, MOD, WMA, OGG Vorbis. More detailed descriptions of FMOD,
and the FMOD licenses are available at their website http://www.fmod.org.

If you do not wish to use FMOD in your progam, remove the fmod.dll and libfmod_audio.dll
files from the panda \bin folder. Note that if you do remove FMOD, Panda3D will not be able to
play or manipulate sounds.

Also note that even without Panda3D's built-in sound support, Python can still be used play
sounds through other libraries, such as Pygame, or PyOpenAL.

<<prev top next>> Search

filel///E|/manual/Sound.1.html 2006/11/21 aUoE 06:00:49

http://www.fmod.org/
http://www.pygame.org/wiki/about
http://home.gna.org/oomadness/en/pyopenal/

Panda3D Manual

Panda3D Manual: Loading and Playing Sounds and Music

<<prev top next=>>=> Search

Architecture

The implementation of the sound system in Panda3d allows for a division of audio into two
categories - Sound Effects and Music. This division is only a convenience for programmers as
Panda3d allows these two audio groups to be treated individually. These differences are
explained on the next page.

Basics
Loading a Sound

Loading sound is done through the Loader class. (Loading sounds through the 'base’ builtin is
deprecated and is only present for backwards compatibility.)

In a normal Panda3D environment, loader is a builtin when you import DirectStart like this:

</td>

i nport direct.directbase.
DirectStart

Load the sound, by supplying the path to the sound. Here's an example:

nmySoundl = | oader. | oadSf x(" SoundFi | e.
wav")

These will return an object of the type AudioSound. It is necessary to put the extension in the
sound filename.

Playing a Sound
To play sounds you can do the following:

nmy Sound. pl ay
()

Stopping a Sound

file:///E|/manual/Loading_and_Playing_Sounds and Music.1.html (1 of 3)2006/11/21 asUsE 06:00:50

Panda3D Manual

To stop a sound:

nmySound. st op
()

Quering Sound Status

To check the status of a sound:

nmySound. st at us
()

status() returns 1 if it isn't currently playing and 2 if it is playing.

Setting Volume

The volume can be set between 0 and 1 and will linearly scale between these.

nmySound. set Vol une
(0.5)

Panning a Sound

You can change the balance of a sound. The range is between -1.0 to 1.0. Hard left is -1.0 and
hard right is 1.0.

nySound. set Bal ance(-
0. 5)

NOTE !

If running Panda from interactive prompt you must call the Update() command, after you play

a sound.

base. sf xManager Li st[n] . updat e

0

filel///E|/manual/Loading_and_Playing_Sounds_and_Music.1.html (2 of 3)2006/11/21 aUcE 06:00:50

Panda3D Manual

This is because the update() command is called every frame to reset a sound's channel.

In interactive mode Panda's frame update is suppended, and does not run automatically.

<<prev top next>>

| -

file:///E|/manual/Loading_and_Playing_Sounds and Music.1.html (3 of 3)2006/11/21 aUsE 06:00:50

Panda3D Manual

Panda3D Manual: Manipulating Sounds

<<prev top next>> Search

Basics - Part Duex
Looping a Sound
To cause a sound to loop [IE Cause it repeat once it is finished playing] do the following:

mySound. set Loop
(True)

nmySound. pl ay()

To stop a sound from looping pass False in the setLoop() function.

mySound. set Loop
(Fal se)

Sounds can also be looped for a certain number of times:

nmySound. set LoopCount
(n)

Where 'n' can be any positive integer. O will cause a sound to loop forever. 1 will cause a
sound to play only once. >1 will cause a sound to loop that many times.

NOTE Setting a sound’s loop count will automatically set a sound's loop flag to O or =1 will
automatically setLoop() to TRUE.

Notes on Looping Sounds Seamlessly

Looping a sound seamlessly should be as simple as loading the sound, then calling set Loop
and pl ay. However, occassionally Panda users have had difficulty getting sounds to loop
seamlessly. The problems have been traced to three(!) different causes:

1. Some MP3 encoders contain a bug where they add blank space at the end of the sound.
This causes a skip during looping. Try using a wav instead.

2. Some have tried using Sound Intervals to create a loop. Unfortunately, sound intervals
depend on Panda's Thread to restart the sound, and if the CPU is busy, there's a skip.
This is not a seamless method, in general. Use set Loop instead.

file:///E|/manual/Manipulating_Sounds.1.html (1 of 3)2006/11/21 aUscE 06:00:50

Panda3D Manual

3. There is a bug in Miles sound system, which requires a workaround in Panda3D. At one
time, the workaround was causing problems with fmod, until we devised a new
workaround. This bug no longer exists, you can ignore it.

So the easiest way to get a reliable looping sound is to use wav files, and to use set Loop, not

sound intervals. Of course, when it comes time to ship your game, you can convert your
sounds to mp3, but before you do, test your mp3 encoder to see if it contains the blank-space
bug.

Cueing Time

There are getTime(), setTime() and length() functions for sounds. These will respectively,
report the current time position, set the current time position and report the length. All these
are in seconds.

nmySound. | engt h
()

Will return the length of a sound file in seconds.

nmySound. get Ti me
0

Will get the current time the ‘playback head' of a sound is at in seconds.

nmySound. set Ti me
(n)

Will set the 'playhead head' of a sound to n (where is seconds).

NOTE Sounds will start playing IMMEDIATELY after the command is issued. & Calling play() will
cause the sound to start over from the beginning.

Changing Playback speed

You can change the rate at which a sound plays back.

To change a sounds playback speed use....

file:///E|/manual/Manipulating_Sounds.1.html (2 of 3)2006/11/21 sUsE 06:00:50

Panda3D Manual

mySound. set Pl ayRat e
(N

Where N is any float.

NOTE!!! Negative numbers will play a sound backwards. O is 'Pause’ a sound.

You can also get a sound's play rate with..

my Sound. get Pl ayRat e
()

<<prev top next=>>

e

file:///E|/manual/Manipulating_Sounds.1.html (3 of 3)2006/11/21 aUscE 06:00:50

Panda3D Manual

Panda3D Manual: DSP Effects

<<prev top next=>>=> Search

Panda3D 1.3.0 can now make use of FMOD-EX's Audio Effects.

Currently the effects available are...

Panda3D | D Eff ect

DSPChor us Chor us
DSPConpr essor Conpr essi on
DSPD st ort1 on Distortion
DSPEcho Echo [Del ay]|
DSPHI ange Fl ange
DSPHI ghpass H ghpass Filter
DSPI t echo Echo

[For Mod/ Tracker Fil es]
DSPI t | owpass Lowpass Filter

[For Mod/ Tracker Fil es]
DSPLowpass Lowpass Filter
DSPNor mal 1 ze Noraml | ze
DSPPar ameq Paranmetric EQ
DSPPI t chshi Tt Pitchshitter
DSPRever b Reverb

To use an effect do the following.

First create and effect object [we will create an echo for example].

</td>

echo = base. sf xManager Li st[0] . cr eat eDsp(base. sf xManager Li st[0] .
DSPEcho)

The effects are constants in the sound manager classes which is why you need to specify "base.
sfxManagerList[n].<effect>".

Where N is the respective audio manager [0 for Sound, 1 for Music] and

<effect> is the respective effect as listed in the table above.

Once you have your DSP object you can attach it to a sound.
</td>

mySound. addDsp
(echo)

file:///E}/manual/DSP_Effects.1.html (1 of 3)2006/11/21 sUsE 06:00:51

Panda3D Manual

and you are ready to go.

Some Useful DSP commands.

At the interactive prompt to get the parameters of a DSP type...

</td>
dspEffect.|istParaneterlnfo

0

This will list all the DSP parameters and their possible values you can edit.

You edit parameters in your code with the following.
</td>

dspEff ect. set Par anet er (" naneC Par anet er ",
val ue)

The name of Parameter must be in Quotes.

You can retrieve the current parameter with...
</td>

dspEf f ect . get Par anet er
("name Par aneter™)

You can turn a paramter on or off with...

</td>

dspEf f ect . set Bypass
(n)

Where n is a BOOL

You can reset an effect completely to its default values with...

file///E|/manual/DSP_Effects.1.html (2 of 3)2006/11/21 aUcE 06:00:51

Panda3D Manual

</td>

dspEf fect. reset
(n)

And if you need to detach an effect from a sound use...
</td>

nmy Sound. r enoveDsp
(effect)

You can also attach an effect to all the sounds under a Audio Manager with the following...

</td>

base. sf xManager Li st[n] . addDsp
(effect)

NOTE!!! An effect attached to a Manager will affect ALL THE SOUNDS under that manager.

Otherwise the same commands for DSP apply.

<<prev top next>>

file:///E|/manual/DSP_Effects.1.html (3 of 3)2006/11/21 aUxE 06:00:51

Panda3D Manual

Panda3D Manual: 3DAudio

<<prev top next=>=>

Search

As we said Sound Effects and Music are handled separately in Pand3D. Each can handle 16
different sounds. This value is actually set as the audio-cache-limit in the panda config.prc
(found in your install directory) and can be changed. There are times where either sound

effects, music, or both should be disabled and later enabled. These commands affect entire

categories of sounds. Passing True or False in the last 2 functions will disable or enable the
respective groups.

base. di sabl eAl | Audi o()

base. enabl eAl | Audi o()

base. enabl eMusi c(bEnabl eMusi c)
base. enabl eSoundEf f ect s
(bEnabl eSoundEf f ect s)

Explained below is some advanced audio processing routines. Sound Effects and Music in code

are implemented as AudioManager objects. You can access these audio managers with the
following code.

soundEf f ect sMgr = base. sf xManager Li st
[0]

nmusi cMgr = base. sf xManager Li st [1]

Notice that sound effects are the first item in the stxManagerList and the music is next.

A few things can be controlled with AudioManager objects. Setting the doppler factor, dropoff
factor can be set through these objects. Positional audio is implemented through these
objects. A wrapper Audio3DManager class has been implemented to help do positional audio.
Audio3DManager takes as input an audioManager and a listener for the sound. A listener is the
point of reference from where the sound should be heard. For a player in a Panda3D session,
this could be the camera. Sounds further away from the camera will not be loud. Objects
nearer to the camera will be loud.

from direct.showbase i nport Audi o3DManager

audi 03d = Audi o3DMvanager . Audi o3DMVanager (base. sf xManager Li st[0],
carmer a)

To create a sound that is positional, you need to use the loadSfx() function on the
Audio3DManager rather than the normal loader.loadSfx() which is for non-positional sounds. e.
g.

file///E/manual/3DAudio.1.html (1 of 2)2006/11/21 aUcE 06:00:52

Panda3D Manual

mySound = audi 03d. | oadSf x (' bl ue.
wav')

Sounds can be attached to objects such that when they move, the sound source will move
along with them.

audi 03d. att achSoundToOhj ect (nySound,
t eapot)

You can use the Audio3DManager's setSoundVelocity() and setListenerVelocity() to set the
velocity of sounds or the listener to get the doppler pitch shifting of moving objects. If you
would like the Audio3DManager to help you adjust the velocity of moving objects automatically

like it does with their position, you can call setSoundVelocityAuto() or setListenerVelocityAuto
O like this:

audi 03d. set SoundVel oci t y(sound, vel oci t yVect or)
audi 03d. set Li st ener Vel oci ty(vel oci tyVector)

base.cTrav = Col | i si onTraverser ()
audi 03d. set SoundVel oci t yAut o(sound)
audi 03d. set Li st ener Vel oci t yAut o()

Currently, for the latter to work, a CollisionTraverser must be attached to base.cTrav as you

see in the example. If you already have one assigned to do collision detection that will be
sufficient.

The attenuation of moving sounds by distance is based the way sound works in the real world.
By default it assumes a scale of 1 panda unit equal to 1 foot. If you use another scale you'll
need to use setDistanceFactor to adjust the scale. If you want to position the sounds but don't
want the volume to be effected by their distance, you can set the distance factor to O.

audi 03d. set Di st anceFact or
(scal e)

top next=>>=

file///E/manual/3DAudio.1.html (2 of 2)2006/11/21 aUcE 06:00:52

Panda3D Manual

Panda3D Manual: Multi-Channel

<<prev top next=>>

Write Me

top next>=>

file:///E}/manual/Multi-Channel .1.html2006/11/21 sUcE 06:00:52

Panda3D Manual

Panda3D Manual: Intervals

<<prev top next>> Search

Panda3D's Interval system is a sophisticated mechanism for playback of scripted actions. With
the use of Intervals, you can build up a complex interplay of animations, sound effects, or any
other actions, and play the script on demand.

The core of system is the | nt erval class. There are several different kinds of Intervals, which

will be discussed in detail in the following pages, but all of them have in common the following
property: each Interval represents an action (or a series of actions) that occur over a specific,
finite interval of time (hence the name).

The real power of the Interval system comes from Sequences and Parallels, which are a special
kind of Interval that can contain nested Intervals of any kind (including additional Sequences

and/or Parallels). By using these grouping Intervals, you can easily assemble complex scripts
from the basic atoms.

Using Intervals
In any Panda3D module that uses Intervals, you should first import the interval module:

fromdirect.interval.lnterval @ obal inport

*

There are a handful of methods that all Intervals have in common.
To start an Interval playing, use one of the following:

interval .start()

interval .start(startT, endT,

pl ayRat e)

i nterval .l oop()

interval .l oop(startT, endT, playRate)

The three parameters are optional. The startTime and endTime parameters define the subset
of the interval to play; these should be given as times in seconds, measured from the start of
the interval. The playRate, if specified, allows you play the interval slower or faster than real
time; the default is 1.0, to play at real time.

Normally, an Interval will play to the end and stop by itself, but you can stop a playing
Interval prematurely:

file:///El/manual/Intervals.1.html (1 of 3)2006/11/21 sUsE 06:00:53

Panda3D Manual

interval .finish

0

This will stop the interval and move its state to its final state, as if it had played to the end.
This is a very important point, and it allows you to define critical cleanup actions within the
interval itself, which are guaranteed to have been performed by the time the interval is
finished.

You can also temporarily pause and resume an interval:

i nterval . pause()
i nterval . resunme

0

If you pause an interval and never resume or finish it, the remaining actions in the interval will
not be performed.

And you can jump around in time within an interval:

interval .setT
(tinme)

This causes the interval to move to the given time, in seconds since the beginning of the
interval. The interval will perform all of the actions between its current time and the new time;
there is no way to skip in time without performing the intervening actions.

It is legal to set the time to an earlier time; the interval will do its best to reset its state to the
previous state. In some cases this may not be possible (particularly if a Function Interval is

involved).

Finally, there are a handful of handy query methods:

i nterval . get Duration

0

Returns the length of the interval in seconds.

interval .getT

0

file:///E)/manual/Intervals.1.html (2 of 3)2006/11/21 sUsE 06:00:53

Panda3D Manual

Returns the current elapsed time within the interval, since the beginning of the interval.

interval .isPl aying

0

Returns true if the interval is currently playing, or false if it was not started, has already
finished, or has been explicitly paused or finished.

i nterval . i sStopped

0

Returns true if the interval has not been started, has already played to its completion, or has
been explicitly stopped via finish(). This is not quite the same this as (not interval.

i sPl ayi ng()), since it does not return true for a paused interval.

<<prev top next>>

=

file:///E|/manual/Intervals.1.html (3 of 3)2006/11/21 sUcE 06:00:53

Panda3D Manual

Panda3D Manual: Lerp Intervals

<<prev top next>> Search

The Lerplntervals are the main workhorse of the Interval system. The word "lerp" is short for
"linearly interpolate”, and means to smoothly adjust properties, such as position, from one
value to another over a period of time. You can use Lerplntervals to move and rotate objects
around in your world.

The Lerplntervals are also the most complex of all of the intervals, since there are many
different parameters that you might want to specify to control the lerp.

An overview of the NodePath-based Lerplntervals

Most Lerplntervals adjust the various transform properties of a NodePath, such as pos, hpr,
and scale, and they all have a similar form. Consider the LerpPoslInterval, which will smoothly
move a model from one point in space to another:

i = LerpPoslnterval (nodel, duration, pos, startPos = None,
ot her = None, bl endType = 'noBl end',
bakel nStart = 1, fluid = 0, nane =

None)

The only required parameters are the model whose position is being changed, the length of
time to apply the move, and the model's new position. The remaining parameters are all
optional, and are often omitted.

Here is a breakdown of what each parameter means:

model The model whose position is being changed. This should be a NodePath.
duration The duration of the lerp, in seconds.

pos The model's target position (the new position it will move to). Usually, this is a
Point3(Xx, y, z), but as a special advanced feature, it might be a Python function
that, when called, returns a Point3. If it is a function, it will be called at the time
the lerp actually begins to play.

startPos The starting position of the model at the beginning of the lerp. If this is omitted,
the model will start from its current position. As with pos, above, this might be a
Python function, which will be called at the time the lerp actually begins.
Note that if you intend to move an object from its current position, it is better to
omit this parameter altogether rather than try to specify it explicitly with
something like st art Pos=0bj ect . get Pos() , since the latter will be evaluated at

the time the interval is created, not when it is played. This is especially true if
you plan to embed a series of consecutive Lerplntervals within a Sequence.

file///Ei/manual/Lerp_Intervals.1.html (1 of 3)2006/11/21 sUsE 06:00:54

Panda3D Manual

other Normally, this is set to None, to indicate a normal lerp. If a NodePath is passed
in, however, it indicates that this is a relative lerp, and the pos and startPos will
be computed as a relative transform from that NodePath. The relative transform
is recomputed each frame, so if the other NodePath is animating during the lerp,
the animation will be reflected here. For this reason, you should not attempt to
lerp a model relative to itself.

blendType This specifies how smoothly the lerp starts and stops. It may be any of the
following values:

‘easeln’ The lerp begins slowly, ramps up to full speed, and stops abruptly.
‘easeOut’ The lerp begins at full speed, and then slows to a gentle stop at the
end.

‘easelnOut’ The lerp begins slowly, ramps up to full speed, and then slows to a
gentle stop.

'noBlend’ The lerp begins and ends abruptly.

bakelnStart This is an advanced feature. Normally, this is 1, which means the original,
starting position of the model is determined when the interval starts to play, and
saved for the duration of the interval. You almost always want to keep it that
way. If you pass this as 0, however, the starting position is cleverly re-inferred
at each frame, based on the model's current position and the elapsed time in the
lerp; this allows your application to move the model even while it is being lerped,
and the lerp will adapt. This has nothing to do with controlling when the startPos
parameter is evaluated.

fluid If this is 1, then the lerp uses set Fl ui dPos() rather than set Pos() to animate
the model. See Rapidly-Moving Objects. This is meaningful only when the

collision system is currently active on the model. Since usually there is no reason
to have the collision system active while a model is under direct application
control, this parameter is rarely used.

name This specifies the name of the lerp, and may be useful for debugging. Also, by
convention, there may only be one lerp with a given name playing at any given
time, so if you put a name here, any other interval with the same name will
automatically stop when this one is started. The default is to assign a unique
name for each interval.

The rest of the NodePath-based Lerplntervals

Many NodePath properties other than position may be controlled via a lerp. Here is the list of
the various Lerplntervals that control NodePath properties:

Ler pPosl nt erval (nmodel , duration, pos, startPos)

Ler pHpr I nt erval (nmodel , duration, hpr, startHpr)

Ler pQuat I nt erval (nodel , duration, quat, startQuat)
Ler pScal el nt erval (nodel, duration, scale, startScale)
Ler pShear | nt erval (nodel , duration, shear, startShear)
Ler pCol or I nt erval (nodel , duration, color, startCol or)
Ler pCol or Scal el nt erval (nodel , duration, col orScal e,
st art Col or Scal e)

Each of the above has a similar set of parameters as those of LerpPoslinterval; they also have

file///E/manual/Lerp_lIntervals.1.html (2 of 3)2006/11/21 sUsE 06:00:54

Panda3D Manual

a similar shortcut (e.g. nodel . hprinterval (), etc.)

Finally, there are also a handful of combination Lerplntervals, that perform multiple lerps at
the same time. (You can also achieve the same effect by combining several Lerplntervals
within a Parallel, but these combination intervals are often simpler to use, and they execute
just a bit faster.)

Ler pPosHpr | nt erval (nodel , duration, pos, hpr, startPos, startHpr)

Ler pPosQuat | nt erval (nodel , duration, pos, quat, startPos, startQuat)

Ler pHpr Scal el nt erval (nodel , duration, hpr, scale, startHpr, start Scal e)
Ler pQuat Scal el nt erval (nodel , duration, quat, scale, startQuat, startScal e)
Ler pPosHpr Scal el nt erval (nodel , duration, pos, hpr, scale, startPos, startHpr,
start Scal e)

Ler pPosQuat Scal el nt erval (nodel , duration, pos, quat, scale, startPos,
start Quat, start Scal e)

Ler pPosHpr Scal eShear | nt erval (nmodel , duration, pos, hpr, scale, shear,
startPos, startHpr, startScal e, startShear)

Ler pPosQuat Scal eShear I nt erval (nodel , duration, pos, quat, scale, shear,
startPos, startQuat, startScale, start Shear)

Other types of Lerplinterval

Beyond animating NodePaths, you can create a Lerplnterval that blends any parameter of any
object over time. This can be done with a LerpFunctioninterval:

def myFunction(t):
do sonet hi ng based on t

Ler pFunc(myFunction, fronData = 0, toData 1, duration =

=
0.0
b

| endType = 'noBlend', extraArgs =[], nane None)

This advanced interval has many things in common with all of the above Lerplntervals, but
instead of directly animating a value, it instead calls the function you specify, passing a single
floating-point parameter, t, that ranges from fromData to toData over the duration of the
interval.

It is then up to your function to set whatever property of whatever object you like according to
the current value of t.

<<prev top next>> Search

file:///El/manual/Lerp_Intervals.1.html (3 of 3)2006/11/21 aUsE 06:00:54

Panda3D Manual

Panda3D Manual: Function Intervals

<<prev top next>> Search

Function intervals are different from function lerp intervals. While the function lerp interval
passes data to a function over a period of time, a function interval will simply execute a
function when called. As such, a function intervala€ ™s use really appears when combined with
sequences and parallels. The function intervala€ ™s format is simple.

i nt erval Nane = Func
(nmyFuncti on)

You pass the function without parentheses (i.e. you pass Func a function pointer). If
myFunct i on takes arguments than pass them as arguments to Func as follows:

def nyFunction(argl, arg2):
bl ah

i nterval Name = Func(myFunction, argl,
ar g2)

Functions cannot be called on their own in sequences and parallels, so it is necessary to wrap
them in an interval in order to call them. Since function intervals have no duration, they
complete the moment they are called.

<<prev top next>> Search

file:///E|/manual/Function_Intervals.1.ntml2006/11/21 cUcE 06:00:54

Panda3D Manual

Panda3D Manual: Actor Intervals

<<prev top next>> Search

Actor intervals allow actor animations to be played as an interval, which allows them to be
combined with other intervals through sequences and parallels.

The subrange of the animation to be played may be specified via frames (startFrame up to and
including endFrame) or seconds (startTime up to and including endTime). It may also be
specified with a startFrame or startTime in conjunction with the duration, in seconds. If none
of these is specified, then the default is to play the entire range of the animation.

If endFrame is before startFrame, or if the play rate is negative, then the animation will be
played backwards.

You may specify a subrange that is longer than the actual animation, but if you do so, you
probably also want to specify either loop = 1 or constrainedLoop = 1; see below.

The loop parameter is a boolean value. When it is true, it means that the animation restarts
and plays again if the interval extends beyond the animation's last frame. When it is false, it
means that the animation stops and holds its final pose when the interval extends beyond the
animation’'s last frame. Note that, in neither case, will the Actorinterval loop indefinitely: all
intervals always have a specific, finite duration, and the duration of an Actorinterval is
controlled by either the duration parameter, the startTime/endTime parameters, or the
startFrame/endFrame parameters. Setting loop=1 has no effect on the duration of the
Actorinterval, it only controls what the actor does if you try to play past the end of the
animation.

The parameter constrainedLoop works similarly to loop, but while loop = 1 implies a loop
within the entire range of animation, constrainedLoop = 1 implies a loop within startFrame and
endFrame only. That is, if you specify loop = 1 and the animation plays past endFrame, in the
next frame it will play beginning at frame 0; while if you specify constrainedLoop = 1 instead,
then the next frame after endFrame will be startFrame again.

All parameters other than the animation name are optional.

file///E/manual/Actor_Intervals.1.html (1 of 2)2006/11/21 aUsE 06:00:55

Panda3D Manual

nyl nterval = nyactor.actorlnterval

(

"Ani mati on Nang",
| oop= <0 or 1>,
contrai nedLoop= <0 or 1>,
dur ati on= D,
start Ti me= T1,
endTi me= T2,
start Franme= N1,
endFr ane= N2,

pl ayRat e R
part Name PN,

| odNane =

<<prev top next>>

-

file:///E/manual/Actor_Intervals.1.html (2 of 2)2006/11/21 aUsE 06:00:55

Panda3D Manual

Panda3D Manual: Sound Intervals

<<prev top next=>>=> Search

See Loading and Playing Sounds and Music for basic information on how to load and play
sounds.

Sound intervals play sounds from inside an interval. Like actor intervals, sound intervals have
a loop parameter and the ability to be paused. Sound intervals also have volume and start

time parameters.

my Sound=| oader . | oadSf x(" mySound.

wav")
nyl nterval = Soundl nt erval (
nmy Sound,

| oop = 0 or 1,

duration = nyDurati on,
vol ume = nyVol une,
startTinme = nyStartTi me

The looping provided by the sound interval is not clean. There will be a pause between loops of
roughly a tenth of a second. See Loading and Playing Sounds and Music for a better way to

loop sounds.

<<prev top next>> Search

file:///E|/manual/Sound_Intervals.1.ntml2006/11/21 sUcE 06:00:56

Panda3D Manual

Panda3D Manual: Motion Path and Particle Intervals

<<prev top next>>

Motion paths are an advanced feature of Panda3D, and they are discussed later. Still, motion
paths have their own intervals. A motion path interval is much like a function interval in that
there are no additional parameters other than the motion path and the NodePath it is
affecting.

i nt erval Name = Mopat hl nterval (<Mdtion Path Name>, NodePat h, &€~ <Nanme>a
€™

Particle effects can be run from inside intervals as well:

i nterval Name = Particl el nterval
(
<Particle Effect Nane>,
<Par ent >,
wor | dRel ative = 1,
loop = 0 or 1,
duration = nyDuration

<<prev top next=>>

-

file:///E|/manual/Motion_Path_and_Particle_Intervals.1.htm|2006/11/21 aUsE 06:00:56

Panda3D Manual

Panda3D Manual: Sequences and Parallels

<<prev top next=>>=> Search

You will need to have this include statement to use Sequences and Parallels.

fromdirect.interval.lnterval G obal inport

*

Sequences and Parallels can control when intervals are played. Sequences play intervals one
after the other, effectively a &€ cedo in ordera€ « command. Parallels are a &€ cedo together,a
€« playing all intervals at the same time. Both have simple formats, and every kind of interval
may be used.

mySequence = Sequence(<lnterval >, &€}, <Interval > nane = "Sequence
mrrell)
nyParal l el = Parallel(<Interval > &€} ,<Interval > nane = "Parall el
mn.ell)

Sequences and Parallels may also be combined for even greater control. Also, there is a wait
interval that can add a delay to Sequences. While it can be defined beforehand, it does not
have to be.

delay = Wait(2.5)
pandaWal kSeq = Sequence(Par al | el (pandaVal k, pandaVWal kAni nm) ,
del ay,

Par al | el (pandaWal kBack, pandaWal kAni m), Wait(1.0))

In the above example, a wait interval is generated. After that, a Sequence is made that uses a
Parallel, the defined wait interval, another Parallel, and a wait interval generated in the
Sequence. Such Sequences can get very long very quick, so it may be prudent to define the
internal Parallels and Sequences before creating the master Sequence.

<<prev top next=>> Search

file:///E|/manual/Sequences_and_Parallels.1.html2006/11/21 aUcE 06:00:57

Panda3D Manual

Panda3D Manual: Projectile Intervals

<<prev top next=>>=> Search

Projectile intervals are used to move a nodepath through the trajectory of a projectile under
the influence of gravity.

nyl nterval = Projectilelnterval (<Node Pat h>, startPos = Point3(X Y,Z), endPos
= Point3(X, Y, 2),

duration = <Time in seconds>, startVel = Point3(X Y,2Z), endZ = Point3(XY,
Z),

gravityMilt = <multiplier> nane = <Nane>)

All parameters don't have to be specified. Here are a combination of parameters that will allow
you to create a projectile interval. (If startPos is not provided, it will be obtained from the

node's position at the time that the interval is first started. Note that in this case you must
provide a duration.)

. startPos, endPos, duration - go from startPos to endPos in duration seconds
. startPos, startVel, duration - given a starting velocity, go for a specific time period
. startPos, startVel, endZ - given a starting velocity, go until you hit a given Z plane

In addition you may alter gravity by providing a multiplier in ‘gravityMult'. '2" will make gravity
twice as strong, '.5"' half as strong.'-1" will reverse gravity.

Here's a little snippet of code that will demonstrate projectile intervals:

camer a. set Pos(0, - 45, 0)

| oad the ball nodel

self.ball = | oader. | oadModel ("sniley")
sel f. ball.reparent To(render)

sel f. ball.set Pos(-15, 0, 0)

setup the projectile interval

self.trajectory = Projectilelnterval (self.ball, startPos = Point 3(-
15, 0, 0),

endPos = Point3(15,0, 0), duration = 1)
self.trajectory. | oop()

<<prev top next=>> Search

file:///E|/manual/Projectile_Intervals.1.html2006/11/21 aUsE 06:00:57

Panda3D Manual

Panda3D Manual: Tasks and Event Handling

<<prev top next>> Search

Tasks are subroutines that you write that get called by Panda every frame. Event handlers are
subroutines that you write that get called by Panda when certain special events occur.
Together, these two mechanisms enable you to update your panda world between rendering
steps.

<<prev top next=>=> -

file///E/manual/Tasks_and_Event_Handling.1.html2006/11/21 sUaE 06:00:58

Panda3D Manual

Panda3D Manual: Tasks

<<prev top next>> Search

Tasks are special functions that are called once, each frame, while your application executes.
They are similar in concept to threads, but in Panda, tasks are not separate threads; instead,
all tasks are run cooperatively, one at a time, within the main thread. This design simplifies
game programming considerably by removing the requirement to protect critical sections of
code from mutual access.

When you start Panda3D by importing DirectStart, a handful of tasks are created by default,
but you are free to add as many additional tasks as you like.

The task function

A task is defined with a function or class method; this function is the main entry point for the
task and will be called once per frame while the task is running. By default, the function
receives one parameter, which is the task object; the task object carries information about the
task itself, such as the amount of time that the task has been running.

Your task function should return when it has finished processing for the frame. Because all
tasks are run in the same thread, you must not spend too much time processing any one task
function; the entire application will be locked up until the function returns.

The task function may return either Task. cont to indicate that the task should be called again
next frame, or Task. done to indicate that it should not be called again. If it returns None

(which is to say, it does not return anything), then the default behavior is to call the task
function again.

The below example imports the Task module and shows a function used as a task.

fromdirect.task inmport Task

#This task runs for two seconds, then prints
done
def exanpl eTask(t ask):
if task.tine < 2.0:
return Task. cont
print ' Done'
return Task. done

The Task Manager

All tasks are handled through the global Task Manager object, called t askMygr in Panda3D. The

Task Manager keeps a list of all currently-running tasks. To add your task function to the task
list, call t askMyr. add() with your function and an arbitrary name for the task.

file:///E)/manual/Tasks.1.ntml (1 of 3)2006/11/21 aUaE 06:00:58

Panda3D Manual

t askMgr . add(exanpl eTask,
" MyTaskNane')

To remove the task and stop it from executing, call taskMgr.remove(). You can pass in either
the name of the task, or the task object (which was returned by t askMyr . add() , above).
taskMgr. renove

(" MyTaskNane')

To print the list of tasks currently running, simply print out t askMyr . Among your own tasks,
you may see the following system tasks listed:

dataloop Processes the keyboard and mouse inputs
tkloop Processes Tk GUI events
eventManager Processes events generated by C++ code, such as collision events
igloop Draws the scene
Task timing

To see the specific timing information for each task when you print taskMgr, add the following
line to your Config.prc file

task-ti nmer-verbose
#Ht

(see The Configuration File for config syntax)

The do-later task

A useful special kind of task is the do-later: this is similar to a task, but rather than being
called every frame it will be called only once, after a certain amount of time (in seconds) has
elapsed. You can, of course, implement a do-later task with a regular task that simply does
nothing until a certain amount of time has elapsed (as in the above example), but using a do-
later is a much more efficient way to achieve the same thing, especially if you will have many
such tasks waiting around.

taskMgr . doMet hodLat er (del ayTi me, myFunction, ' Task
Nane')

file:///E)/manual/Tasks.1.ntml (2 of 3)2006/11/21 aUaE 06:00:58

Panda3D Manual

In this case myFunction must accept a task variable. If you wish to use a function that does
not accept a task variable:

t askMgr . doMet hodLat er (del ayTi me, nyFunction, 'Task Nane', extraArgs =
[vari abl es])

Note: if you wish to call a function which takes no variables simply pass extraArgs = []

<<prev top next>>

=

file:///E|/manual/Tasks.1.html (3 of 3)2006/11/21 aUxE 06:00:58

Panda3D Manual

Panda3D Manual: Event Handlers

<<prev top next>> Search

Events occur either when the user does something (such as clicking a mouse or pressing a
key) or when sent by the script using nessenger . send() . When an event occurs, Panda's

"messenger" will check to see if you have written an "event handler" routine. If so, your event
handler will be called. The messenger system is object-oriented, to create an event handler,
you have to first create a class that inherits from DirectObject. Your event handler will be a
method of your class.

Defining a class that can Handle Events
The first step is to import class DirectObject:

from direct.showbase i nport
Di rect Obj ect

With DirectObject loaded, it is possible to create a subclass of DirectObject. This allows the
class to inherit the messaging APl and thus listen for events.

cl ass nmyC assNanme(Direct Obj ect .
Di rect Obj ect) :

The sample below creates a class that can listen for events. The "accept" function notifies
panda that the printHello method is an event handler for the mousel event. The "accept”
function and the various event names will be explained in detail later.

class Hello(DirectCbject.DirectQbject):
def __init__ (self):
sel f.accept (' nmousel', sel f.
printHel | o)
def printHello(self):
print 'Hello!'
h = Hello()

Event Handling Functions

Events first go to a mechanism built into panda called the "Messenger." The messenger may
accept or ignore events that it receives. If it accepts an event, then an event handler will be
called. If ignored, then no handler will be called.

An object may accept an event an infinite number of times or accept it only once. If checking

file:///E/manual/Event_Handlers.1.html (1 of 4)2006/11/21 aUaE 06:00:59

Panda3D Manual

for an accept within the object listening to it, it should be prefixed with self. If the accept
command occurs outside the class, then the variable the class is associated with should be
used.

nyDi rect Cbj ect. accept (' Event Nane', nyDi rect Obj ect Met hod)
nyDi rect Obj ect . accept Once(' Event Nane',
nyDi r ect Obj ect Met hod)

Specific events may be ignored, so that no message is sent. Also, all events coming from an
object may be ignored.

nmyDi rect Cbj ect . i gnore(' Event
Nane')
nmyDi rect Obj ect. i gnoreAll ()

Finally, there are some useful utility functions for debugging. The messenger typically does not
print out when every event occurs. Toggling verbose mode will make the messenger print
every event it receives. Toggling it again will revert it to the default. A number of methods
exist for checking to see what object is checking for what event, but the print method will
show who is accepting each event. Also, if accepts keep changing to the point where it is too
confusing, the clear method will start the messenger over with a clear dictionary.

nessenger . t oggl eVer bose

0

print nessenger
messenger . cl ear ()

Sending Custom Events
Custom events can be sent by the script using the code
nessenger . send(' Event

Nane')

A list of parameters can optionally be sent to the event handler. Parameters defined in accept
() are passed first, and then the parameters defined in send() . for example this would print
out "eggs sausage foo bar":

file:///E/manual/Event_Handlers.1.html (2 of 4)2006/11/21 aUaE 06:00:59

Panda3D Manual

cl ass Test (Di rect bj ect):
def __init_ (self):
sel f.accept (' span , sel f. OnSpam [' eggs', ' sausage'])
def OnSpan(self,a,b,c,d):
print a,b,c,d
Test ()
nmessenger. send(' spam ,['foo', ' bar'])
run()

A Note on Object Management

When a DirectObject accepts an event, the messenger retains a reference to that DirectObject.

To ensure that objects that are no longer needed are properly disposed of, they must ignore
any messages they are accepting.

For example, the following code may not do what you expect:

i mport direct.directbase.DirectStart
from direct.showbase i nport Direct Qbject
from pandac. PandaMbdul es i nport *

class Test(Direct Qbject.DirectCbject):

def __init_ (self):
sel f.accept ("FirezZeM ssil es",self. fireMssil es)

def fireMssiles(self):
print "Mssiles fired! Gh noes!"

foo=Test () # create our test object
del foo # get rid of our test object

nmessenger. send("Fi reZeM ssi |l es") # oops! Wiy did those nissiles fire? run

0

Try the example above, and you'll find that the missiles fire even though the object that would
handle the event had been deleted.

One solution (patterned after other parts of the Panda3d architecture) is to define a "destroy"

method for any custom classes you create, which calls "ignoreAll" to unregister from the event-
handler system.

file:///E/manual/Event_Handlers.1.html (3 of 4)2006/11/21 aUaE 06:00:59

Panda3D Manual
import direct.directbase. DirectStart

fromdirect. showbase i nport Directbject
from pandac. PandaMbdul es i nport *

class Test(Direct Qbject.DirectCbject):

def __init_ (self):
sel f.accept ("FirezeM ssiles",self. _fireMssiles)

def _fireMssiles(self):
print "Mssiles fired! Ch noes!"

function to get rid of nme
def destroy(self):
sel f.ignoreAll ()

foo=Test () # create our test object
foo.destroy() # get rid of our test object del foo

nmessenger . send("FireZzeM ssiles") # No missiles fire run

0

<<prev top next=>>

file:///E|/manual/Event_Handlers.1.html (4 of 4)2006/11/21 aUcE 06:00:59

Panda3D Manual

Panda3D Manual: Main Loop

<<prev top next>> Search

A typical form of a Panda program may my the following:

from direct.showbase. Di rect Cbj ect inmport DirectObject # To listen for
Event s

class Worl d(Direct Qbj ect):
_init__(self):
#initialize instance self. variables here
met hod1():
Panda source goes here

w = World()
run() # main | oop

run is a function that never returns. It is the main loop.

For an alternative, run() could not be called at all. Panda doesn't really need to own the main
loop.

Instead, taskMgr.step() can be called intermittently, which will run through one iteration of
Panda's loop. In fact, run() is basically just an infinite loop that calls Task.step() repeatedly.

taskMgr.step() must be called quickly enough after the previous call to taskMgr.step(). This
must be done quick enough to be faster than the frame rate.

This may useful when an imported third party python module that also has its own event loop
wants and wants to be in control of program flow. A third party example may be Twisted, the
event-driven networking framework.

The solution to this problem is to create two program threads, one for Panda and one for
Twisted. Two queue structures, an input queue and an output queue are created to exist, to
pass messages between the two threads.

In the Panda3D area of the code, create a task which runs once per frame, which checks the
incoming Queue for messages from the server and updates world objects in Panda as needed.
Player inputs call event handlers which place messages on the outgoing queue. In the Twisted
area of the code, create a loop which periodically checks the outgoing queue for messages,
and processes them as needed. Processed messages are then placed on the incoming queue
and sent to the Panda task as they happen. See http://twistedmatrix.com/trac/

Another third party example is wxPython GUI, that is a blending of the wxWidgets C++ class
library with the Python programming language. Panda's run() function, and wx's app.MainLoop
() method, both are designed to handle all events and never return. They are each supposed
to serve as the one main loop of the application. Two main loops can not effectively run an

file///E/manual/Main_Loop.1.html (1 of 2)2006/11/21 sUaE 06:01:00

http://twistedmatrix.com/trac/

Panda3D Manual

application.

wxPython also supplies a method that can be called occasionally, instead of a function that
never returns. In wx's case, it's app.Dispatch().

A choice can be made whether or not to make wx handle the main loop, and call taskMgr.step
(O intermittently, or whether or not to make Panda handle the main loop, and call app.Dispatch
(O intermittently. The better performance choice is to have panda handle the main loop.

In the case that Panda handles the main loop, a task needs to be started to call app.Dispatch()
every frame, if needed. Instead of calling wxPython's app.MainLoop(), do something like the
following:

app = wx. App(0)

def handl eWwkEvent s(t ask):
whi | e app. Pendi ng():
app. Di spat ch()
return Task. cont

taskMgr . add(handl eWEvent s,
" handl eWEvent s')
run() # panda handl es the main | oop

In the case that wxPython handles the main loop using app-MainLoop(), to keep the framerate
quick and reduce the CPU, add sleep(0.001) in the body of the program. This will yield to
panda. After the sleep is over, control will return to wxPython. wxPython can then check for
user events. wxPython's user generated callback events are generally generated only at
infrequent intervals (based on when the user is interacting with the window). This is
appropriate for a 2-D application that is completely response-driven, but not very useful for a
3-D application that continues to be active even when a user is not interacting with it.

<<prev top next=>> Search

file///E/manual/Main_Loop.1.html (2 of 2)2006/11/21 sUaE 06:01:00

Panda3D Manual

Panda3D Manual: Fog and Lighting

<<prev top next>> Search

Fog and lighting are two techniques to add dimension to a virtual space. Panda3D contains a
variety of lights that work by vertex lighting. Vertex lighting shades an entire polygon, so the
more polygons the world uses, the better the lighting becomes. In areas where lighting is

critical, it is best to tessellate the area as much as can be done without killing the frame rate.

<<prev top next=>=> -

filel///E/manual/Fog_and_Lighting.1.html2006/11/21 sUcE 06:01:01

Panda3D Manual

Panda3D Manual: Fog

<<prev top next=>>=> Search

Creating fog is quite simple:

nyFog = Fog("Fog Nane")

nyFog. set Col or (R, G, B)

nyFog. set ExpDensity(Float 0 to
1)

render . set Fog(nyFog)

However, there is more here than meets the eye. We have created a fog node, which goes into
the scene graph. Therefore, the fog has a position, a place where the fog is (conceptually)
thickest.

If the fog object is not parented into the scene graph (in the example above, for instance),
then the fog's position is ignored, and the fog is camera-relative. Likewise, if the fog is
exponential, the fog's position is ignored, and the fog is camera-relative.

The set Fog directive creates a fog attribute object. Like any Render Attribute, the fog attribute

affects the node that it is attached to, and any nodes below it in the scene graph. So you can
easily cause only a subset of the objects (or just a single model) to be affected by the fog, by
calling set Fog on the root of the subgraph you want to be affected. To remove the fog

attribute later, use the cl ear Fog directive:
render . cl ear Fog

0

While you have fog in effect, it is often desirable to set the background color to match the fog:

base. set Backgr oundCol or
(myFogCol or)

<<prev top next=>=> -

file:///E|/manual/Fog.1.html2006/11/21 aUxE 06:01:01

Panda3D Manual

Panda3D Manual: Lighting

<<prev top next>> Search

Panda3D defines four different kinds of light objects: point, directional, ambient, and spotlight.
Each kind of light has a slightly different effect when it is enabled; the differences between the
lights are discussed below.

Each light is a node that should be attached somewhere within the scene graph. All lights have
a color, which is specified by | i ght . set Col or (VBase4(r, g, b, a)). The default color is full

white: set Col or (VBase4(1, 1, 1, 1)). The alpha component is largely irrelevant.

Most lights also have a position and/or orientation, which is determined by the basic scene
graph operations like set Pos(), set Hpr (), etc. The | ookAt () method is particularly useful for

pointing spotlights and directional lights at a particular object.

Note that, unlike a real, physical light bulb, the light objects are not themselves directly
visible. Although you can't see a Panda light itself, you can see the effect it has on the
geometry around it. If you want to make a light visible, one simple trick is to load a simple
model (like a sphere) and parent it directly to the light itself.

In general, you can create a light and add it into the scene graph like any other node.
However, because of a problem with multiple inheritance, for the moment you have to call
upcast ToPandaNode() to put a light in the scene graph, like this:

dlight = Directional Light('dlight")
dl np = render. att achNewNode(dl i ght . upcast ToPandaNode
()

If you forget to use upcast ToPandaNode() , Panda will almost certainly crash. Note that this

will no longer be true in Panda3D 1.1. In version 1.1, you can treat the light as an ordinary
node without having to upcast it first.

Simply creating the light and putting it in the scene graph doesn't, by itself, have any visible
effect. In order to turn the light on, you have to first decide which object or objects will be
illuminated by the light. To do this, use the nodePat h. set Li ght () method, which turns on the

light for the indicated NodePath and everything below it in the scene graph.

In the simplest case, you want all of your lights to illuminate everything they can, so you turn
them on at render, the top of the scene graph:

render. set Li ght
(dl np)

filel///E/manual/Lighting.1.html (1 of 3)2006/11/21 aUoE 06:01:02

Panda3D Manual

To turn the light off again, you can remove the light setting from render:

render. cl ear Li ght
(dl np)

You could also apply the set Li ght () call to a sub-node in the scene graph, so that a given
light only affects a particular object or group of objects.

Note that there are two (or more) different NodePaths involved here: the NodePath of the light
itself, which defines the position and/or orientation of the light, and the NodePath(s) on which
you call set Li ght (), which determines what subset of the scene graph the light illuminates.

There's no requirement for these two NodePaths to be related in any way.
Point Lights

Point lights are the easiest kind of light to understand: a point light simulates a light
originating from a single point in space and shining in all directions, like a very tiny light bulb.
A point light's position is important, but its orientation doesn't matter.

plight = PointLight('plight")
plight.setCol or(VBase4(0.2, 0.2, 0.2, 1))
pl np = render. att achNewNode(pl i ght . upcast ToPandaNode

()
pl np. set Pos(10, 20, O0)
render . set Li ght (pl np)

Directional Lights

A directional light is an infinite wave of light, always in the same direction, like sunlight. A
directional light's position doesn't matter, but its orientation is important. The default
directional light is shining down the forward (+Y) axis; you can use nodePat h. set Hpr () or

nodePat h. | ookAt () to rotate it to face in a different direction.

dlight = Directional Light('dlight")
dl i ght. set Col or (VBase4(0.8, 0.8, 0.5, 1))
dl np = render. att achNewNode(dl i ght . upcast ToPandaNode

())
dl np. set Hpr (0, -60, 0)
render. set Li ght (dl np)

Ambient Lights

An ambient light is used to fill in the shadows on the dark side of an object, so it doesn't look

filel///E/manual/Lighting.1.html (2 of 3)2006/11/21 aUoE 06:01:02

Panda3D Manual

completely black. The light from an ambient light is uniformly distributed everywhere in the
world, so the ambient light's position and orientation are irrelevant.

Usually you don't want to create an ambient light without also creating one of the other kinds
of lights, since an object illuminated solely by ambient light will be completely flat shaded and
you won't be able to see any of its details. Typically, ambient lights are given a fairly dark gray
color, so they don't overpower the other lights in the scene.

alight = AnbientLight('alight")
al i ght. set Col or (VBase4(0.2, 0.2, 0.2, 1))
al np = render. att achNewNode(al i ght . upcast ToPandaNode

()
render . set Li ght (al np)

Spotlights

Spotlights represent the most sophisticated kind of light. A spotlight has both a point and a
direction, and a field-of-view. In fact, a spotlight contains a lens, just like a camera does; the
lens should be a PerspectiveLens and is used to define the area of effect of the light (the light
illuminates everything within the field of view of the lens).

Note that the English word "spotlight” is one word, as opposed to the other kinds of lights,
which are two words. Thus, the class name is correctly spelled "Spotlight”, not "SpotLight".

Also, because a spotlight has a different inheritance than the other kinds of lights, you need to
use upcast ToLensNode() instead of upcast ToPandaNode() .

slight = Spotlight('slight')

slight.setCol or(VBase4(1, 1, 1, 1))

| ens = PerspectivelLens()

slight.setlLens(lens)

sl np = render. att achNewNode(sl i ght. upcast ToLensNode
()

sl np. set Pos(10, 20, 0)

sl np. | ookAt (myQbj ect)

render . set Li ght (sl np)

<<prev top next>=>

filel///E/manual/Lighting.1.html (3 of 3)2006/11/21 aUoE 06:01:02

Panda3D Manual

Panda3D Manual: Example

<<prev top next>>

Here is an example of lighting. There are an ambient light and two directional lights lighting the
scene, and a green ambient light that only affects one of the pandas.

i mport direct.directbase.DirectStart
f rom pandac. PandaMbdul es i nport *

Put two pandas in the scene, panda x and panda Y.
x= | oader . | oadvbdel (" panda")

X. reparent To(render)

X. set Pos(10, 0, - 6)

y= | oader . | oadModel (" panda")
y. reparent To(render)
y. set Pos(- 10, 0, - 6)

Position the canmera to view the two pandas.
base. trackbal | . node() . set Pos(0, 60, 0)

Now create sone lights to apply to everything in the scene.

Create Anmbi ent Light

anbi ent Li ght = Anbi ent Li ght (' anbi ent Li ght")

anbi ent Li ght . set Col or (Vec4(0.1, 0.1, 0.1, 1))

anbi ent Li ght NP = render. att achNewNode(anbi ent Li ght . upcast ToPandaNode())
render . set Li ght (anbi ent Li ght NP)

Directional light 01

directional Light = Directional Light("directional Light")

di rectional Li ght.setColor(Vec4(0.8, 0.2, 0.2, 1))

di rectional Li ght NP = render. att achNewNode(directional Li ght.upcast ToPandaNode())
This light is facing backwards, towards the canera.

di rectional Li ght NP. set Hpr (180, -20, 0)

render. set Li ght (di recti onal Li ght NP)

Directional Iight 02

directional Light = Directional Light("directional Light")

directional Li ght.setColor(Vec4(0.2, 0.2, 0.8, 1))

di rectional Li ght NP = render. att achNewNode(directional Li ght. upcast ToPandaNode())
This light is facing forwards, away fromthe canera.

di rectional Li ght NP. set Hpor (0, -20, 0)

render . set Li ght (di recti onal Li ght NP)

Now attach a green |light only to object x.

anbi ent = Anbi ent Li ght (' anbi ent ')

anbi ent . set Col or (Vec4(.5,1,.5,1))

anbi ent NP = x. att achNewNode(anbi ent . upcast ToPandaNode())

If we did not call setLightOf() first, the green |ight would add to
the total set of lights on this object. Since we do call

file:///E|/manual/Example.1.html (1 of 2)2006/11/21 aUxE 06:01:03

Panda3D Manual

setLightOf(), we are turning off all the other lights on this
object first, and then turning on only the green |ight.
X.setLight O f ()

X. set Li ght (anbi ent NP)

#run the exanpl e
run()

<<prev top next=>

| -

file:///E)/manual/[Example.1.html (2 of 2)2006/11/21 aUcE 06:01:03

Panda3D Manual

Panda3D Manual: Text Rendering

<<prev top next>> Search

Panda includes support for easily rendering dynamic text onscreen or in the 3-d world. It
supports full use of the Unicode character set, so it can easily render international languages
(including Asian languages, when used with an appropriate font).

There are three interfaces for creating text, depending on your requirements: the TextNode,

which is the fundamental text-rendering class and serves as the implementation for the other
two, OnscreenText, a simple high-level wrapper around TextNode, and DirectLabel, which

integrates with the rest of the DirectGUI system.

International character sets

By default, Panda assumes the text strings you give it are formatted in the iso8859 character
set, also called latin-1 on Linux. This is a standard character set that uses one byte per
character and supports most Western European languages, and is likely to be the character set
you're using anyway. If you have need for more characters than are supported by iso8859,
you must use a more advanced encoding system like utf-8 (which may use one, two, or three
bytes per character). To use utf-8, put the following in your Config.prc file:

t ext - encodi ng
utf8

And then make sure the strings you pass as text strings are encoded using the "utf-8"
encoding method, for instance by saving your Python source files in "utf-8" (this can actually
be tricky to do properly in Windows; we recommend you use a non-Microsoft editor such as
Emacs or Eclipse to do this).

<<prev top next=>=> Search

filel///E|/manual/ Text_Rendering.1.htm| 2006/11/21 nUsE 06:01:03

Panda3D Manual

Panda3D Manual: Text Fonts

<<prev top next>> Search

Panda3D can render text using a variety of fonts. If your version of Panda3D has been
compiled with support for the FreeType library (the default distribution of Panda3D has been),
then you can load any TTF file, or any other font file type that is supported by FreeType,
directly:

font = | oader.!| oadFont (' arial.
ttf')

The named file is searched for along the model-path, just like a regular egg file. You can also
give the full path to the font file if you prefer (but remember to observe the Panda Filename

Syntax).

It is also possible to pre-generate a font with the egg-mkfont command-line utility:

egg-nkfont -o arial.egg arial.
ttf

This will generate an egg file (arial.egg in the above example) and an associated texture file
that can then be loaded as if it were a font:

font = | oader. | oadFont (' arial.
egyq’)

There are several options you can specify to the egg-mkfont utility; use "egg-mkfont -h" to
give a list.

The advantages to pre-generating a font are (a) the resulting egg file can be used by a version
of Panda that does not include support for FreeType, and (b) you can apply some painterly
effects to the generated texture image using Photoshop or a similar program. On the other
hand, you have to decide ahead of time which characters you will want to use from the font;
the default is the set of ASCII characters.

There are three default font files supplied with the default distribution of Panda3D in the
models subdirectory; these are "cmrl2.egg"”, a Roman font, "cmssl2.egg"”, a Sans-Serif font,
and "cmttl2.egg"”, a Teletypewriter-style fixed-width font. These three fonts were generated
from free fonts provided with the Metafont utility (which is not a part of Panda3D). There is
also a default font image which is compiled into Panda if you do not load any other font.

file///E|/manual/Text_Fonts.1.html (1 of 2)2006/11/21 sUsE 06:01:04

Panda3D Manual

<<prev top next=>= - I

-

file:///E/manual/Text_Fonts.1.html (2 of 2)2006/11/21 aUsE 06:01:04

Panda3D Manual

Panda3D Manual: Text Node

<<prev top next=>=>

Search

The most fundamental way to render text in Panda3D is via the Text Node interface. This may

be a little more work than the OnscreenText or DirectLabel objects, but it gives you a lot more
control over the appearance of the text.

To use a TextNode, simply create one and call set Text () to set the actual text to display, and
then parent the TextNode wherever you like (you can put it under aspect2d to make a 2-d
onscreen text, or you can put it in the 3-d world for in-the-world text). Note that if you parent

the text to render2d or aspect2d, you will probably need to give it a fairly small scale, since
the coordinate space of the whole screen in render2d is in the range (-1, 1).

text = Text Node(' node nane')

text.set Text ("Every day in every way |'mgetting better and
better.")

t ext NodePat h = aspect 2d. at t achNewNode(t ext)

t ext NodePat h. set Scal e(0. 07)

Every day in every way I'm getting better and better.

Note that the TextNode constructor takes a string name, which is not related to the text that is
to be displayed. Also note that the default text color is white; we show it as black in these
examples to make it easier to see on the white background.

There are a large number of properties that you can specify on the TextNode to control the
appearance of your text.

Font

cnr 12 = | oader. | oadFont (' cnr 12.
egq’)
text. set Font (cnr 12)

Every day in every way I'm getting better and better.

You may use any font you like, including a TTF file; see Text Fonts.

Small Caps

file:///E|/manual/Text_Node.1.html (1 of 6)2006/11/21 aUrE 06:01:05

Panda3D Manual

t ext . set Smal | Caps
(1)

EVERY DAY IN EVERY WAY I'M GETTING BETTER AND BETTER.

set Smal | Caps() accepts a boolean true or false value; set it true to enable small caps mode.

In this mode, instead of rendering lowercase letters, the TextNode renders capital letters that
are a bit smaller than the true capital letters. This is an especially useful feature if your font of
choice doesn't happen to include lowercase letters.

You can also specify the relative scale of the "lowercase" letters:

t ext . set Snmal | CapsScal e
(0. 4)

]
E'.'EF"-’ C&Y IH EVERY Wiy | M GETMNI BETTER AND EETTER,

Where 1.0 is exactly the same size as the capital letters, and 0.5 is half the size. The default is
0.8.
Slant

t ext . set Sl ant
(0.3)

Every day in every way I'm getting better and better.

Slant can be used to give an effect similar to italicizing. The parameter value is 0.0 for no
slant, or 1.0 for a 45-degree rightward slant. Usually values in the range 0.2 to 0.3 give a
pleasing effect. You can also use a negative number to give a reverse slant.

Color

text.set Text Col or(1, 0.5, 0.5,
1)

file:///El/manual/Text_Node.1.html (2 of 6)2006/11/21 aUsE 06:01:05

Panda3D Manual

The color is specified with its r, g, b, a components. Note that if a is not 1, the text will be
slightly transparent.

Shadow

t ext . set Shadow(0. 05, 0. 05)
t ext . set ShadowCol or (0, 0, O,
1)

Every day in every way I'm gelting better and better.

A shadow is another copy of the text, drawn behind the original text and offset slightly to the
right and down. It can help make the text stand out from its background, especially when
there is not a high contrast between the text color and the background color. (The text color in
this example is exactly the same pink color used in the example above, but note how much
clearer it is with the shadow.) The downside of a shadow is that it doubles the number of
polygons required to render the text.

Setting a shadow requires two calls: set Shadow() accepts a pair of numbers indicating the

distance to shift the shadow right and down, respectively, in screen units; these are usually
very small numbers like 0.05. set ShadowCol or () accepts the r, g, b, a color of the shadow;

the default is white.
Wordwrap

By default, text will be formatted on one line, unless it includes newline characters. Enabling
wordwrap will automatically break the text into multiple lines if it doesn't fit within the
specified width.

t ext . set Wor dwr ap
(15.0)

Every day in every way I'm getting better
and better.

The parameter to set Wr dw ap() should be the maximum width of each line, in screen units.

file///E/manual/Text_Node.1.html (3 of 6)2006/11/21 aUcE 06:01:05

Panda3D Manual

Alignment

Text is left-aligned by default; that is, it starts at the position you specify with textNodePath.
setPos() and goes out to the right from there. If you have multiple lines of text, you may
prefer to center the text or right-align it instead:

text.set Al i gn(Text Node.
ACent er)

Every day in every way I'm getting better
and better.

The parameter to set Al i gn() should be one of Text Node. ALeft, Text Node. ACent er, or

Text Node. AR ght . Note that changing the alignment of the text will shift its position relative to
the starting point.

Frame

You can specify that a thin frame should be drawn around the entire text rectangle:

text.set FraneCol or (0, 0, 1, 1)
text.set FraneAsMargi n(0.2, 0.2, 0.1,
0.1)

Every day in every way I'm getting better
and better.

As with the shadow, specifying a frame requires two calls; one to specify the color, and
another to specify the dimensions of the frame. The call set FraneAsMar gi n() specifies four

parameters, which represent the amount of space to insert between the edge of the text and
the frame on the left, right, bottom, and top edges, respectively. All four parameters can be
0.0 to tightly enclose the text (although some fonts render a little bit outside their reported
boundaries).

Card

file:///El/manual/Text_Node.1.html (4 of 6)2006/11/21 aUsE 06:01:05

Panda3D Manual

Finally, you can draw a solid card behind the text rectangle:

text.setCardColor(1, 1, 0.5, 1)
t ext . set CardAsMargi n(0, 0, O,
0)

Every day in every way I'm getting better

and better,

This can also help to make the text easier to read when it is against a similar-colored
background. Often, you will want the card to be semitransparent, which you can achieve by
specifying an alpha value of 0.2 or 0.3 to the set Car dCol or () method.

The parameters to set Car dAsMar gi n() are the same as those for set FraneAsMar gi n() ,

above: the distance to extend the card beyond the left, right, bottom, and top edges,
respectively. (In this example, we have both the card and the frame on at the same time, and
you can see that the card exactly fits the text, while the frame extends a little bit beyond--
showing the effects of the slightly different parameters passed to set Fr aneAsMar gi n() and

set Car dAsMar gi n() in this example.)

Picking a Text Node
Strictly speaking, a TextNode has no geometry, so you can't pick it.
There are two possible workarounds.

(1) Create your own card to go behind the TextNode, using e.g. CardMaker. You should be
able to say cardMaker.setFrame(textNode.getFrameActual()) to set the card to be the same
dimensions as the text's frame. Then you will need to either offset the text a few inches in
front of the card to prevent Z-fighting, or explicitly decal the text onto the card, with
something like this:

card = NodePat h(cardvaker. generate()) tnp = card. att achNewNode(t ext Node) card.
set Ef f ect (Decal Ef f ect. make())

(2) Instead of parenting the TextNode directly to the scene, parent the node returned by
textNode.generate() instead. This will be a static node that contains the polygons that render
the text. If the text changes in the future, it won't automatically update the geometry in this
node; you will have to replace this node with the new result of textNode.generate(). But this
node will be 100% pickable. In particular, if you have specified textNode.setCardDecal(1),
then the first child of the node should be the card geometry.

file///E/manual/Text_Node.1.html (5 of 6)2006/11/21 aUcE 06:01:05

Panda3D Manual

<<prev top next=>>

| -

file:///E/manual/Text_Node.1.html (6 of 6)2006/11/21 aUnE 06:01:05

Panda3D Manual

Panda3D Manual: OnscreenText

<<prev top next>> Search

The OnscreenText object is a convenience wrapper around TextNode. You can use it as a quick
way to put text onscreen without having to go through the trouble of creating a TextNode and
setting properties on it. However, it doesn't have the full range of rendering options that you
can get with TextNode directly; and it doesn't support the DirectGUI features of a DirectLabel.
Use an OnscreenText whenever you want a quick way to display some ordinary text without a
lot of fancy requirements.

fromdirect.gui.OnscreenText inport OnscreenText
text Cbj ect = OnscreenText (text = "ny text string', pos = (-0.5, 0.02), scale =
0. 07)

The OnscreenText object inherits from NodePath, so all of the standard NodePath operations
can be used on the text object. When you are ready to take the text away, use:

t ext Cbj ect . destroy
()

The following keyword parameters may be specified to the constructor:

text the actual text to display. This may be omitted and specified later via setText() if
you don't have it available, but it is better to specify it up front.
style one of the pre-canned style parameters defined at the head of OnscreenText.py.

This sets up the default values for many of the remaining parameters if they are
unspecified; however, a parameter may still be specified to explicitly set it,
overriding the pre-canned style.

pos the X, y position of the text on the screen.

scale the size of the text. This may either be a single float (and it will usually be a
small number like 0.07) or it may be a 2-tuple of floats, specifying a different x,
y scale.

fg the (r, g, b, a) foreground color of the text. This is normally a 4-tuple of floats or
ints.

bg the (r, g, b, a) background color of the text. If the fourth value, a, is nonzero, a
card is created to place behind the text and set to the given color.

shadow the (r, g, b, a) color of the shadow behind the text. If the fourth value, a, is
nonzero, a little drop shadow is created and placed behind the text.

frame the (r, g, b, a) color of the frame drawn around the text. If the fourth value, a, is
nonzero, a frame is created around the text.

align one of TextNode.ALeft, TextNode.ARight, or TextNode.ACenter.

wordwrap either the width to wordwrap the text at, or None to specify no automatic word
wrapping.

file:///E)ymanual /OnscreenText.1.html (1 of 2)2006/11/21 sUcE 06:01:06

Panda3D Manual

font the font to use for the text.
parent the NodePath to parent the text to initially; the default is aspect2d.
mayChange pass true if the text or its properties may need to be changed at runtime, false if

it is static once created (which leads to better memory optimization). The default
is false.

top next>=>

file:///E|/manual/OnscreenText.1.html (2 of 2)2006/11/21 aU=E 06:01:06

Panda3D Manual

Panda3D Manual: Embedded Text Properties

<<prev top next>> Search

It's possible to change text properties in the middle of a paragraph. To do this, you must first
define the different kinds of text properties you might want to change to, and give each one a
name; then you can embed special characters in your text string to switch these pre-defined
text properties in and out.

Defining your text properties

You can create any number of Text Properti es objects. Each of these can store a different set

of text properties, any of the text properties that you can set directly on a TextNode. These
include the per-character attributes such as font, color, shadow, and slant, as well as per-line
formatting properties such as alignment and wordwrap.

t pRed = Text Properties()

t pRed. set Text Col or (1, 0, 0, 1)
tpSl ant = Text Properties()

t pSl ant . set Sl ant (0. 3)

t pRoman = Text Properties()

t pRoman. set Font (cnr 12)

You can set as many or as few different attributes on any one TextProperties object as you
like. Only the attributes you specify will be applied to the text string; any attributes you don't
mention will remain unchanged when you apply the TextProperties. In the above example,
applying the tpRed structure to a particular text string will only change the text color to red;
other properties, such as slant, shadow, and font, will remain whatever they were previously.
Similarly for tpSlant, which only changes the slant, and tpRoman, which only changes the font.

Registering the new TextProperties objects

You will need a pointer to the global Text Properti esManager object:

t pMgr = Text Properti esManager. get d obal Ptr ()

After you have created your TextProperties objects, you must register each one with the
TextPropertiesManager, under a uniqgue name:

t pMyr. set Properties("red", tpRed)
t pMyr. set Properties("slant", tpSlant)
t pMyr. set Properties("roman", tpRoman)

filel///E|/manual/Embedded_Text_Properties.1.html (1 of 2)2006/11/21 aUcE 06:01:07

Panda3D Manual

Referencing the TextProperties in text strings

Now you're ready to put the special characters in your text string to activate these mode
changes. To do this, you will use the special character '\1', or the ASCII Ox01 character. You
use the \1 character twice, as a kind of quotation mark before and after the name you have
used above to register your TextProperties object, e.g. "\1red\1' to activate tpRed, or "\1slant
\1' to activate tpSlant.

The sequence "\1lred\1' acts as a push operation. It applies tpRed to the current text
properties, but also remembers the previous properties. To go back to the previous properties,
use the character \2' by itself. You can nest property changes like this; each "\2" will undo the
most recent "\1name\1' that is still in effect.

The following text string:

text.set Text ("Every day in \1slant\levery way\2 |I'm\ 1lred\1getting \1lroman
\lbetter \1slant\land\2 better.\2\2")

Looks like this:

Every day in every way I'm getting better and better.

You can use these special characters in any Panda construct that generates text, including
TextNode, OnscreenText, and any DirectGui object.

<<prev top next>> - I

file:///E|/manual/Embedded_Text_Properties.1.html (2 of 2)2006/11/21 aUrE 06:01:07

Panda3D Manual

Panda3D Manual: DirectGUI

<<prev top next>> Search

Panda3D comes with a set of tools for the creation of a graphical interface for any program.
The DirectGui system is used to create buttons, labels, text entries, and frames within the
program. All of these items can be decorated with text, images, and 3D graphics. Commands
may be associated with these items as well. Since these objects inherit from the NodePath
class, anything done to a NodePath may be done to them, such as show()/hide(), setPos(),
posinterval(), and so on. Also, since DirectGui objects are by default parented to the node
aspect2d, they will stay on the screen no matter how the user navigates through the world.

The direct-gui-edit option in the Config.prc file allows the user to use the middle mouse button
to move around widgets, and resize them while holding the control key; this is very useful to
lay a screen out during development. If you need to turn this ability off for an individual
object, set its enabl eEdi t keyword parameter to False.

All of the DirectGui objects are constructed in a similar way:

fromdirect.gui.D rect@uii inport *
myGbj ect = Direct xxxxxx(keyword=val ue, keyword=val ue, ...)

Each DirectGui object may contain any of four fundamental pieces that determine its
appearance. There may be an optional text, an optional geom, an optional image, and an
optional frame.

A DirectGui's text label may be any arbitrary text string, and whatever text string you supply
is automatically created using the OnscreenText interface and centered on the object. You can

specify the text string using the t ext keyword. You can also specify further parameters to
control the appearance or placement of the text using the form t ext _par anet er, where
par aret er is any valid keyword to the OnscreenText constructor.

A DirectGui's geom can be any NodePath that you design, to represent the appearance of the
gui object. Typically, this will be a model that you created via the command egg- t ext ur e-
cards, based on a texture that you painted by hand. Using this interface, you can completely
customize the look of the DirectGui object to suit your needs. You can specify the geom object
using the geomkeyword, and like the text parameter, you can also control the geom's

placement using keywords like geom par anet er .

The image is less often used. It is the filename of a texture image (or an already-loaded
Texture object). It is intended for displaying a simple texture image for which you don't
already have a model created via egg-t ext ur e- car ds. A default card will be created to display

this texture, with a bounding box of (-1, O, -1) to (1, O, 1); that is, a square with sides of
length 2 units, centered on the origin. You can position and scale this card with the keywords
i mage_pos and i mage_scal e.

file///E/manual/DirectGUI.1.html (1 of 4)2006/11/21 sUaE 06:01:08

Panda3D Manual

Finally, the DirectGui may have a frame created for it. This is typically a gray rectangular
background with an optional bevel. There are a handful of different frame styles; you can use
the rel i ef keyword to select from one of the available styles; your choices are SUNKEN,

RAISED, GROOVE, or RIDGE. You can also specify rel i ef = None to avoid creating a frame

polygon altogether (this is commonly done when you have specified your own geom object
with the geomkeyword).

The overall size of the DirectGui object is controlled with the f raneSi ze keyword. This is a

four-tuple of floating-point numbers of the form (left, right, bottom, top), which specifies the
bounding box region of the DirectGui object. That is, the lower-left corner will be at position
(left, O, bottom), and the upper-right will be at (right, O, top). Note that these values
represent coordinates from the origin of the frame. Setting the frameSize to (-0.1, 0.1, -0.1,
0.1), for instance, will create a box, 0.2 units wide and 0.2 units in height, with 0,0 being the
center of the frame located at pos on the screen.

The franmeSi ze keyword is optional. If you omit it, the default frameSize is computed based on
the bounding box of the text, geom, and/or image that you have specified.

The following is a list of keywords that are typically available to DirectGui objects of all kinds.
Individual kinds of DirectGui objects may add more options to this list, but these keywords are

not repeated on each of the following pages, for brevity:

Keyword Definition Value

text Text to be displayed on the object String

text_bg E&haecI;%;zté:ld color of the text on (R,G,B.A)

text_fg Color of the text (R,G,B,A)

text_pos Position of the displayed text (x,2)

text_roll Rotation of the displayed text Number

text_scale Scale of the displayed text (sx,sz2)

S Parameters to control the Any keyword parameter appropriate to
— appearance of the text OnscreenText.

frameSize Size of the object (Left,Right,Bottom,Top)

frameColor

Color of the object's frame

(R,G,B,A)
SUNKEN, RAISED, GROOVE, RIDGE,

relief Relief appearance of the frame FLAT, or Nonhe
. If true, switches the meaning of
invertedFrames SUNKEN and RAISED Oor1l
If relief is SUNKEN, RAISED,
borderWidth GROOVE, or RIDGE, changes the (Width,Height)
size of the bevel
image An_ IETELS S (2135 ClEEEREe] e s image filename or Texture object
object
image_pos Position of the displayed image (x,y,2)
image_hpr Rotation of the displayed image (h,p,n)
image_scale Scale of the displayed image (sx,sy,sz)

file///E/manual/DirectGUI.1.html (2 of 4)2006/11/21 aUaE 06:01:08

Panda3D Manual

A geom to represent the object's

geom NodePath
appearance
geom_pos Position of the displayed geom (x,y,2)
geom_hpr Rotation of the displayed geom (h,p,r)
geom_scale Scale of the displayed geom (sx,sy,sz)
pos Position of the object X,Y,2)
hpr Orientation of the object (H,P,R)
scale Scale of the object Number
When frameSize is omitted, this
determines the extra space around
pad the geom or text's bounding box (Width,Height)
by which to expand the default
frame
state The initial state of the object NORMAL or DISABLED
Texture applied directly to the
frameTexture frame generated when relief is image filename or Texture object
FLAT
enableEdit Affects direct-gui-edit functionality O or 1
If 1, suppresses triggers of global
suppressKeys keyboard-related Panda events Oor1l

(not part of the GUI system)

If 1, suppresses triggers of global
suppressMouse mouse-related Panda events (e.g. Oor 1
camera controls)

Specifies render order for
overlapping objects. Higher

sortOrder . Number
numbers are drawn in front of
lower numbers.

textMayChange Whether the text of an object can 0or 1

be changed after creation

Remember that the axes for Panda3D use x for left and right, y for in and out of the screen,
and z for up and down. An object's frame is always in the background of the object. The
geom, if any, is shown in front of the frame, and text is shown in front of the geom.

It is possible to change most of these values after object creation, using:

nmyDi rect Obj ect[' keyword'] =
val ue

Most properties can be updated in this way, although position and other transform-related
values cannot be updated via the keyword parameters--attempts to update them will silently
fail. Instead, use the NodePath methods to change the object's transform.

Some types of updates, such as changing the text or the geom, may also change the size of
the object. If you change any of these properties after the object has been created, it is

file:///E|/manual/DirectGUI.1.html (3 of 4)2006/11/21 sUsE 06:01:08

Panda3D Manual

necessary to tell the object to re-determine its size:

nmyDi rect Obj ect . reset FraneSi ze

0

If you don't do this, you may find, for example, that a button isn't clickable because it believes
it has a zero-width frame.

To permanently remove a DirectGUI object, you should use the method:

nmyDi rect Obj ect . destr oy
()

It is not sufficient to simply call removeNode(), since the DirectGUIl system adds a number of

messenger hooks that need to be cleaned up. However, if you have a hierarchy of DirectGUI
objects, for instance a number of buttons parented to a frame, it is sufficient to call destroy()

only on the topmost object; it will propagate downwards.

<<prev top next>>

-

file:///E|/manual/DirectGUI.1.html (4 of 4)2006/11/21 aUcE 06:01:08

Panda3D Manual

Panda3D Manual: DirectButton

<<prev top next=>>

DirectButton is a DirectGui object that will respond to the mouse and can execute an arbitrary function when the
user clicks on the object. This is actually implemented by taking advantage of the "state" system supported by
every DirectGui object.

Each DirectGui object has a predefined number of available "states"”, and a current state. This concept of "state"
is completely unrelated to Panda's FSM object. For a DirectGui object, the current state is simply as an integer
number, which is used to select one of a list of different NodePaths that represent the way the DirectGui object
appears in each state. Each DirectGui object can therefore have a completely different appearance in each of its
states.

Most types of DirectGui objects do not use this state system, and only have one state, which is state 0. The
DirectButton is presently the only predefined object that has more than one state defined by default. In fact,
DirectButton defines four states, numbered O through 3, which are called ready, press, rollover, and disabled, in
that order. Furthermore, the DirectButton automatically manages its current state into one of these states,
according to the user's interaction with the mouse.

With a DirectButton, then, you have the flexibility to define four completely different NodePaths, each of which
represents the way the button appears in a different state. Usually, you want to define these such that the ready
state is the way the button looks most of the time, the press state looks like the button has been depressed, the
rollover state is lit up, and the disabled state is grayed out. In fact, the DirectButton interfaces will set these
NodePaths up for you, if you use the simple forms of the constructor (for instance, if you specify just a single
text string to the t ext parameter).

Sometimes you want to have explicit control over the various states, for instance to display a different text
string in each state. To do this, you can pass a 4-tuple to the text parameter (or to many of the other
parameters, such as relief or geom), where each element of the tuple is the parameter value for the
corresponding state, like this:

b = DirectButton(text = ("OK", "click!", "rolling over",
"di sabl ed"))

The above example would create a DirectButton whose label reads "OK" when it is not being touched, but it will
change to a completely different label as the mouse rolls over it and clicks it.

Another common example is a button you have completely customized by painting four different texture maps to
represent the button in each state. Normally, you would convert these texture maps into an egg file using egg-

t ext ur e- car ds like this:

egg-texture-cards -o button_nmaps.egg -p 240,240 button_ready.png button_click. png
button_rol | over.png button_di sabl ed. png

And then you would load up the that egg file in Panda and apply it to the four different states like this:

maps = | oader. | oadMbdel (' button_nmaps. egg')

b = DirectButton(geom = (maps.find('**/button_ready'),
maps. find('**/button_click'),
maps. find('**/button_rollover'),
maps. find('**/button_di sabled')))

file:///E)/manual /DirectButton.1.html (1 of 2)2006/11/21 sUsE 06:01:09

Panda3D Manual

You can also access one of the state-specific NodePaths after the button has been created with the interface
nyBut t on. st at eNodePat h[st at eNunber] . Normally, however, you should not need to access these NodePaths

directly.

The following are the DirectGui keywords that are specific to a DirectButton. (These are in addition to the
generic DirectGui keywords described on the previous page.)

Keyword Definition Value
command Command the button performs when clicked Function
extraArgs Extra arguments to the function specified in command [Extra Arguments]

commandButtons Which mouse button must be clicked to do the command LMB, MMB, or RMB
rolloverSound The sound made when the cursor rolls over the button AudioSound instance

clickSound The sound made when the cursor clicks on the button AudioSound instance
pressEffect Whether or not the button sinks in when clicked <O or 1>
Example

i mport direct.directbase.DirectStart
fromdirect.gui.OnscreenText inport OnscreenText
fromdirect.gui.DirectCQui inport *

#add sone text

bk _text = "This is ny Denp"

text Obj ect = OnscreenText (text = bk _text, pos = (0.95,-0.95),
scale = 0.07,fg=(1,0.5,0.5, 1), al i gn=Text Node. ACent er, mayChange=1)

#cal | back function to set text

def set Text():
bk _text = "Button dicked"
t ext Obj ect . set Text (bk_t ext)

#add button
b = DirectButton(text = ("OK", "click!", "rolling over", "disabled"), scal e=. 05, cormand=set Text)

#run the tutorial
run()

Note that you will not be able to set the text unless the mayChange flag is 1. This is an optimisation, which
newbies might miss.

<<prev next=>>

file:///E)/manual /DirectButton.1.html (2 of 2)2006/11/21 sUsE 06:01:09

Panda3D Manual

Panda3D Manual: DirectCheckButton

<<prev next=>>=> Search

top

DirectCheckButtons are similar to buttons, except they represent a binary state that is toggled
when it is clicked. Their usage is almost identical to regular buttons, except that the text area

and box area can be modified separately.

Keyword
text_scale
indicatorValue
boxImage
boxImageColor
boxImageScale
boxPlacement
boxRelief
boxBorder

command

extraArgs

commandButtons

rolloverSound
clickSound
pressEffect

Example

Definition

Scale of the displayed text

The initial boolean state of the checkbox
Image on the checkbox

Color of the image on the box

Scale of the displayed image

Position of the box relative to the text area
Relief appearance of the checkbox

Size of the border around the box

Command the button performs when clicked
(O or 1 is passed, depending on the state)

Extra arguments to the function specified in command

Which mouse button must be clicked to do the
command

The sound made when the cursor rolls over the button
The sound made when the cursor clicks on the button
Whether or not the button sinks in when clicked

i nport direct.directbase.DirectStart

from direct. gui.OnscreenText
fromdirect.gui.Drect Gui

#add sone text

i mport OnscreenText
i nport *

bk text = "This is my Denp"

t ext Obj ect

= OnscreenText (t ext

= bk _text, pos = (0.95,-0.95),

Value

(sx,s2)

Oor1l

Image Path
(R,G,B,A)

Number

‘left’, 'right’
SUNKEN or RAISED
Number

Function
[Extra Arguments]
LMB, MMB, or RMB

Sound File Path
Sound File Path
<0 or 1>

scale = 0.07,fg=(1,0.5,0.5,1), al i gn=Text Node. ACent er, mayChange=1)

#cal | back function to set

t ext

def set Text (status):
i f(status):

el se:

bk t ext " Checkbox Sel ect ed"

bk text = "Checkbox Not Sel ected"

t ext Obj ect . set Text (bk_t ext)

#add button
b =

Di rect CheckButton(text = "CheckButton"

file:///E|/manual/DirectCheckButton.1.html (1 of 2)2006/11/21 aUcE 06:01:10

, scal e=. 05, conmand=set Text)

Panda3D Manual

#run the tutori al
run()

A note on boxImage and other box* keywords

Just as DirectButton may be passed a 4-tuple of values to be used in the four button states,
the box* keyword arguments may be supplied with multiple entries to denote the unchecked
and checked state. To supply arguments to be used in the two states of the checkbox,
construct a 3-tuple of values with a 'None' in the final entry, i.e. (unchecked, checked, None).
For example, to set two different images for the unchecked and checked states:

boxl mage = ("pat hToDi sabl edl mage. j pg", " pat hToEnabl ed. j pg", None)

<<prev top next>>

file:///E|/manual/DirectCheckButton.1.html (2 of 2)2006/11/21 sUsE 06:01:10

Panda3D Manual

Panda3D Manual: DirectDialog

<<prev top next>> Search

DirectDialog objects are popup windows to alert or interact with the user. It is invoked just like
the other DirectGUI objects, but it also has some unique keywords. Integral to DirectDialog
are dialogName, buttonTextList, buttonlmageList, and buttonValueList. The dialogName should
ideally be the name of the NodePath created to hold the object. The button lists contain the
various properties of the buttons within the dialog box. No maximum number of buttons needs
to be declared.

Panda3D contains a number of shortcuts for common dialog options. For example, rather than
specifying the rather common text list ("Yes","No"), there is a YesNoDialog that functions
exactly like a normal dialog but has buttonTextList already defined. The other similar dialogs
are OkCancelDialog, OkDialog, RetryCancelDialog, and YesNoCancelDialog.

Keyword Definition Value
dialogName Name of the dialog String
buttonTextList List of text to show on each button [Strings]
buttonGeomList List of geometry to show on each button [NodePaths]
buttonlmagelList List of images to show on each button [Image Paths]

List of values sent to dialog command for each
buttonValueList button. If value is [] then the ordinal rank of the [Numbers]
button is used as its value

Shortcut key for each button (the button must
have focus)

4-tuple used to specify custom size for each button

buttonHotKeyList [Characters]

SUREEIrAS (to make bigger then geom/text for example) CEIEREEEE bR,
topPad Extra space added above text/geom/image Number
midPad Extra space added between text/buttons Number
sidePad Extra space added to either side of text/buttons Number
buttonPadSE Scale factor used to expand/contract button Number

horizontal spacing

Callback command used when a button is pressed.
command Value supplied to command depends on values in Function
buttonValuelList

Extra arguments to the function specified in

command [Extra Arguments]

extraArgs

fadeScreen If 1, fades screen to black when the dialog appears O or 1

YesNo Dialog Example

filel///E|/manual/DirectDialog.1.html (1 of 2)2006/11/21 nUsE 06:01:10

Panda3D Manual

i nport direct.directbase.DirectStart
fromdirect. gui.OnscreenText inport OnscreenText
fromdirect.gui.D rect@ui inmport *
fromdirect.task inport Task

fromdirect.actor inport Actor
fromdirect.interval.lnterval G obal inport *

#add sonme text

bk text = "DirectDi al og- YesNoDi al og Deno"

t ext Cbj ect = OnscreenText (text = bk _text, pos = (0.85,0.85),
scale = 0.07,fg=(1,0.5,0.5,1), al i gn=Text Node. ACent er, mayChange=1)

#add sone text
output = ""
t ext Cbj ect = OnscreenText (text = output, pos = (0.95,-0.95),
scale = 0.07,fg=(1,0.5,0.5,1), al i gn=Text Node. ACent er, mayChange=1)

#cal | back function to set text
def itentel (argQ):
if(arg):
output = "Button Selected is: Yes"
el se:

out put "Button Selected is: No"
t ext Cbj ect . set Text (out put)

#create a frame
di al og = YesNoDi al og(di al ogNane="YesNoCancel Di al og", command=itentel)

base. caner a. set Pos(0, - 20, 0)
#run the tutoria
run()

<<prev top next>>

file:///E|/manual/DirectDial og.1.html (2 of 2)2006/11/21 aUsE 06:01:10

Panda3D Manual

Panda3D Manual: DirectEntry

<<prev top next>> Search

The DirectEntry creates a field that accepts text entered by the user. It provides a blinking
cursor and support for backspace and the arrow keys. It can accept either a single line of text,
with a fixed width limit (it doesn't scroll), or it can accept multiple word-wrapped lines.

Keyword
initialText
entryFont
width
numLines
cursorKeys
obscured

command

extraArgs
rolloverSound
clickSound

focus

backgroundFocus
focusInCommand

focuslnExtraArgs

Definition

Initial text to load in the field

Font to use for text entry

Width of field in screen units

Number of lines in the field

True to enable the use of cursor keys (arrow keys)
True to hide passwords, etc.

Function to call when enter is pressed
(the text in the field is passed to the function)

Extra arguments to the function specified in command
The sound made when the cursor rolls over the field
The sound made when the cursor inside the field

Whether or not the field begins with focus
(focusInCommand is called if true)

If true, field begins with focus but with hidden cursor,
and focusInCommand is not called

Function called when the field gains focus

Extra arguments to the function specified in
focusIinCommand

focusOutCommand Function called when the field loses focus

focusOutExtraArgs

Example

Extra arguments to the function specified in
focusOutCommand

file:///E|/manual/DirectEntry.1.html (1 of 2)2006/11/21 sUsE 06:01:11

Value
String

Font object
Number
Integer
Oor1l
Oorl

Function

[Extra Arguments]
Sound File Path
Sound File Path

Oorl

Oor1l

Function

[Extra Arguments]
Function

[Extra Arguments]

Panda3D Manual

i nport direct.directbase.DirectStart
fromdirect. gui.OnscreenText inport OnscreenText
fromdirect.gui.D rect@ui inmport *

#add sonme text

bk text = "This is my Denp"

t ext Cbj ect = OnscreenText (text = bk text, pos = (0.95,-0.95),
scale = 0.07,fg=(1,0.5,0.5,1), al i gn=Text Node. ACent er, mayChange=1)

#cal | back function to set text
def set Text (text Entered):
t ext Cbj ect . set Text (t ext Ent er ed)

#cl ear the text
def cl ear Text ():
b.enterText ('")

#add button
b = DirectEntry(text = "" ,scal e=. 05, command=set Text,
initial Text="Type Sonet hi ng", nunLi nes = 2, focus=1, f ocusl nCormand=cl| ear Text)

#run the tutorial
run()

This example implements a text entry widget typically seen in web pages.

<<prev top next>>

file:///E|/manual/DirectEntry.1.html (2 of 2)2006/11/21 sUsE 06:01:11

Panda3D Manual

Panda3D Manual: DirectFrame

<<prev top next=>>

Search

A frame is a container object for multiple DirectGUI objects. This allows for the control over
several objects that are reparented to the same frame. When DirectGUI objects are parented
to a frame, they will be positioned relative to the frame.

DirectFrame has no unique keywords, since it is simply used to arrange other objects.

<<prev top next>> -

file///E/manual/DirectFrame.1.ntml 2006/11/21 aUcE 06:01:12

Panda3D Manual

Panda3D Manual: DirectLabel

<<prev top next>> Search

Labels are like buttons, but they do not respond to mouse-clicks. This means a DirectLabel is
basically just a text string, and in that respect is similar to OnscreenText, except that the
DirectLabel integrates better with the rest of the DirectGUI system (and the constructor
accepts more DirectGUI-like options).

If you are making a text label to appear on a DirectFrame or in conjunction with DirectGUI
somehow, you should probably use a DirectLabel. For all other uses of text, you would
probably be better off using OnscreenText or a making a plain Text Node instead.

DirectLabel's only unique keyword can be used if you want to create a label with multiple
states. If you set the value of activeState to a nonexistent state, the label will disappear, since
the default state is undefined.

Keyword Definition Value
activeState The "active" or normal state of the label Number

<<prev top next=>> Search

filel///E/manual/DirectL abel .1.html 2006/11/21 sUsE 06:01:12

Panda3D Manual

Panda3D Manual: DirectOptionMenu

<<prev top next>> Search

The DirectOptionMenu class models a popup menu with an arbitrary number of items. It is composed of the menu
bar, the popup marker, and the popup menu itself. The popup menu appears when the menu is clicked on and
disappears when the user clicks again; if the click was inside the popup, the selection changes. By default, the
text on the menu changes to whatever item is currently selected. The attributes that affect the appearance of the
menu bar don't apply to the popup. Make sure to specify the items option or it may crash.

Keyword Definition Value
textMayChange Whether the text on the menu changes with the selection Oor1l
initialitem The index of the item that appears next to the cursor when the popup Number
appears
items List of items in the popup menu [Strings]
command Function called when an item is selected (the item is passed in as a Function
parameter)
commandButtons Which mouse button must be clicked to open the popup LMB, MMB, or RMB
extraArgs Extra arguments to the function specified in command [Extra Arguments]
highlightColor Color of highlighted text (R,G,B,A)
highlightScale Scale of highlighted text (Width,Height)
rolloverSound The sound made when the cursor rolls over the button Sound File Path
clickSound The sound made when the cursor clicks on the button Sound File Path
popupMarkerBorder Use width to change the size of the border around the popup marker (Width,Height)
Example

import direct.directbase.DirectStart
fromdirect. gui.OnscreenText inport OnscreenText
fromdirect.gui.DirectGu inmport *

#add sone text

bk _text = "DirectOpti onMenu Derp"

t ext Cbj ect = OnscreenText (text = bk _text, pos = (0.85,0.85),
scale = 0.07,fg=(1,0.5,0.5,1), al i gn=Text Node. ACent er, mayChange=1)

#add sone text
output = ""
t ext Cbj ect = OnscreenText (text = output, pos = (0.95,-0.95),
scale = 0.07,fg=(1,0.5,0.5,1), al i gn=Text Node. ACent er, mayChange=1)

#cal | back function to set text

def itenBel (arg):
output = "ltem Selected is: "+arg
t ext Obj ect . set Text (out put)

#create a frane
menu = Direct Opti onMenu(text="options", scale=0.1,itens=["itenl","itenR","itenB"],initialitem=2,
hi ghl i ght Col or =(0. 65, 0. 65, 0. 65, 1), conmmand=i t enfel)

#run the tutorial
run()

This is a simple demonstration of the DirectOptionMenu.

file:///E|/manual /DirectOptionMenu.1.html (1 of 2)2006/11/21 sUsE 06:01:13

Panda3D Manual

Dynamic Updating of a Menu

i mport direct.directbase.DirectStart
fromdirect.gui.OnscreenText inport OnscreenText
fromdirect.gui.DirectGui inport *

#add sone text

bk_text = "DirectOpti onMenu Derp"

t ext Obj ect = OnscreenText (text = bk _text, pos = (0.85,0.85),
scale = 0.07,fg=(1,0.5,0.5, 1), al i gn=Text Node. ACent er, mayChange=1)

#add sone text

out put = ""

t ext Cbj ect = OnscreenText (text = output, pos = (0.95,-0.95),
scale = 0.07,fg=(1,0.5,0.5, 1), al i gn=Text Node. ACent er, mayChange=1)

#cal | back function to set text
def itenfel (arg):
if(arg !'= "Add"): #no need to add an el enent
output = "ltem Sel ected is: "+arg
t ext Obj ect . set Text (out put)
el se: #add an el enent
tnp_nmenu = nmenu['itens']
new item= "iten+str (|l en(tnp_nenu))
tnp_nenu.insert(-1, new.itemn #add the el enent before add
menu['itens'] = tnp_nenu
#set the status nessage
output = "Item Added is: "+new_item
t ext Obj ect . set Text (out put)

#create a frane
menu = Direct Opti onMenu(text="options", scale=0.1,items=["iteml","itenR","itenB", " Add"],
initialitenms2, highlightCol or=(0.65,0.65,0.65, 1), command=i t enel , t ext MayChange=1)

#run the tutorial
run()

In this example we add an item to the menu whenever the Add item is selected.

<<prev next=>>

file:///E)/manual /DirectOptionMenu.1.html (2 of 2)2006/11/21 sUsE 06:01:13

Panda3D Manual

Panda3D Manual: DirectScrolledList

<<prev top next>> Search

DirectScrolledLists create a list of DirectGuiWidgets. Each object is created individually and can
then be added to the list. Some useful methods are:

addltem(item refresh)

getltem ndexForltem D(sel f, item D)
get Sel ect edl ndex(sel f)

get Sel ect edText (sel f)
removelten(self, item refresh)
scrol | By(sel f, delta)

scrol | To(sel f, index, centered)
scrol | Toltem D(sel f, item D,
cent er ed)

selectListlten(self, item

In the above methods, item is a new item, either a string or a DirectGUI element, and itemID
is an arbitrary identification number for each item (but not necessarily a zero-based index
number). The itemID for a new item is the return value of addltem(). The centered parameter
is a boolean; if true, the list scrolls so that the given index is centered, otherwise it scrolls so
that the index is on top of the list.

The items option should either be a list of DirectGUI items or of strings. If strings are used, the
itemMakeFunction (and possibly itemMakeExtraArgs) option should be defined to point to a
function that will take the supplied string, the index, and the extra args as parameters and
return a DirectGUI object to insert into the list. If items is a list of strings and
itemMakeFunction is not specified, it will create a list of DirectLabels. itemMakeFunction is
redundant if a list of DirectGUI objects is passed into items to begin with.

DirectScrolledLists come with two scroll buttons for navigating through the list. By default,
they both start at (0,0,0) relative to the list with size 0, and their positions and size need to be
set explicitly. You can set any of the values except relief appearance as you initialize the list:

nyScrol | edLi st = DirectScrol | edLi st (i ncButton_propertyNanme = val ue,
decButton_propertyNane = val ue)

incButton scrolls forward through the list; decButton backward. Note that this only works for
initialization. To change a property of the scroll buttons later in the program, you must use:

nmyScrol | edLi st. i ncButton[' propertyNane'] val ue
nmyScrol | edLi st. decButton[' propertyNane']

val ue

filel///E/manual/DirectScrolledList.1.html (1 of 2)2006/11/21 aUcE 06:01:14

Panda3D Manual

Unlike the first method, this does not work with NodePath options like position; use setPos(...)
for that.

For example, the following creates a scrolled list and resizes and moves the buttons
appropriately.

nmyScrol | edLi st = DirectScrol |l edLi st (incButton_pos= (.5,0,0), incButton_text =
"Inc", decButton_pos= (-.5,0,0), decButton_test = "Dec")
nmyScrol | edLi st.incButton['frameSize'] = (0, 0.2, 0, 0.2)
nmyScr ol | edLi st. decButton[' framesize'] (0, 0.2, 0, 0.2

nmyScrol | edLi st.incButton['text_scale'] = .2

nmyScrol | edLi st. decButton['text_scale'] = .2

Keyword Definition Value
command Function called when the list is scrolled Function

Extra arguments to the function specified in

extraArgs command [Extra Arguments]
text_scale Scale of the displayed text (sx,sz)
items List of the objects to appear in the [DirectGUI items] or
ScrolledList [Strings]
numlitemsVisible = Number of items visible at a time Number
forceHeight Forces the height of the list to be a given Number
number
itemMakeFunction Function that makes DirectGUI items out of Function

strings

Extra arguments to the function in

itemMakeEXtraArgs . o\ eFunction

[Extra Arguments]

<<prev top next>> - |

file:///E|/manual/DirectScrolledList.1.html (2 of 2)2006/11/21 sUcE 06:01:14

Panda3D Manual

Panda3D Manual: DirectWaitBar

<<prev top next>>

DirectWaitBars are similar to status bars; use them to indicate a slow process gradually completing (e.g. a loading
screen). It has various options for both the background bar and the loading bar that fills up as the process
progresses. You can call finish() to automatically fill up the bar, or use:

nyWai t Bar [' val ue'] = nunber

to set the value (it ranges from O to 100 by default).

Keyword Definition Value

value Initial value of the loading bar (from O to 100) Number

range The maximum value of the loading bar Number

barColor The color of the loading bar (R,G,B,A)

barRelief The relief appearance of the loading bar SUNKEN or RAISED
barBorderwidth If barRelief is SUNKEN, RAISED, GROOVE, or RIDGE, changes the size of the (Width,Height)

loading bar's bevel
relief The relief appearance of the background bar SUNKEN or RAISED

Example

import direct.directbase.DirectStart
fromdirect.gui.OnscreenText inport OnscreenText
fromdirect.gui.DirectQi inport *

#add sone text

bk text = "This is my Demp"

t ext Obj ect = OnscreenText (text = bk _text, pos = (0.95,-0.95),
scale = 0.07,fg=(1,0.5,0.5, 1), al i gn=Text Node. ACent er, mayChange=1)

#cal | back function to set text

def incBar(arg):
bar['value'] += arg
text = "Progress is:"+str(bar['value'])+ %
t ext Obj ect . set Text (text)

#create a frane
frame = Direct Frame(text="main", scal e=0. 001)
#add button

bar = Direct\WaitBar (text = "" , val ue=50, pos=(0, .4, .4))
#create 4 buttons
button_1 = DirectButton(text="+1",scal e=0. 05, pos=(-.3,.6,0), command=i ncBar, extraArgs = [1])
button_10 = DirectButton(text="+10", scal e=0. 05, pos=(0, . 6,0), command=i ncBar, extraArgs = [10])
button_mlL = DirectButton(text="-1", scal e=0. 05, pos=(0.3,.6,0), command=i ncBar, extraArgs = [-1])
button_mlO = DirectButton(text="-10", scal e=0. 05, pos=(0.6, .6,0), conmrand=i ncBar, extraArgs = [-10])
#run the tutorial
run()

<<prev top next>> Search

file:///E/manual/DirectWaitBar.1.ntm| 2006/11/21 sUsE 06:01:14

Panda3D Manual

Panda3D Manual: DirectSlider

<<prev top next=>>=> Search

Use a DirectSlider to make a slider, a widget that allows the user to select a value between a
bounded interval. DirectSlider is available beginning in Panda3D 1.1.

A DirectSlider consists of a long bar, by default horizontal, along with a "thumb", which is a
special button that the user may move left or right along the bar. The normal DirectGui
parameters such as frameSize, geom, and relief control the look of the bar; to control the look
of the thumb, prefix each of these parameters with the prefix "thumb_", e.g.

t hunmb_franeSi ze.

If you want to get (or modify) the current value of the slider (by default, the range is between
O and 1), use nySlider['value'].

Keyword Definition Value
value Initial value of the slider Default is O

The (min, max) range
of the slider

The amount to jump the
slider when the user
clicks left or right of the
thumb

orientation ;?ge‘:”entat'on ofthe | ORIZONTAL or VERTICAL

range Default is (0, 1)

pageSize Default is 0.1

Function called when

the value of the slider .
command Function

changes (takes no

arguments)

Extra arguments to the
extraArgs function specified in [Extra Arguments]
command

thumb_geom, thumb_relief, Parameters to control Any parameters appropriate
thumb_text, thumb_frameSize, etc. the look of the thumb to DirectButton

<<prev top next>> -

file:///E|/manual/DirectSlider.1.html2006/11/21 aUxE 06:01:15

Panda3D Manual

Panda3D Manual: DirectScrollBar

<<prev top next>> Search

A DirectScrollBar is similar to the "scroll bar" widget commonly used by the user to page
through a large document. DirectScrolledBar is available beginning in Panda3D 1.1. It consists
of a long trough, a thumb that slides along the trough, and a pair of buttons on either side of
the trough to scroll one line at a time. A DirectScrollBar can be oriented either vertically or
horizontally.

The DirectScrollBar is similar in function to DirectSlider, but it is specifically designed for

scrolling through a large window. In fact, a pair of DirectScrollBars is used to implement the
DirectScrolledFrame, which manages this scrolling functionality automatically. (Because

DirectScrolledFrame exists, you will probably not need to create a DirectScrollBar directly,
unless you have some custom purpose that requires a scroll bar.)

DirectScrollBar has many things in common with DirectSlider. Like DirectSlider, the normal
DirectGui parameters such as frameSize, geom, and relief control the look of the trough. You
can control the look of the thumb by prefixing each of these parameters with the prefix
"thumb_", e.g. t hunb_f ranmeSi ze; similarly, you can control the look of the two scroll buttons

by prefixing these with "incButton_" and "decButton_". You can retrieve or set the current
position of the thumb with myScrol | Bar[' val ue'].

Keyword Definition Value
value Initial position of the thumb Default is O
The (min, max) range of

range the thumb Default is (0, 1)
The amount to jump the
thumb when the user clicks

pageSize left or right of the thumb; Default is 0.1

this also controls the width
of the thumb when
resizeThumb is True

The amount to move the
scrollSize thumb when the user clicks Default is 0.01
once on either scroll button

The orientation of the scroll HORIZONTAL or

orientation bar VERTICAL
Whether to automatically
manageButtons LRI 0 (SIS iR True or False

the scroll bar's frame is
changed

Whether to adjust the
width of the thumb to
reflect the ratio of pageSize
to the overall range;
requires manageButtons to
be True as well

resizeThumb True or False

filel///E/manual/DirectScrolBar.1.html (1 of 2)2006/11/21 sUcE 06:01:16

Panda3D Manual

command

extraArgs

thumb_geom, thumb_relief,

thumb_text, thumb_frameSize, etc.

incButton_geom, incButton_ relief,
incButton_text, incButton_framesSize,
etc.

decButton_geom, decButton_relief,
decButton_text, decButton_frameSize,
etc.

top next>>

Function called when the
position of the thumb
changes (takes no
arguments)

Extra arguments to the
function specified in
command

Parameters to control the
look of the thumb

Parameters to control the
look of the lower or right
scroll button

Parameters to control the
look of the upper or left
scroll button

Function

[Extra Arguments]

Any parameters
appropriate to
DirectButton

Any parameters
appropriate to
DirectButton

Any parameters
appropriate to
DirectButton

file:///E|/manual/DirectScrol|Bar.1.html (2 of 2)2006/11/21 aUxE 06:01:16

Panda3D Manual

Panda3D Manual: DirectScrolledFrame

<<prev top next>> Search

The DirectScrolledFrame is a special variant of DirectFrame that allows the user to page
through a larger frame than would otherwise fit onscreen. The DirectScrolledFrame consists of
a small onscreen frame which is actually a window onto a potentially much larger virtual
canvas; the user can scroll through this canvas through the use of one or two DirectScrollBars

on the right and bottom of the frame. DirectScrolledFrame is available beginning with Panda3D
version 1.1.

The franeSi ze parameter controls the size and placement of the visible, onscreen frame; use
the canvasSi ze parameter to control the size of the larger virtual canvas.

You can then parent any widgets you like to the NodePath returned by nyFr ane. get Canvas() .

The DirectGui items you attach to this canvas NodePath will be visible through the small
window; you should position them within the virtual canvas using values within the coordinate
range you established via the canvasSi ze parameter.

By default, the scroll bars are automatically created with the DirectScrolledFrame and will be
hidden automatically when they are not needed (that is, if the virtual frame size is equal to or
smaller than the onscreen frame size). You can adjust either frame size at runtime and the
scroll bars will automatically adjust as needed. If you would prefer to manage the scroll bars
yourself, you can set one or both of nanageScrol | Bars and aut oHi deScrol | Bar s to False.

Keyword Definition Value

canvasSize SUES CAISVITEL (Top, left, bottom, right)
canvas
Whether to

automatically position
manageScrollBars e scal_e 75 EEE True or False

bars to fit along the

right and bottom of

the frame

Whether to
automatically hide
one or both scroll
bars when not needed

autoHideScrollBars True or False

Specifies the width of
scrollBarwidth both scroll bars at Default is 0.08
construction time

Parameters to control Any parameters
the look of the appropriate to
vertical scroll bar DirectScrollBar

verticalScroll_relief,
verticalScroll_frameSize, etc.

Parameters to control Any parameters
the look of the appropriate to
horizontal scroll bar DirectScrollBar

horizontalScroll_relief,
horizontalScroll_frameSize, etc.

file:///E|/manual/DirectScrolledFrame.1.html (1 of 2)2006/11/21 cUcE 06:01:16

Panda3D Manual

<<prev top next=> - |

-

file:///E|/manual/DirectScrolledFrame.1.html (2 of 2)2006/11/21 aUcE 06:01:16

Panda3D Manual

Panda3D Manual: Render Effects

<<prev top next>> Search

There are a number of special render effects that may be set on scene graph nodes to change
the way they render. This includes BillboardEffect, Compass Effect, DecalEffect, PolylightEffect,
and ShowBoundsEffect.

RenderEffect represents render properties that must be applied as soon as they are
encountered in the scene graph, rather than propagating down to the leaves. This is different
from RenderAttrib, which represents properties like color and texture that don't do anything
until they propagate down to a GeomNode.

You should not attempt to create or modify a RenderEffect directly; instead, use the make()
method of the appropriate kind of effect you want. This will allocate and return a new
RenderEffect of the appropriate type, and it may share pointers if possible. Do not modify the
new RenderEffect if you wish to change its properties; instead, create a new one.

Once you have created a render Effect, you need to decide what it should affect. If you have
an effect that should affect evereything in the scene the nodepath in the next line of code is
"render". If you only want it to affect specific objects, choose the appropriate place in the
scene graph.

NodePat h. node() . set Ef f ect (<Render Effect>)

<<prev top next>> Search

filel///E|/manual/Render_Effects.1.html2006/11/21 aUcE 06:01:17

Panda3D Manual

Panda3D Manual: Compass Effects

<<prev top next>> Search

A CompassEffect causes a node to inherit its rotation (or pos or scale, if specified) from some
other reference node in the graph, or more often from the root.

In its purest form, a CompassEffect is used to keep the node's rotation fixed relative to the top
of the scene graph, despite other transforms that may exist above the node. Hence the name:
the node behaves like a magnetic compass, always pointing in the same direction.

As an couple of generalizing extensions, the CompassEffect may also be set up to always
orient its node according to some other reference node than the root of the scene graph.
Furthermore, it may optionally adjust any of pos, rotation, or scale, instead of necessarily
rotation; and it may adjust individual pos and scale components. (Rotation may not be
adjusted on an individual component basis, that's just asking for trouble.)

Be careful when using the pos and scale modes. In these modes, it's possible for the
CompassEffect to move its node far from its normal bounding volume, causing culling to fail. If
this is an issue, you may need to explicitly set a large (or infinite) bounding volume on the
effect node.

Ef f ect =ConpassEf f ect . nake
(NodePat h)

<<prev top next>> Search

filel///E|/manual/Compass_Effects.1.html2006/11/21 aUcE 06:01:18

Panda3D Manual

Panda3D Manual: Billboard Effects

<<prev top next>> Search

A billboard is a special effect that causes a node to rotate automatically to face the camera,
regardless of the direction from which the camera is looking. It is usually applied to a single
textured polygon representing a complex object such as a tree. Judicious use of billboards can
be an effective way to create a rich background environment using very few polygons.

Panda indicates that a node should be billboarded to the camera by storing a BillboardEffect on
that node. Normally, you do not need to create a BillboardEffect explicitly, since there are a
handful of high-level methods on NodePath that will create one for you:

myNodePat h. set Bi | | boar dAxi s()
nmyNodePat h. set Bi | | boar dPoi nt Wor | d

()
nmyNodePat h. set Bi | | boar dPoi nt Eye()

Each of the above calls is mutually exclusive; there can be only one kind of billboard effect on
a node at any given time. To undo a billboard effect, use:

nyNodePat h. cl earBi | | board
0

The most common billboard type is an axial billboard, created by the set Bi | | boar dAxi s()

method. This kind of billboard is constrained to rotate around its vertical axis, so is usually
used to represent objects that are radially symmetric about the vertical axis (like trees).

Less often, you may need to use a point billboard, which is free to rotate about any axis. There
are two varieties of point billboard. The world-relative point billboard always keeps its up
vector facing up, i.e. along the Z axis, and is appropriate for objects that are generally
spherical and have no particular axis of symmetry, like clouds. The eye-relative point billboard,
on the other hand, always keeps its up vector towards the top of the screen, no matter which
way the camera tilts, and is usually used for text labels that float over objects in the world.

There are several more options available on a BillboardEffect, but these are rarely used. If you
need to take advantage of any of these more esoteric options, you must create a
BillboardEffect and apply it to the node yourself:

file///E/manual/Billboard_Effects.1.html (1 of 2)2006/11/21 aUcE 06:01:18

Panda3D Manual

nyEf f ect =Bi | | boar dEf f ect . make(
upVect or= vec3,
eyeRel ati ve= bool ,
axi al Rot at e= bool ,
of fset= fl oat,
| ookAt = nodepat h,

| ookAt Poi nt = poi nt 3
)
nmyNodePat h. node() . set Ef f ect
(nmyEffect)

<<prev top next>>

file:///E|/manual/Billboard_Effects.1.ntml (2 of 2)2006/11/21 aUxE 06:01:18

Panda3D Manual

Panda3D Manual: Texturing

<<prev top next=>>

Search

At its simplest, texturing merely consists of applying a texture in your modeling program.
When you export the model, pay attention to the relative path between the egg file you
create, and the image files. That relative path is encoded into the egg file. When panda

attempts to load the egg file, it will look in the same position relative to the egg file. Panda can
load JPG, PNG, TIF, and a number of other file formats.

More advanced texturing methods are described in the sections that follow.

<<prev top next>> Search

filel///E/manual/ Texturing.1.html2006/11/21 aUcE 06:01:19

Panda3D Manual

Panda3D Manual: Simple Texturing

<<prev top next>> Search

A texture map or texture image is a two-dimensional image file, like a JPEG or a Windows
BMP file, that is used to apply color to a 3-D model. It is called a "texture" because one of the
earliest uses of this technique was to apply an interesting texture to walls and floors that
would otherwise be one flat, plastic-looking color. Nowadays texturing is so common in 3-D
applications that it is often the only thing used to apply color to models--without texture maps,
many models would simply be white.

There are a vast array of rendering effects that can be achieved with different variants on
texturing. Before you can learn about them, it is important to understand the basics of
texturing first.

In simple texturing--by far the most common form--you can think of the texture map as a
layer of paint that is applied to the model. In order for the graphics hardware to know in what
direction the paint should be applied, the model must have been created with texture
coordinates--a special (u, v) coordinate pair that is associated with each vertex of your
model. Each vertex's (u, v) texture coordinates place the vertex at a particular point within the
texture map, in the same way that the vertex's (X, y, z) coordinates place the vertex at a
particular point in 3-D space.

These texture coordinates are sometimes called uv's because of the (u, v) name of the
coordinate pair. Almost any modeling package that you might use to create a model can create
texture coordinates at the same time, and many do it without even asking.

By convention, every texture map is assigned a (u, v) coordinate range such that the u
coordinate ranges from O to 1 from right to left, and the v coordinate ranges from 0 to 1 from
bottom to top. This means that the bottom-left corner of the texture is at coordinate (O, 0),
and the top-right corner is at (1, 1). For instance, take a look at some typical texture maps:

file///E|/manual/Simple_Texturing.1.html (1 of 3)2006/11/21 sUsE 06:01:20

Panda3D Manual

It is the (u, v) texture coordinates that you assign to the vertices that determine how the
texture map will be applied to your model. When each triangle of your model is drawn, it is
drawn with the colors from your texture map that fall within the same triangle of vertices in
(u, v) texture map space. For instance, the sample smiley.egg model that ships with Panda
has its vertices defined such that the u coordinate increases from O to 1 around its diameter,
and the v coordinate increases from O at the bottom to 1 at the top. This causes the texture
image to be wrapped horizontally around the sphere:

file:///E|/manual/Simple_Texturing.1.html (2 of 3)2006/11/21 sUsE 06:01:20

Panda3D Manual

Note that the (u, v) range for a texture image is always the same, O to 1, regardless of the
size of the texture.

<<prev top next>>

=

file:///E/manual/Simple_Texturing.1.html (3 of 3)2006/11/21 sUsE 06:01:20

Panda3D Manual

Panda3D Manual: Choosing a Texture Size

<<prev top next>> Search

Most graphics hardware requires that your texture images always be a size that is a power of
two in each dimension. That means you can use any of the following choices for a texture size:
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, or so on (but unless you have a really high-
end card, you'll probably need to stop there).

The textures don't usually have to be square: they don't have to have the same size in both
dimensions. But each dimension does usually have to be a power of two. So 64 x 128 is all
right, for instance, or 512 x 32, or 256 x 256. But you can't make a texture image that is
200 x 200 pixels, since 200 isn't a power of two.

By default, Panda3D will automatically rescale any texture image down to the nearest smaller
power of two when you read it from disk, so you usually don't have to think about this--but
your application will load faster if you scale your textures properly in the first place.

Some newer graphics cards can render textures that are not a power of two. If you have one
of these cards and you don't want Panda3D to scale your textures, you can disable this
automatic scaling by putting the following line in your Config.prc:

t ext ur es- power-2 none

Note that some cards appear to be able to render non-power-of-two textures, but the driver is
really just scaling the textures at load time. With cards like these, you're better off letting
Panda do the scaling, or dynamic textures may render very slowly.

Other choices for t ext ur es- power - 2 are down (to scale down to the nearest smaller power of
two, the default) or up (to scale up to the next larger power of two).

Finally, note that the size you choose for the texture image has nothing to do with the size or
shape of the texture image onscreen--that's controlled by the size and shape of the polygon
you apply it to. Making a texture image larger won't make it make it appear larger onscreen,
but it will tend to make it crisper and more detailed. Similarly, making a texture smaller will
tend to make it fuzzier.

<<prev top next=>>=> Search

file:///E|/manual/Choosing_a Texture_Size.1.html2006/11/21 sUsE 06:01:21

Panda3D Manual

Panda3D Manual: Texture Wrap Modes

<<prev top next>> Search

As described earlier, the (u, v) texture coordinates that you assign to your vertices are what
determines how the texture fits on your geometry. Often, you will use texture coordinates that
always fall within the range [0, 1], which is the complete range of the pixels of your texture
image. However, it is also legal to use texture coordinates that go outside this range; you can
have negative values, for instance, or numbers higher than 1.

So if the texture image is only defined over the range [0, 1], what does the texture look like
outside this range? You can specify this with the texture wrap mode.

text ure. set WapU(w apMde)
text ure. set WapV(w apMde)

The wrapMode parameter is specified separately for the u and v directions (there is also a
set WapW) for 3-D textures, but that's an advanced topic). The wrapMode may be any of the

following values:

Text ur e. WWRepeat The texture image repeats to infinity.

Text ure. WO anp The last pixel of the texture image stretches out to infinity.

Text ur e. WWBor der Col or The color specified by t ext ure. set Bor der Col or () is used to fill the
space.

Texture. WWM rror The texture image flips back-and-forth to infinity.

Texture. WM rrorOnce The texture image flips backwards, once, and then the "border
color" is used.

The default wrap mode is WWRepeat .
Consider the following simple texture image:
D)

We will apply this texture in the center of a large polygon whose texture coordinates range
considerably farther than [0, 1] in both directions.

WMRepeat

file:///E|/manual/Texture Wrap_Modes.1.html (1 of 6)2006/11/21 aUrE 06:01:22

Panda3D Manual

t ext ure. set WapU(Text ur e. WWRepeat)
t ext ure. set WapV(Text ur e. WWRepeat)

WVRepeat mode is often used to tile a relatively small texture over a large surface.

WMClamp

text ure. set WapU(Text ur e. WWCl anp)
text ure. set WapV(Text ure. W anp)

WMCl anp mode is rarely used on large polygons because, frankly, it looks terrible when the

pixels stretch out to infinity like this; but this mode is usually the right choice when the texture
exactly fills its polygon (see One caution about a common wrap error, below).

WMBorderColor

file:///E)/manual/Texture_Wrap_Modes.1.html (2 of 6)2006/11/21 aUsE 06:01:22

Panda3D Manual

text ure. set WapU(Text ur e. WWBor der Col or)
text ure. set WapV(Text ur e. WWBor der Col or)
t ext ur e. set Bor der Col or (VBase4(0.4, 0.5, 1, 1))

The above blue color was chosen for illustration purposes; you can use any color you like for
the border color. Normally, you would use the background color of the texture as the border

color, like this:

text ure. set WapU(Text ur e. WVBor der Col or)
text ure. set WapV(Text ur e. WWBor der Col or)
t ext ur e. set Border Col or (VBase4(1, 1, 1, 1))

Some very old graphics drivers don't support VWBor der Col or . In this case, Panda3D will fall
back to WM anp, which will look similar as long as there is a sufficient margin of background
color around the edge of your texture (unlike our sample texture, which goes all the way out
the edge).

file:///E|/manual/Texture Wrap_Modes.1.html (3 of 6)2006/11/21 aUrE 06:01:22

Panda3D Manual

WMMirror

texture. set WapU(Text ure. WWM rror)
texture. set WapV(Texture. WWM rror)

Many older graphics drivers do not support WW rr or . In this case, Panda3D will fall back to
WVRepeat .

WMMirrorOnce

texture.set WapU(Texture. WWM rror Once)
texture.set WapV(Texture. WM rrorOnce)
t ext ur e. set Bor der Col or (VBase4(0.4, 0.5, 1, 1))

Few graphics drivers support WWI rr or Once. In this case, Panda3D will fall back to

file:///E|/manual/Texture Wrap_Modes.1.html (4 of 6)2006/11/21 aUrE 06:01:22

Panda3D Manual

WVBor der Col or .

Setting different wrap modes

It is possible to set different wrap modes in the u and v directions:

text ure. set WapU(Text ur e. WWRepeat)
text ure. set WapV(Text ure. W anp)

.!

One caution about a common wrap mode error

'!'!'!'!'!'!'!'1"

When you apply a texture that is intended to exactly fill a polygon--that is, the texture
coordinates range from O to 1, but no further--you should usually set its wrap mode to clamp.
This is because if you let it keep the default value of repeat, the color may bleed in from the
opposite edge, producing a thin line along the edge of your polygon, like this:

This is a particularly common error with a texture that is painted as an alpha cutout, where
there is an image with a fully transparent background: you will often see an thin, barely-visible
edge floating along the top (for instance) of the polygon. This edge is actually the bottom edge
of the texture bleeding onto the top, because the designer specified WWRepeat instead of the

file///E/manual/ Texture_ Wrap_Modes.1.html (5 of 6)2006/11/21 aUcE 06:01:22

Panda3D Manual

correct mode, WMCl anp.

<<prev top next>>

| -

file:///E|/manual/Texture Wrap_Modes.1.html (6 of 6)2006/11/21 aUrE 06:01:22

Panda3D Manual

Panda3D Manual: Texture Filter Types

<<prev top next>> Search

It's rare that the pixels of a texture image match one-to-one with actual screen pixels when a
texture is visible onscreen. Usually, it is the case that either a single pixel of the texture is
stretched over multiple screen pixels (texture magnification--the texture image is stretched
bigger), or the opposite, that multiple pixels of a texture contribute to the color of a single
screen pixel (texture minification--the texture image is squished smaller). Often, a single
polygon will have some texture pixels that need to be magnified, and some pixels that need to
be minified (the graphics card can handle both cases on a single polygon).

You can control how the texture looks when it is magnified or minified by setting its filter
type.

texture.setMagfilter(filterType)
texture.setMnfilter(filterType)

There is a separate filterType setting for magnification and for minification. For both
magnification and minification, the filterType may be one of:

Texture. FTNear est sample the nearest pixel.
Texture. FTLi near sample the four nearest pixels, and linearly interpolate them.

For minification only, in addition to the above two choices, you can also choose from:

Texture. FTNear est M pmapNear est pojnt sample the pixel from the nearest mipmap level.
Texture. FTLi near M pmapNear est Bilinear filter the pixel from the nearest mipmap level.

Point sample the pixel from two mipmap levels, and
linearly blend.

_ _ Bilinearly filter the pixel from two mipmap levels, and
Texture. FTLi near M pmapLi near [inearly blend the results. This is also called trilinear
filtering.

Text ure. FTNear est M pmapLi near

The default filter type for both magnification and minification is FTLi near .

Consider the visual effects of the various filter types on magnification and minification of the
following texture:

file///E/manual/ Texture_Filter_Types.1.html (1 of 5)2006/11/21 sUxE 06:01:24

Panda3D Manual

FTNearest

texture. set Magfilter(Texture. FTNear est)
texture.setM nfilter(Texture. FTNear est)

Usually, FTNear est is used only to achieve a special pixelly effect.

FTLinear

file///E/manual/ Texture_Filter_Types.1.html (2 of 5)2006/11/21 sUxE 06:01:24

Panda3D Manual

texture.set Magfilter(Texture. FTLi near)
texture.setM nfilter(Texture. FTLi near)

4‘{ \

FTLi near is a good general-purpose choice, though it isn't perfect.

Mipmaps

Many graphics tutorials will go on for pages and pages about exactly what mipmapping means
and how it all works inside. We'll spare you those details here; but you should understand the
following things about mipmapping:

(1) It requires 33% more texture memory (per mipmapped texture), but it renders quickly.
(2) It helps the texture look much smoother than filtering alone when it is minified.
(3) Mipmapping doesn't have anything at all to do with magnification.

(4) It has a tendency to blur minified textures out a little too much, especially when the
texture is applied to a polygon that is very nearly edge-on to the camera.

There are four different filter types that involve mipmapping, but you almost always want to
use just the last one, FTLi near M pnapLi near . The other modes are for advanced uses, and

sometimes can be used to tweak the mipmap artifacts a bit (especially to reduce point 4,
above). If you don't understand the description in the table above, it's not worth worrying
about.

file///E/manual/ Texture_Filter_Types.1.html (3 of 5)2006/11/21 sUxE 06:01:24

Panda3D Manual

texture.setM nfilter(Texture. FTLi near M prmapLi near)

Anisotropic Filtering

There is one final addition to the texture filtering equation: you can enable anisotropic filtering
on top of any of the above filter modes, which enables a more expensive, slightly slower
rendering mode that generally produces superior effects. In particular, anisotropic filtering is
usually better at handling texture minification than mipmapping, and doesn't tend to blur out
the texture so much.

To enable anisotropic filtering, you specify the degree:

t ext ur e. set Ani sot r opi cDegr ee(degr ee)

The degree should be an integer number. The default value is 1, which indicates no anisotropic
filtering; set it to a higher number to indicate the amount of filtering you require. Larger
numbers are more expensive but produce a better result, up to the capability of your graphics

card. Many graphics cards don't support any degree other than 2, which is usually sufficient
anyway.

t ext ur e. set Ani sot r opi cDegr ee(2)

file///E/manual/ Texture_Filter_Types.1.html (4 of 5)2006/11/21 sUxE 06:01:24

Panda3D Manual

At the present, anisotropic filtering is only supported by the DirectX interfaces. Some older

graphics cards cannot perform anisotropic filtering at all.

Search
B

file:///E)/manual/Texture_Filter_Types.1.html (5 of 5)2006/11/21 aUcE 06:01:24

Panda3D Manual

Panda3D Manual: Simple Texture Replacement

<<prev top next>> Search

Although usually you will load and display models that are already textured, you can also
apply or replace a texture image on a model at runtime. To do this, you must first get a
handle to the texture, for instance by loading it directly:

nmyTexture = | oader. | oadText ure(" myText ure. png")

The above loadTexture() call will search along the current model-path for the named image file
(in this example, a file named "myTexture.png"). If the texture is not found or cannot be read
for some reason, None is returned.

Once you have a texture, you can apply it to a model with the set Text ure() call. For
instance, suppose you used the CardMaker class to generate a plain white card:

cm = CardMaker (' card')
card = render. att achNewNode(cm generate())

Then you can load up a texture and apply it to the card like this:

tex = | oader.| oadText ure(' maps/ noi se. rgb')
card. set Text ure(tex)

(Note that it is not necessary to use the override parameter to the setTexture() call--that is,
you do not need to do card.setTexture(tex, 1)--because in this case, the card does not already
have any other texture applied to it, so your texture will be visible even without the override.)

In order for this to work, the model you apply it to must already have texture coordinates
defined (see Simple Texturing). As it happens, the CardMaker generates texture coordinates

by default when it generates a card, so no problem there.

You can also use set Text ure() to replace the texture on an already-textured model. In this

case, you must specify a second parameter to setTexture, which is the same optional Panda
override parameter you can specify on any kind of Panda state change. Normally, you simply
pass 1 as the second parameter to setTexture(). Without this override, the texture that is
assigned directly at the Geom level will have precedence over the state change you make at
the model node, and the texture change won't be made.

For instance, to change the appearance of smiley:

file///E/manual/Simple_Texture_Replacement.1.html (1 of 4)2006/11/21 aUcE 06:01:26

Panda3D Manual

sm | ey = | oader. | oadMvbdel (' sm | ey. egqg')
sm | ey. reparent To(render)
tex = | oader. | oadTexture(' maps/ noi se.rgb')

sm | ey. set Texture(tex, 1)

Often, you want to replace the texture on just one piece of a model, rather than setting the
texture on every element. To do this, you simply get a NodePath handle to the piece or pieces
of the model that you want to change, as described in the section Manipulating a Piece of a

Model, and make the set Text ure() call on those NodePaths.

For instance, this car model has multiple textures available in different colors:

For the most part, this car was painted with one big texture image, which looks like this:

file///E/manual/Simple_Texture_Replacement.1.html (2 of 4)2006/11/21 aUcE 06:01:26

Panda3D Manual

Although it is tempting to use setTexture() to assign the blue texture to the whole car, that
would also assign the blue texture to the car's tires, which need to use a different texture
map. So instead, we apply the blue texture just to the pieces that we want to change:

file///E/manual/Simple_Texture_Replacement.1.html (3 of 4)2006/11/21 aUcE 06:01:26

Panda3D Manual

car = | oader. | oadModel (' bvw f 2004- - car nsx/ car nsx. egg')

bl ue = | oader. | oadText ure(' bvw f 2004- - car nsx/ car nsx- bl ue. png')
car.find('**/body/ body'). set Texture(bl ue, 1)
car.find('**/body/ pol ySurfacel'). set Texture(blue, 1)
car.find('**/body/ pol ySurface2'). set Texture(bl ue, 1)

And the result is this:

top next>>

file:///E)/manual/Simple_Texture Replacement.1.html (4 of 4)2006/11/21 sUcE 06:01:26

Panda3D Manual

Panda3D Manual: Multitexture Introduction

<<prev top next>> Search

Panda3D provides the ability to apply more than one texture image at a time to the polygons
of a model. The textures are applied on top of each other, like coats of paint; very much like
the "layers" in a popular photo-paint program.

To layer a second texture on a model, you will have to understand Panda's concept of a
TextureStage. Think of a TextureStage as a slot to hold a single texture image. You can have
as many different TextureStages as you want in your scene, and each TextureStage might be
used on one, several, or all models.

When you apply a texture to a model, for instance with the set Text ure() call, you are

actually binding the texture to a particular TextureStage. If you do not specify a TextureStage
to use, Panda assumes you mean the "default” TextureStage object, which is a global pointer
which you can access as Text ur eSt age. get Defaul t () .

Each TextureStage can hold one texture image for a particular model. If you assign a texture
to a particular TextureStage, and then later (or at a lower node) assign a different texture to
the same TextureStage, the new texture completely replaces the old one. (Within the overall
scene, a given TextureStage can be used to hold any number of different textures for different
nodes; but it only holds one texture for any one particular node.)

However, you can have as many different TextureStages as you want. If you create a new
TextureStage and use it to assign a second texture to a node, then the node now has both
textures assigned to it.

Although there is no limit to the number of TextureStages you assign this way, your graphics
card will impose some limit on the number it can render on any one node. Modern graphics
cards will typically have a limit of 4 or 8 textures at once; some older cards can only do 2, and
some very old cards have a limit of 1 (only one texture at a time). You can find out the
multitexture limit on your particular card with the call base. wi n. get Gsg().

get MaxText ur eSt ages() .

Remember, however, that this limit only restricts the number of different TextureStages you
can have on any one particular node; you can still have as many different TextureStages as
you like as long as they are all on different nodes.

Let's revisit the example from Simple Texture Replacement, where we replaced the normal
texture on smiley.egg with a new texture image that contains a random color pattern. This
time, instead of assigning the new texture to the default TextureStage, we'll create a new

TextureStage for it, so that both textures will still be in effect:

filel///E/manual/Multitexture_Introduction.1.html (1 of 3)2006/11/21 aUsE 06:01:27

Panda3D Manual

sm | ey = | oader. | oadMvbdel (' sm | ey. egqg')
sm | ey. reparent To(render)
tex = | oader. | oadTexture(' maps/ noi se.rgb')

ts = TextureStage('ts')
smi | ey. set Texture(ts, tex)

Note that we can create a new TextureStage object on the fly; the only parameter required to
the TextureStage parameter is a name, which is significant only to us. When we pass the
TextureStage as the first parameter to set Text ure(), it means to assign the indicated texture

to that TextureStage. Also note that we no longer need to specify an override to the setTexture
() call, since we are not overriding the texture specified at the Geom level, but rather we are

adding to it.

And the result is this:

To undo a previous call to add a texture, use:

sm | ey. cl ear Text ure(ts)

passing in the same TextureStage that you used before. Or, alternatively, you may simply
use:

sm | ey. cl ear Text ure()

to remove all texture specifications that you previously added to the node smiley. This does
not remove the original textures that were on the model when you loaded it; those textures
are assigned at a different node level, on the Geom objects that make up the model.

filel///Efmanual/Multitexture_Introduction.1.html (2 of 3)2006/11/21 aUsE 06:01:27

Panda3D Manual

]
<<prev top next=>= - I

-

file:///E}/manual/Multitexture_Introduction.1.html (3 of 3)2006/11/21 aUcE 06:01:27

Panda3D Manual

Panda3D Manual: Texture Blend Modes

<<prev top next>> Search

When you start applying more than one texture at a time, it becomes important to control how
the textures combine together. There are several options, and they are controlled through the
TextureStage object, specifically through the Text ur eSt age. set Mbde() call.

Let's go back to the example of applying a texture to the smiley model. In this case, we'll
create a new TextureStage to apply the following texture image:

To this scene:

Note that the circular white part of the sample image is actually not white at all, but an alpha
cutout (you are seeing through the image to the white page background). We have rendered
smiley.egg against a colored background so you can see the effects of alpha in the various
modes below; in some of them, the alpha is propagated through to the final color, so smiley is
transparent in those parts of the image, but in other modes, the alpha is used for a different
purpose, and smiley is not transparent there.

Note also that, for the purposes of illustration, we have only applied the sample texture image
to a portion of the smiley model, rather than to the whole model. (This was done by
transforming the texture coordinates of this texture stage, which is covered in a later topic.)

file:/l/E|/manual/Texture_Blend_Modes.1.html (1 of 6)2006/11/21 aUsE 06:01:30

Panda3D Manual

Modulate mode

This is the default blend mode. In this mode, the top texture color is multiplied by the bottom
texture color to produce the result. This means the resulting texture color will be darker (or at
least, no brighter) than both of the original texture colors.

ts = TextureStage('ts')
ts. set Mode(Text ur eSt age. MVbdul at e)
sm | ey. set Texture(ts, tex)

Note that in this mode, an alpha cutout in the top texture produces an alpha cutout in the
resulting image.

Add mode

In this mode, the top texture color is added to the bottom texture color, and clamped to 1

(white). This means the resulting texture color will be brighter (or at least, no darker) than
both of the original texture colors.

ts = TextureStage('ts')
ts. set Mode(Text ur eSt age. MAdd)
sm | ey. set Texture(ts, tex)

file:/l/E|/manual/Texture_Blend_Modes.1.html (2 of 6)2006/11/21 aUsE 06:01:30

Panda3D Manual

Note that in this mode, as in modulate mode, an alpha cutout in the top texture produces an
alpha cutout in the resulting image. Also note that, unless one or both of your source textures
was rather dark, there is a tendency for the colors to get washed out at white where
everything clamps to 1.

Replace mode

In this mode the top texture completely replaces the bottom texture. This mode is not often
used.

ts = TextureStage('ts')
ts. set Mode(Text ur eSt age. MrRepl ace)
sm | ey. set Texture(ts, tex)

Note that the alpha cutout is preserved, but the effects of lighting (which are considered part
of the underlying texture) have been lost.

file:///E/manual/Texture_Blend_Modes.1.html (3 of 6)2006/11/21 aUsE 06:01:30

Panda3D Manual

Decal mode

In this mode the top texture completely replaces the bottom texture, but only where alpha = 1
in the top texture. When alpha = O, the bottom texture shows through, and there is a smooth
blending for alpha values between 0 and 1.

ts = TextureStage('ts')
ts. set Mode(Text ur eSt age. MDecal)
sm | ey. set Texture(ts, tex)

Note that the alpha cutout is no longer preserved in this mode, because alpha is used to
determine which texture should be visible. Also note that the effects of lighting are lost for the
decalled part of the texture.

Panda3D also provides a built-in decal capability, for rendering a small polygon coplanar with
and embedded within a larger polygon, which is not related to the decal texture blend mode.

Blend mode

Blend mode is similar to decal mode, except you can specify the color of the decal as a
parameter at runtime. You can vary the color and you don't have to have a different texture
image prepared for each possible color. However, the decal will always be monochromatic (it
will be drawn in different shades of whatever color you specify).

Blend mode can only be used with a grayscale texture, and it does not use alpha. Since the
sample texture above is not a grayscale texture, we will use a different texture for this
example:

file:/l/E|/manual/Texture_Blend_Modes.1.html (4 of 6)2006/11/21 aUsE 06:01:30

Panda3D Manual

This texture does not have an alpha channel; it is simply a grayscale image with a large white
"A" on a field of black. Blend mode will produce the original color where the image is black,
and the color we specify with Text ur eSt age. set Col or () where the image is white. Where the
image is shades of gray, there will be a smooth blending between the colors.

ts = TextureStage('ts')

ts. set Mode(Text ur eSt age. MBl end)
ts.setColor(1, 0, 0, 1)

sm | ey. set Texture(ts, tex)

And we can change the color of the decal at will, simply with:

ts.setColor (0, 0, 1, 1)

filel///E/manual/ Texture_Blend_Modes.1.html (5 of 6)2006/11/21 aUoE 06:01:30

Panda3D Manual

Note that, as with the decal example above, the lighting information is lost where the decal is
applied.

<<prev top next=>>

|-

file:///E/manual/Texture_Blend_Modes.1.html (6 of 6)2006/11/21 aUsE 06:01:30

Panda3D Manual

Panda3D Manual: Texture Order

<<prev top next>> Search

When there are multiple textures in effect, depending on the Texture Blend Mode in use, it
may be important to control the order in which the textures apply. For instance, although
Modulate mode and Add mode are order-independent, texture order makes a big difference to
Decal mode, Replace mode, and Blend mode.

To specify the texture order, use Text ureSt age. set Sort () on one or more of your

TextureStages. If you do not specify a sort value, the default sort value is 0. When the
geometry is rendered, all of the textures are rendered in increasing order of sort value, such
that the largest sort value is rendered on top. Thus, if you want to use Decal mode, for
instance, to apply a texture on top of a lower texture, it would be a good idea to use setSort()
to give a higher sort value to your decal texture.

Also, since some hardware might not be able to render all of the TextureStages that you have
defined on a particular node, Panda provides a way for you to specify which texture(s) are the
most important. Use Text ureSt age. setPriority() for this.

The priority value is only consulted when you have applied more TextureStages to a particular
node than your current hardware can render. In this case, Panda will select the n textures with
the highest priority value (and then sort them in order by the setSort() value). Between two
textures with the same priority, Panda will prefer the one with the lower sort value. The
default priority is O.

<<prev top next>> -

file///Ei/manual/Texture_Order.1.ntml2006/11/21 aUoE 06:01:31

Panda3D Manual

Panda3D Manual: Texture Combine Modes

<<prev top next=>=>

In addition to the several Texture Blend Modes described previously, there is a more advanced
interface on TextureStage that allows for a larger vocabulary of texture blending options.

Although several of the following options (CMReplace, CMModulate, CMAdd) have obvious parallels
with the simpler blend modes described previously, they are in fact more powerful, because with
each of the following you may specify the particular source or sources to be used for the operation;
you are not limited to simply applying the operation to the top texture and the texture below.

RGB modes

The following specify the effect of the RGB (color) channels. A separate set of methods, below,
specifies the effect of the alpha channel.

ts. set Combi neRgb(Text ur eSt age. CMRepl ace, source, operand)

This mode is similar to "replace mode". Whatever color is specified by source and operand becomes
the new color.

ts. set Conmbi neRgb(Text ur eSt age. CMVbdul at e, sourceO, operandO, sourcel, operandl)

This mode is similar to "modulate mode". The color from sourceO/operandO is multiplied by the
color from sourcel/operandl.

ts. set Conmbi neRgb(Text ur eSt age. CMAdd, source0O, operandO, sourcel, operandl)

This mode is similar to "add mode". The color from source0O/operandO is added to the color from
sourcel/operandl, and the result is clamped to 1 (white).

ts. set Combi neRgh(Text ur eSt age. CMAJdSi gned, sour ceO, operandO, sourcel, operandl)

In this mode, the colors are added as signed numbers, and the result wraps.

ts. set Combi neRgb(Text ur eSt age. CMSubt ract, sourceO, operandO, sourcel, operandl)

In this mode, sourcel/operandl is subtracted from sourceO/operandO.

file:///E/manual/Texture_Combine Modes.1.html (1 of 3)2006/11/21 aUsE 06:01:32

Panda3D Manual

ts. set Combi neRgh(Text ur eSt age. CM nt er pol at e, sour ce0O, operandO, sourcel, operandl,
source2, operand2)

This is the only mode that uses three sources. The value of source2/operand2 is used to select
between sourceO/operandO and sourcel/operandl. When source?2 is O, sourceO is selected, and
when source? is 1, sourcel is selected. When source2 is between 0 and 1, the color is smoothly
blended between sourceO and sourcel.

Alpha modes

The following methods more-or-less duplicate the functionality of the above, but they control what
happens to the alpha channel. Thus, you have explicit control over whether an alpha cutout in the
top texture should produce an alpha cutout in the resulting object.

ts. set Combi neAl pha(Text ur eSt age. CVMRepl ace, source, operand)

t s. set Conmbi neAl pha(Text ur eSt age. CM\Vbdul at e, sourceO, operand0O, sourcel, operandl)

ts. set Combi neAl pha(Text ur eSt age. CMAdd, sour ce0O, operandO, sourcel, operandl)

ts. set Conbi neAl pha(Text ur eSt age. CMAMdSi gned, sourceO, operandO, sourcel, operandl)

t s. set Conmbi neAl pha(Text ur eSt age. CMsubt ract, sourceO, operandO, sourcel, operandl)

ts. set Combi neAl pha(Text ur eSt age. CM nt er pol at e, sourceO, operandO, sourcel, operandl,
sour ce2, operand?)

Source values

This table lists the legal values for any of source, source0O, sourcel, or source2, in the above calls.
This broadly gives you control over which two (or three) textures are used as inputs to the above
combine modes.

</tr></tr>
</tr>
</tr>
The current, or
TextureStage.CSTexture "top" texture

image.

A constant color,
specified via
TextureStage.
setColor().

The same as
CSConstant, but

TextureStage.CSConstant

TextureStage. the color will be
CSConstantColorScale modified by
NodePath.

setColorScale().

filel///E/manual/Texture_Combine Modes.1.html (2 of 3)2006/11/21 aUsE 06:01:32

Panda3D Manual

The "primary”
color of the
object, before the
TextureStage.CSPrimaryColor first texture stage
was applied, and
including any
lighting effects.

The result of any of
the previous texture
stages; specifically,
the last stage for
which TextureStage.
setSavedResult
(True) was called.

The result of the

previous texture TextureStage.
stage; i.e. the CSLastSavedResult
texture below.

TextureStage.CSPrevious

Operands

This table lists the legal values for any of operand, operandO, operandl, or operand2, in the above
calls. This fine-tunes the channel data that is used from each texture input.

Use the RGB color. When used in a setCombineAlpha() call,
RGB is automatically aggregated into grayscale.

TextureStage.COOneMinusSrcColor The complement of the RGB color.

Use the alpha value. When used in a setCombineRgb() call,
alpha is automatically expanded into uniform RGB.

TextureStage.COOneMinusSrcAlpha The complement of the alpha value.

TextureStage.COSrcColor

TextureStage.COSrcAlpha

<<prev top next>> - |

file:///E/manual/Texture_Combine Modes.1.html (3 of 3)2006/11/21 aUcE 06:01:32

Panda3D Manual

Panda3D Manual: Texture Transforms

<<prev top next>> Search

It is possible to apply a matrix to transform the (u, v) texture coordinates of a model before
rendering. In this way, you can adjust the position, rotation, or scale of a texture, sliding the
texture around to suit your particular needs.

Use the following NodePath methods to do this:

nodePat h. set TexOf f set (Text ureSt age, uOfset, vOfset);
nodePat h. set TexScal e(Text ureSt age, uScal e, vScal e);
nodePat h. set TexRot at e(Text ur eSt age, degrees);

If you don't have a particular TextureStage, use Text ur eSt age. get Def aul t () as the first
parameter.

Note that the operation in each case is applied to the (u, v) texture coordinates, not to the
texture; so it will have the opposite effect on the texture. For instance, the call nodePat h.

set TexScal e(ts, 2, 2) will effectively double the values of the texture coordinates on the

model, which doubles the space over which the texture is applied, and thus makes the texture
appear half as large.

The above methods apply a 2-d transform to your texture coordinates, which is appropriate,
since texture coordinates are usually two-dimensional. However, sometimes you are working
with 3-d texture coordinates, and you really do want to apply a 3-d transform. For those

cases, there are the following methods:

nodePat h. set TexPos(Text ureSt age, uOfset, vOfset, wOffset);
nodePat h. set TexScal e(Text ur eSt age, uScal e, vScal e, wScal e);
nodePat h. set TexHpr (TextureStage, h, p, r);

And there is also one generic form:

nodePat h. set TexTr ansf or n{ Text ur eSt age, transform;

This last method sets a generic TransformState object. This is the same kind of 4x4 transform
matrix object that you can get from a NodePath via e.g., NodePat h. get Transforn{) . You can

also construct a new TransformState via a number of methods like Tr ansf or ntst at e. nakePos
(VBase3(0, 1, 0)). If you intend to apply a 2-d transform only, you should restrict yourself
to methods like Tr ansf or nSt at e. makePos2d(VBase2(0, 1)) ; using only 2-d operations may
allow the graphics backend to use a slightly simpler calculation.

file///E|i/manual/Texture_Transforms.1.html (1 of 2)2006/11/21 sUcE 06:01:33

Panda3D Manual

Note that the texture transform is associated with a particular TextureStage; it is not a fixed
property of the model or its texture coordinates. You can therefore apply a different texture
transform to each different TextureStage, so that if you have multiple textures in effect on a
particular node, they need not all be in the same place, even if they all use the same texture
coordinates. For instance, this technique was used to generate the sample images in the
Texture Blend Modes section. In fact, the following code was used to place this sample texture

(excerpted):

smley = | oader.| oadModel (' smi |l ey. egg')

ts = TextureStage('ts')

pattern = | oader.| oadTexture(' col or_pattern.png')

sm | ey. set Texture(ts, pattern)
smi | ey. set TexScal e(ts, 8, 4)
sm | ey. set TexOffset(ts, -4, -2)

and the resulting texture:

In the above example, we have applied a scale of (8, 4) to reduce the size of the decal image
substantially, and then we specified an offset of (-4, -2) to slide it around in the positive (u, v)
direction to smiley's face (since the (0, 0) coordinate happens to be on smiley's backside).
However, these operations affect only the decal image; the original smiley texture is
unchanged from its normal position, even though both textures are using the same texture

coordinates.

<<prev top next>>

file:///E|/manual/Texture_Transforms.1.html (2 of 2)2006/11/21 aUxE 06:01:33

Panda3D Manual

Panda3D Manual: Multiple Texture Coordinate Sets

<<prev top next>> Search

In addition to simple texture transforms, it is also possible to have more than one set of
texture coordinates on a model. Panda allows you to define as many different sets of texture
coordinates as you like, and each set can be completely unrelated to all of the others.

When you have multiple texture coordinate sets (sometimes called multiple UV sets) on
a model, each set will have its own name, which is any arbitrary string. The default texture
coordinate set has no name (its name is the empty string).

Normally, you create multiple texture coordinate sets in the same modeling package that you
use to create the model. Not all modeling packages, and not all Panda converters, support
multiple texture coordinates. In fact, as of the time of this writing, only the Panda3D 1.1
version (or newer) of the maya2egg converter is known to convert multiple texture
coordinates into Panda.

If you happen to have a model with multiple texture coordinate sets, you can specify which set
a particular texture should use by calling Text ur eSt age. set Texcoor dNanme(" nane") .

Remember, a TextureStage is used to apply a texture to a model, and so every texture will
have an associated TextureStage (though most textures just use the default TextureStage). If
you do not call this method for a particular TextureStage, the default behavior is to use the
default, unnamed texture coordinate set.

The different TextureStages on a model might share the same texture coordinate sets, or they
might each use a different texture coordinate set, or any combination.

<<prev top next>> Search

file///E/manual/Multiple_Texture Coordinate_Sets.1.html2006/11/21 aUcE 06:01:33

Panda3D Manual

Panda3D Manual: Automatic Texture Coordinates

<<prev top next>> Search

In addition to using texture coordinates that are built into the model, it is also possible to generate texture
coordinates at runtime. Usually you would use this technique to achieve some particular effect, such as
projective texturing or environment mapping, but sometimes you may simply want to apply a texture to a
model that does not already have texture coordinates, and this is the only way to do that.

The texture coordinates generated by this technique are generated on-the-fly, and are not stored within the
model. When you turn off the generation mode, the texture coordinates cease to exist.

Use the following NodePath method to enable automatic generation of texture coordinates:

nodePat h. set TexGen(Text ur eSt age, texCGenhbde)

The texGenMode parameter specifies how the texture coordinates are to be computed, and may be any of

the following options. In the list below, "eye" means the coordinate space of the observing camera, and
"world" means world coordinates, e.g. the coordinate space of render, the root of the scene graph.

TexGenAttrib. MrldPosition Copies the (x, y, z) position of each vertex, in world space, to the (u, v,
w) texture coordinates.

TexGenAttrib. MEyePosi tion Copies the (x, y, z) position of each vertex, in camera space, to the (u,
Vv, w) texture coordinates.

TexGenAttrib. MAor | dNor mal Copies the (x, y, z) lighting normal of each vertex, in world space, to
the (u, v, w) texture coordinates.

TexGenAttrib. MEyeNor nal Copies the (X, y, z) lighting normal of each vertex, in camera space, to
the (u, v, w) texture coordinates.

TexGenAttrib. MEyeSphereMap Generates (u, V) texture coordinates based on the lighting normal and
the view vector to apply a standard reflection sphere map.

TexGenAttrib. MEyeCubeMap Generates (u, v, W) texture coordinates based on the lighting normal
and the view vector to apply a standard reflection cube map.

TexGenAttrib. Méri dCubeMap Generates (u, v, w) texture coordinates based on the lighting normal
and the view vector to apply a standard reflection cube map.

TexGenAttrib. MPoint Sprite Generates (u, V) texture coordinates in the range (0, 0) to (1, 1) for
large points so that the full texture covers the square. This is a special
mode that should only be applied when you are rendering sprites,
special point geometry that are rendered as squares. It doesn't make
sense to apply this mode to any other kind of geometry. Normally you
wouldn't set this mode directly; let the SpriteParticleRenderer do it for

you.

TexGenAttrib. M.ight Vector Generates special (u, v, w) texture coordinates that represent the
vector from each vertex to a particular Light in the scene graph, in each
vertex's tangent space. This is used to implement normal maps. This
mode requires that each vertex have a tangent and a binormal
computed for it ahead of time; you also must specify the NodePath that
represents the direction of the light. Normally, you wouldn't set this
mode directly either; use NodePath.setNormalMap(), or implement
normal maps using programmable shaders.

Note that several of the above options generate 3-D texture coordinates: (u, v, w) instead of just (u, V).
The third coordinate may be important if you have a 3-D texture or a cube map (described later), but if you

filel///E)/manual/Automatic_Texture_Coordinates.1.html (1 of 4)2006/11/21 aUxE 06:01:35

Panda3D Manual

just have an ordinary 2-D texture the extra coordinate is ignored. (However, even with a 2-D texture, you

might apply a 3-D transform to the texture coordinates, which would bring the third coordinate back into
the equation.)

Also, note that almost all of these options have a very narrow purpose; you would generally use most of
these only to perform the particular effect that they were designed for. This manual will discuss these
special-purpose TexGen modes in later sections, as each effect is discussed; for now, you only need to
understand that they exist, and not worry about exactly what they do.

The mode that is most likely to have general utility is the first one: MMr | dPosi ti on. This mode converts
each vertex's (X, y, z) position into world space, and then copies those three humeric values to the (u, v, w)

texture coordinates. This means, for instance, that if you apply a normal 2-D texture to the object, the
object's (X, y) position will be used to look up colors in the texture.

For instance, the teapot.egg sample model that ships with Panda has no texture coordinates built in the

model, so you cannot normally apply a texture to it. But you can enable automatic generation of texture
coordinates and then apply a texture:

t eapot = | oader.| oadMbdel ('teapot.egg')
tex = | oader. | oadTexture(' maps/color-grid.rgbh")

t eapot . set TexGen(Text ureSt age. get Defaul t (), TexGenAttrib. MArl dPosi ti on)
t eapot . set Text ure(t ex)

And you end up with something like this:

=

You can use this in conjunction with a texture transform to further manipulate the texture coordinates. For
instance, to rotate the texture 90 degrees, you could do something like this:

t eapot . set TexTr ansf or n(Text ur eSt age. get Defaul t (), Transfor ntt at e. makeHpr (VBase3(0, 90, 0)))

filel///E)/manual/Automatic_Texture_Coordinates.1.html (2 of 4)2006/11/21 aUxE 06:01:35

Panda3D Manual

Finally, consider that the only two choices for the coordinate frame of the texture coordinate generation are
"world" and "eye", for the root NodePath and the camera NodePath, respectively. But what if you want to
generate the texture coordinates relative to some other node, say the teapot itself? The above images are
all well and good for a teapot that happens to be situated at the origin, but suppose we want the teapot to
remain the same when we move it somewhere else in the world?

If you use only MWr | dPosi ti on, then when you change the teapot's position, for instance by parenting it to
a moving node, the teapot will seem to move while its texture pattern stays in place--maybe not the effect
you had in mind. What you probably intended was for the teapot to take its texture pattern along with it as
it moves around. To do this, you will need to compute the texture coordinates in the space of the teapot
node, rather than in world space.

Panda3D provides the capability to generate texture coordinates in the coordinate space of any arbitrary
node you like. To do this, use MMr | dPosi ti on in conjunction with Panda's "texture projector”, which

applies the relative transform between any two arbitrary NodePaths to the texture transform; you can use it
to compute the relative transform from world space to teapot space, like this:

t eapot . set TexGen(Text ureSt age. get Defaul t (), TexGenAttrib. M\Mrl dPosi ti on)
t eapot . set TexPr oj ect or (Text ur eSt age. get Defaul t (), render, teapot);

It may seem a little circuitous to convert the teapot vertices to world space to generate the texture
coordinates, and then convert the texture coordinates back to teapot space again--after all, didn't they start
out in teapot space? It would have saved a lot of effort just to keep them there! Why doesn't Panda just
provide an Mobj ect Posi t i on mode that would convert texture coordinates from the object's native

position?

That's a fair question, and MXbj ect Posi ti on would be a fine idea for a model as simple as the teapot,

which is after all just one node. But for more sophisticated models, which can contain multiple sub-nodes
each with their own coordinate space, the idea of Mbj ect Posi ti on is less useful, unless you truly wanted

each sub-node to be re-textured within its own coordinate space. Rather than provide this feature of
questionable value, Panda3D prefers to give you the ability to specify the particular coordinate space you
had in mind, unambiguously.

Note that you only want to call set TexPr oj ect or () when you are using mode MMr | dPosi ti on. The other

modes are generally computed from vectors (for instance, normals), not positions, and it usually doesn't
makes sense to apply a relative transform to a vector.

filel///E)/manual/Automatic_Texture_Coordinates.1.html (3 of 4)2006/11/21 aUxE 06:01:35

Panda3D Manual

<<prev top next=>=> - I

| -

file:/I/EJ/manual/Automatic_Texture_Coordinates.1.html (4 of 4)2006/11/21 sUcE 06:01:35

Panda3D Manual

Panda3D Manual: Projected Textures

<<prev top next>> Search

In a previous section, we introduced ways to apply an explicit transformation to a model's
texture coordinates, with methods like set TexOf f set () and set TexScal e() . In addition to

this explicit control, Panda3D offers a simple mechanism to apply an automatic texture
transform each frame, as computed from the relative transform between any two nodes.

nodePat h. set TexPr oj ect or (t ext ur eSt age, fronmNodePat h, t oNodePat h)

When you have enabled this mode, the relative scene-graph transform from f r onNodePat h to
t oNodePat h--that is, the result of f r omNodePat h. get Tr ansf or m(t oNodePat h) --is

automatically applied as a texture-coordinate transform to the indicated textureStage. The
result is more-or-less as if you executed the following command every frame:

nodePat h. set TexTr ansf or n{t ext ur eSt age, fronmNodePat h. get Tr ansf or n{t oNodePat h))

There is no need for either f romNodePat h or t oNodePat h to have any relation to the nodePath
that is receiving the set TexPr oj ect or () call; they can be any two arbitrary NodePaths. If
either of them is just NodePat h() , it stands for the top of the graph.

This has several useful applications. We have already introduced one application, in
conjunction with MAr | dPosi ti on, to move the generated texture coordinates from the root of
the graph to the model itself.

Interval-animated texture transforms

Another handy application for a TexProjector is to enable the use of the various Lerplntervals

to animate a texture transform. Although there are no Lerplntervals that directly animate
texture transforms, you can make a Lerplnterval animate a NodePath--and then set up a
TexProjector effect to follow that NodePath. For example:

sm | ey = | oader. | oadMvbdel (' sm | ey. egqg')

| er per = NodePat h(' | erper")

smi | ey. set TexProj ect or (Text ureSt age. get Defaul t (), NodePath(), |erper)
i = lerper.posinterval (5 VBase3(0, 1, 0))

i.loop()

Note that you don't even have to parent the animated NodePath into the scene graph. In the
above example, we have set up the interval i to repeatedly move the standalone NodePath

| er per from position (0, 0, 0) to (0, 1, 0) over 5 seconds. Since sni | ey is assigned a

filel///E|/manual/Projected_Textures.1.ntml (1 of 3)2006/11/21 aUcE 06:01:36

Panda3D Manual

TexProjector that copies the relative transform from NodePat h() to | er per --that is, the net
transform of | er per --it means we are really animating the texture coordinates on sni | ey from
(0, 0) to (0, 1) (the Z coordinate is ignored for an ordinary 2-D texture).

Projected Textures

Another useful application of the TexProjector is to implement projected textures--that is, a
texture applied to geometry as if it has been projected from a lens somewhere in the world,
something like a slide projector. You can use this to implement a flashlight effect, for instance,
or simple projected shadows.

This works because the TexProjector effect does one additional trick: if the second NodePath in
the set TexProj ect or () call happens to be a LensNode, then the TexProjector automatically

applies the lens's projection matrix to the texture coordinates (in addition to applying the
relative transform between the nodes).

To implement projected textures, you need to do three steps:

1. Apply the texture you want to the model you want to project it onto, usually on its own
TextureStage, so that it is multitextured.

2. Put the MMr | dPosi ti on TexGen mode on the model. This copies the model's vertex
positions into its texture coordinates, for your texture's TextureStage.

3. Call nodel . set TexPr oj ect or (t ext ureSt age, NodePath(), projector), where projector
is the NodePath to the LensNode you want to project from.

For your convenience, the NodePath class defines the following method that performs these
three steps at once:

nodePat h. proj ect Text ure(textureStage, texture, |ensNodePat h)

For instance, we could use it to project the bamboo texture ("envir-reeds.png") onto the ripple.
egg model, like this:

filel///E|/manual/Projected_Textures.1.html (2 of 3)2006/11/21 aUcE 06:01:36

Panda3D Manual

You could move around the projector in the world, or even change the lens field of view, and
the bamboo image would follow it. (In the above image, the camera model and the projection
lines are made visible only for illustration purposes; normally you wouldn't see them.)

This image was generated with the following code (excerpted; click on the image for the
complete program):

ripple = Actor.Actor('ripple.egg')
ri ppl e.reparent To(render)

pr oj render . at t achNewNode(LensNode(' proj'))
| ens Per specti veLens()

proj . node().setLens(lens)

proj . reparent To(render)

proj.setPos(1.5 -7.3, 2.9)

proj.setHpr (22, -15, 0)

tex = | oader.| oadTexture(' maps/envir-reeds. png')
ts = TextureStage('ts')
ripple.projectTexture(ts, tex, proj)

<<prev top next>>

file:///E|/manual/Projected_Textures.1.html (3 of 3)2006/11/21 aUcE 06:01:36

Panda3D Manual

Panda3D Manual: Simple Environment Mapping

<<prev top next>> Search

There is a classic technique in real-time computer graphics for making objects appear shiny or
reflective. It's called environment mapping or sometimes reflection mapping or, in this
case, sphere mapping.

Environment mapping is not ray tracing. But it's a cheesy way to get a similar effect. The idea
for both of them is that, mathematically, it's easy to calculate the direction from which a ray of
light must have been coming before it bounced off a particular point of a shiny object and
entered your eye. If the renderer were using ray tracing, it would follow this ray, for each
point on your shiny object, backwards from your eye, and determine what object in the
environment the ray came from; and that's what you'd see in the reflection.

Ray tracing is still too computation-intensive to be done in real time. But a reflection vector is
easy to calculate per-vertex, and if we could turn a reflection vector into a (u, v) texture
coordinate pair, the graphics hardware is particularly good at looking up the color in a texture
image that corresponds to that (u, v) pair. So all we need is an image that shows the objects
in our environment.

In sphere mapping, the 3-D reflection vector is turned into a 2-D texture coordinate pair by
mathematically applying a spherical distortion. This means the environment map should be a
view of the world as seen through a 360-degree fisheye lens, or as reflected in a shiny ball like
a holiday ornament. You can see why it is called sphere mapping.

Panda3D can generate sphere maps for you. The above sphere map was generated with the
following code:

file:///E|/manual/Simple_Environment_Mapping.1.html (1 of 5)2006/11/21 aUsE 06:01:38

Panda3D Manual

scene = | oader.| oadModel (' bvw f 2004- - street scene/ st reet - scene. egqg')
scene. r epar ent To(r ender)

scene. set Z(- 2)

base. saveSpher eMap(' streetscene_env.jpg' , size = 256)

The idea is simply to put the camera in the middle of your environment, approximately where
your shiny object would be. Then just call base. saveSpher eMap(), and a suitable sphere map

image will be generated and written to disk for you. Note that this feature is new as of
Panda3D 1.1.

Now you can apply the environment map to just about any object you like. For instance, the
teapot:

tex = | oader.| oadTexture(' streetscene_env.jpg')
t eapot . set TexGen(Text ur eSt age. get Defaul t (), TexGenAttri b. MEyeSpher eMap)
t eapot . set Text ure(t ex)

In this example, you can see that the key to sphere mapping in Panda is to set the TexGen
mode to MEyeSphereMap. This mode computes a spherical (u, v) texture coordinate pair

based on the reflection vector for each vertex of the teapot. In order for this to work, your
model must have normals defined for all its vertices (the teapot has good normals).

Shiny teapots are one thing, but it would be nice to make something like, say, a car look
shiny. We could just do exactly the same thing as above, but our car has a texture map

file:///E|/manual/Simple_Environment_Mapping.1.html (2 of 5)2006/11/21 aUsE 06:01:38

Panda3D Manual

already. If we just replace the texture map with the environment map we'll end up with a
chrome car:

car
t ex

| oader . | oadModel (' bvw- f 2004- - car nsx/ car nsx. egg')
| oader .| oadTexture(' streetscene_env.|pg')

car.set TexGen(Text ureSt age. get Defaul t (), TexGenAttri b. MEyeSpher eMap)
car.set Texture(tex, 1)

That looks pretty silly. So we'd really prefer to use multitexture to apply both the car's regular
texture, and layer a little bit of shine on top of that. We'll use Add mode to add the
environment map to the existing color, which is appropriate for a shiny highlight on an object.

In order to use Add mode without oversaturating the colors, we need to darken the
environment map substantially. We could use any image processing program to do this; for
this example, we'll use Panda3D's i mage-trans utility:

i mge-trans -cscale 0.2 -0 streetscene_env_dark.jpg streetscene_env.jpg

So the new map looks like this:

file:///E|/manual/Simple_Environment_Mapping.1.html (3 of 5)2006/11/21 aUsE 06:01:38

Panda3D Manual

While we're fixing things up, let's move the wheels to a different node, so we can assign the
shine just to the metal and glass body of the car:

car = | oader. | oadModel (' bvw f 2004- - car nsx/ car nsx. egg')
body = car.find('**/body")
body. fi ndAl | Mat ches(' **/ FL_wheel *'). reparent To(car)

And now the shine is applied like this:

tex = | oader.| oadTexture(' streetscene_env_dark.jpg')
ts = TextureStage('env')

ts. set Mode(Text ur eSt age. MAdd)

body. set TexGen(ts, TexGenAttrib. MEyeSpher eMap)

body. set Texture(ts, tex)

file:///E)ymanual/Simple_Environment_Mapping.1.html (4 of 5)2006/11/21 sUcE 06:01:38

Panda3D Manual

Note that the shiny highlights are now quite subtle, but still compelling, especially when you
see the car move.

The sphere map technique isn't perfect. The biggest problem with it is that you have to
prepare it ahead of time, which means you have to know exactly what will be reflected in your
shiny objects--it's impossible for an object to reflect a dynamic object (for instance, an
adjacent car).

Another problem is that the point-of-view is baked into the sphere map, so that if the camera
were to swing around to view the car from the other side, the things you could see in the
reflection would still be the objects behind the camera on this side.

Both of these problems can be solved by cube mapping, which is a more advanced technique

for, among other things, applying environment maps. However, cube maps aren't always
ideal; very often, the venerable sphere map really is the best choice.

It is rare that an application presents a closeup view of a smooth, round mirrored object in
which you can see reflections clearly, like the teapot example above; usually, reflections are
just a subtle glinting on the surface, like the car. In these cases the sphere map is ideal, since
it is not so important exactly what the reflections are, but simply that there are reflections.
And the sphere map is the easiest and fastest way to render reflections.

<<prev top next>> Search

file:///E|/manual/Simple_Environment_Mapping.1.html (5 of 5)2006/11/21 aUcE 06:01:38

Panda3D Manual

Panda3D Manual: 3-D Textures

<<prev top next>> Search

So far, we have only talked about ordinary 2-D texture maps. Beginning with version 1.1,
Panda3D also supports the concept of a 3-D texture map. This is a volumetric texture: in
addition to a height and a width, it also has a depth:

The 3-D texture image is solid all the way through; if we were to cut away part of the cube we
would discover that the checkerboard pattern continues within:

file:///E|/manual/3-D_Textures.1.html (1 of 6)2006/11/21 aUaE 06:01:40

Panda3D Manual

This is true no matter what shape we carve out of the cube:

In addition to the usual u and v texture dimensions, a 3-D texture also has w. In order to
apply a 3-D texture to geometry, you will therefore need to have 3-D texture coordinates (u,
V, W) on your geometry, instead of just the ordinary (u, v).

file:///E/manual/3-D_Textures.1.html (2 of 6)2006/11/21 aUaE 06:01:40

Panda3D Manual

There are several ways to get 3-D texture coordinates on a model. One way is to assign
appropriate 3-D texture coordinates to each vertex when you create the model, the same way
you might assign 2-D texture coordinates. This requires that your modeling package (and its
Panda converter) support 3-D texture coordinates; however, at the time of this writing, none
of the existing Panda converters currently do support 3-D texture coordinates.

More commonly, 3-D texture coordinates are assigned to a model automatically with one of
the TexGen modes, especially MAr | dPosi ti on. For example, to assign 3-D texture

coordinates to the teapot, you might do something like this:

teapot = | oader.| oadModel ('teapot. egq')

t eapot . set TexGen(Text ur eSt age. get Defaul t (), TexGenAttri b. MArI dPosi ti on)
t eapot . set TexPr oj ect or (Text ureSt age. get Def aul t (), render, teapot)

t eapot . set TexPos(Text ur eSt age. get Default (), 0.44, 0.5, 0.2)

t eapot . set TexScal e(Text ur eSt age. get Defaul t (), 0. 2)

The above assigns 3-D texture coordinates to the teapot based on the (X, y, z) positions of its
vertices, which is a common way to assign 3-D texture coordinates. The set TexPos() and

set TexScal e() calls in the above are particular to the teapot model; these numbers are
chosen to scale the texture so that its unit cube covers the teapot.

Storing 3-D texture maps on disk is a bit of a problem, since most image formats only support
2-D images. By convention, then, Panda3D will store a 3-D texture image by slicing it into
horizontal cross-sections and writing each slice as a separate 2-D image. When you load a 3-D
texture, you specify a series of 2-D images which Panda3D will load and stack up like
pancakes to make the full 3-D image.

The above 3-D texture image, for instance, is stored as four separate image files:

file///E/manual/3-D_Textures.1.html (3 of 6)2006/11/21 sUxE 06:01:40

Panda3D Manual

Note that, although the image is stored as four separate images on disk, internally Panda3D
stores it as a single, three-dimensional image, with height, width, and depth.

The Panda3D convention for naming the slices of a 3-D texture is fairly rigid. Each slice must
be numbered, and all of the filenames must be the same except for the number; and the first
(bottom) slice must be numbered 0. If you have followed this convention, then you can load a
3-D texture with a call like this:

tex = | oader.| oad3DTexture("grid_#. png")

The hash sign ("#") in the filename passed to | oader. | oad3DText ur e() will be filled in with

the sequence number of each slice, so the above loads files named "grid_0.png", "grid_1.png",
"grid_2.png", and so on. If you prefer to pad the slice number with zeros to a certain number
of digits, repeat the hash sign; for instance, loading "grid_###.png" would look for files
named "grid_000.png", "grid_001.png", and so on. Note that you don't have to use multiple
hash marks to count higher than 9. You can count as high as you like even with only one hash
mark; it just won't pad the numbers with zeros.

Remember that you must usually choose a power of two for the size of your texture images.

This extends to the w size, too: for most graphics cards, the number of slices of your texture
should be a power of two. Unlike the ordinary (u, v) dimensions, Panda3D won't automatically
rescale your 3-D texture if it has a non-power-of-two size in the w dimension, so it is
important that you choose the size correctly yourself.

Applications for 3-D textures

file///E/manual/3-D_Textures.1.html (4 of 6)2006/11/21 sUxE 06:01:40

Panda3D Manual

3-D textures are often used in scientific and medical imagery applications, but they are used
only rarely in 3-D game programs. One reason for this is the amount of memory they require;
since a 3-D texture requires storing (U < v x w) texels, a large 3-D texture can easily
consume a substantial fraction of your available texture memory.

But probably the bigger reason that 3-D textures are rarely used in games is that the texture
images in games are typically hand-painted, and it is difficult for an artist to paint a 3-D
texture. It is usually much easier just to paint the surface of an object.

So when 3-D textures are used at all, they are often generated procedurally. One classic
example of a procedural 3-D texture is wood grain; it is fairly easy to define a convincing
woodgrain texture procedurally. For instance, click here to view a Panda3D program that

generates a woodgrain texture and stores it as a series of files named woodgrain_0.png,
woodgrain_1.png, and so on. The following code applies this woodgrain texture to the teapot,
to make a teapot that looks like it was carved from a single block of wood:

t eapot = | oader.| oadMbdel ('t eapot. egqg')

t eapot . set TexGen(Text ureSt age. get Defaul t (), TexGenAttrib. MMr | dPosition)
t eapot . set TexPr oj ect or (Text ureSt age. get Defaul t (), render, teapot)

t eapot . set TexPos(Text ureSt age. get Default(), 0.44, 0.5, 0.2)

t eapot . set TexScal e(Text ur eSt age. get Defaul t (), 0. 2)

tex = | oader. | oad3DText ur e(' woodgrai n_#. png')
t eapot . set Text ur e(t ex)

However, even procedurally-generated 3-D textures like this are used only occasionally. If the
algorithm to generate your texture is not too complex, it may make more sense to program a

file:///El/manual/3-D_Textures.1.html (5 of 6)2006/11/21 aUaE 06:01:40

Panda3D Manual

pixel shader to generate the texture implicitly, as your models are rendered.

Still, even if it is used only occasionally, the 3-D texture remains a powerful rendering

technique to keep in your back pocket.

top next>>

file:///E|/manual/3-D_Textures.1.html (6 of 6)2006/11/21 aUaE 06:01:40

Panda3D Manual

Panda3D Manual: Cube Maps

<<prev top next=>>=> Search

There is one more special kind of texture map: the cube map, which is introduced in Panda3D
version 1.1. A cube map is similar to a 3-D texture, in that it requires 3-D texture coordinates

(u, v, w); also, a cube map is stored on disk as a sequence of ordinary 2-D images.

But unlike a 3-D texture, which is defined by stacking up an arbitrary number 2-D images like
pancakes to fill up a volume, a cube map is always defined with exactly six 2-D images, which
are folded together to make a cube.

The six images of a cube map are numbered from O to 5, and each image corresponds to one
particular face of the cube:

image O The +u (or +x) face (right)
image 1 The -u (or -x) face (left)
image 2 The +v (or +y) face (forward)
image 3 The -v (or -y) face (back)
image 4 The +w (or +z) face (up)
image 5 The -w (or -z) face (down)

By +x face, we mean the face of the cube farthest along the positive X axis. In Panda3D's
default Z-up coordinate system, this is the right face. Similarly, the -x face is the face farthest
along the negative X axis, or the left face, and so on for the Y and Z faces. Since the
coordinates of a texture map are called (u, v, w) instead of (X, y, 2), it is technically more
correct to call these the +u and -u faces, though it is often easier to think of them as +x and -
X.

The faces are laid out according to the following diagram:

file:///E|/manual/Cube_Maps.1.html (1 of 4)2006/11/21 sUscE 06:01:41

Panda3D Manual

Imagine that you cut out the above diagram and folded it into a cube. You'd end up with
something like this:

Note that, when you hold the cube so that the axis indications for each face are in the
appropriate direction (as in the picture above), several of the faces are upside-down or
sideways. That's because of the way the graphics card manufacturers decided to lay out the

filel///E/manual/Cube_Maps.1.html (2 of 4)2006/11/21 cUaE 06:01:41

Panda3D Manual

cube map faces (and also because of Panda3D's default coordinate system). But in fact, it
doesn't matter which way the faces are oriented, as long as you always generate your cube
map images the same way.

In some sense, a cube map is a kind of surface texture, like an ordinary 2-D texture. But in
other sense, it is also volumetric like a 3-D texture: every point within the 3-D texture
coordinate space is colored according to the face of the cube it comes closest to. A sphere
model with the cube map applied to it would pick up the same six faces:

Note that, while a 3-D texture assigns a different pixel in the texture to every point within a
volume, a cube map assigns a different pixel in the texture to every direction from the center.

You can load a cube map from a series of six image files, very similar to the way you load a 3-
D texture:

tex = | oader. | oadCubeMap(' cubemap_ #. png')

As with a 3-D texture, the hash mark ("#") in the filename will be filled in with the image
sequence number, which in the case of a cube map will be a digit from O to 5. The above
example, then, will load the six images "cubemap_0.png", "cubemap_1.png", "cubemap_2.

png", "cubemap_3.png", "cubemap_4.png", and "cubemap_5.png", and assemble them into
one cube map.

file///E/manual/Cube_Maps.1.html (3 of 4)2006/11/21 aUxE 06:01:41

Panda3D Manual

<<prev top next>> - |

| -

file:///E|/manual/Cube_Maps.1.html (4 of 4)2006/11/21 sUcE 06:01:41

Panda3D Manual

Panda3D Manual: Environment Mapping with Cube Maps

<<prev top next=>>=> Search

Although there are other applications for cube maps, one very common use of cube maps is as
an environment map, similar to sphere mapping. In fact, it works very much the same as

sphere mapping.
Just as with a sphere map, you can have Panda3D generate a cube map for you:

scene = | oader .| oadModel (' bvw f 2004- - street scene/ street - scene. egqg')
scene. r epar ent To(r ender)

scene. set Z(-2)

base. saveCubeMap(' street scene_cube #.jpg', size = 256)

Click here to see the six images generated by the above sample code.

With the cube map saved out as above, you could apply it as an environment map to the
teapot like this:

tex = | oader.| oadCubeMap(' streetscene_cube_#.jpg')
t eapot . set TexGen(Text ureSt age. get Defaul t (), TexGenAttri b. MEyeCubeMap)
t eapot . set Text ure(t ex)

And the result looks very similar to the sphere map:

file:///E|/manual/Environment_Mapping_with_Cube Maps.1.html (1 of 3)2006/11/21 aUcE 06:01:42

Panda3D Manual

In fact, it looks so similar that one might wonder why we bothered. So far, a cube map looks
pretty similar to a sphere map, except that it consumes six times the texture memory. Hardly
impressive.

But as we mentioned earlier, there are two problems with sphere maps that cube maps can

solve. One of these problems is that the point-of-view is permanently baked into the sphere
map. Cube maps don't necessarily have the same problem. In fact, we can solve it with one
simple variation:

tex = | oader.| oadCubeMap(' streetscene_cube #.]pg')
t eapot . set TexGen(Text ur eSt age. get Defaul t (), TexGenAttri b. MArl dCubeMap)
t eapot . set Text ure(t ex)

By changing MEyeCubeMap to MMr | dCubeMap, we have indicated that we would like this cube
map to vary its point-of-view as the camera moves. Now the reflected environment will vary
according to the direction we are looking at it, so that it shows what is behind the camera at
runtime, instead of always showing the area behind the camera when the cube map was
generated, as a sphere map must do. In order for this to work properly, you should ensure
that your camera is unrotated (that is, set Hpr (0, 0, 0)) when you generate the cube map

initially.

Even with MWorldCubeMap, though, the image is still generated ahead of time, so the
reflection doesn't actually show what is behind the camera at runtime. It just uses the current
camera direction to figure out what part of the reflection image to show.

However, you can make a cube map that truly does reflect dynamic objects in the scene, by

file:///E|/manual/Environment_Mapping_with_Cube Maps.1.html (2 of 3)2006/11/21 aUcE 06:01:42

Panda3D Manual

rendering a dynamic cube map. This will be discussed in the next section.

<<prev top next>>

-

file:///E|/manual/Environment_Mapping_with_Cube Maps.1.html (3 of 3)2006/11/21 aUcE 06:01:42

Panda3D Manual

Panda3D Manual: Dynamic Cube Maps

<<prev top next>> Search

Since the six faces of a cube map are really just six different views of a scene from the same
point, it's possible to generate a cube map automatically by rendering these six different views
at runtime.

This is really just a form of offscreen rendering to a texture. Instead of rendering just one 2-D
texture image, though, rendering a dynamic cube map means rendering six different 2-D
images, one for each face of a cube map texture.

Panda3D makes this easy for you. To start rendering a dynamic cube map, simply call:

rig = NodePath('rig')
buffer = base.w n. makeCubeMap(nane, size, rig)

This will return an offscreen G- aphi csBuf f er that will be used to render the cube map. The
three required parameters to makeCubeMap() are:

nane: An arbitrary name to assign to the cube map and its associated GraphicsBuffer. This can
be any string.

si ze: The size in pixels of one side of the cube. Many graphics cards require this size to be a

power of two. Some cards don't require a power of two, but will perform very slowly if you
give anything else.

ri g: The camera rig node. This should be a new NodePath; it will be filled in with six cameras.
See below.

There are also additional, optional parameters to makeCubeMap():

canmer aMask: This specifies the DrawMask that is associated with the cube map's cameras. This

is an advanced Panda3D feature that can be used to hide or show certain objects specifically
for the cube map cameras.

t oRant This is a boolean flag that, when True, indicates the texture image will be made

available in system RAM, instead of leaving it only in texture memory. The default is False.
Setting it True is slower, but may be necessary if you want to write out the generated cube
map image to disk.

Note that we passed a new NodePath, called ri g in the above example, to the makeCubeMap

() call. This NodePath serves as the "camera rig"; the makeCubeMap() method will create six
cameras facing in six different directions, and attach them all to the camera rig. Thus, you can
parent this rig into your scene and move it around as if it were a six-eyed camera. Normally,

file///E|/manual/Dynamic_Cube Maps.1.html (1 of 3)2006/11/21 aUcE 06:01:43

Panda3D Manual

for environment maps, you would parent the rig somewhere within your shiny object, so it can
look out of the shiny object and see the things that should be reflected in it.

The actual cube map itself be retrieved with the call:

tex = buffer.getTexture()

You can apply the texture to geometry as in the previous example. You should use the
MMr | dCubeMap mode to generate texture coordinates for your geometry, since the camera rig
will have a CompassEffect on it to keep it unrotated with respect to render.

When you are done with the cube map, you should remove its buffer (and stop the cube map
from continuing to render) by calling:

base. gr aphi csEngi ne. r emoveW ndow(buf f er)

As a complete example, here is how we might load up a dynamic cube map environment on
our teapot, and move the teapot down the street to show off the dynamic reflections:

scene = | oader.| oadMvbdel (' bvw f 2004- - street scene/ street-scene. egg')
scene. repar ent To(r ender)
scene. set Z(- 2)

teapot = | oader.| oadModel ('teapot.egq')
t eapot . r epar ent To(r ender)

rig = NodePath('rig')
buf fer = base.w n. makeCubeMap(' env', 64, riQg)
rig.reparent To(teapot)

t eapot . set TexGen(Text ur eSt age. get Defaul t (), TexGenAttri b. M\r | dCubeMap)
t eapot . set Text ure(buffer. get Texture())

zoom = teapot. poslnterval (5, VBase3(20, 0, 0), startPos = VBase3(-20, 0, 0))
zoom | oop()

A word of caution

When you render a dynamic cube map, don't forget that you are re-rendering your scene six
times every frame, in addition to the main frame render. If you are not careful, and you have
a complex scene, you could easily end up reducing your frame rate by a factor of seven.

It is a good idea to limit the amount of geometry that you render in the cube map; one simple
way to do this is to ensure that the far plane on the cube map cameras is set relatively close

filel///E|/manual/Dynamic_Cube Maps.1.html (2 of 3)2006/11/21 aUoE 06:01:43

Panda3D Manual

in. Since all of the cube map cameras share the same lens, you can adjust the near and far
plane of all of the cameras at once like this:

lens = rig.find('**/+Canera').node().getLens()
| ens. set Near Far (1, 100)

It is especially important, when you are using cube maps, that you structure your scene graph
hierarchically and divide it up spatially, so that Panda3D's view-frustum culling can do an
effective job of eliminating the parts of the scene that are behind each of the six cameras.
(Unfortunately, the streetscene model used in the above example is not at all well-structured,
so the example performs very poorly on all but the highest-end hardware.)

It's also usually a good idea to keep the cube map size (the si ze parameter to makeCubeMap)
no larger than it absolutely has to be to get the look you want.

You can also take advantage of the DrawMask to hide things from the cube cameras that are
not likely to be important in the reflections. The documentation for this advanced feature of
Panda3D will be found in another section of the manual (which, as of the time of this writing,
has yet to be written).

Finally, you can temporarily disable the cube map rendering from time to time, if you know the
environment won't be changing for a little while; the cube map will retain its last-rendered
image. You can do this with buf fer. set Active(0). Use buffer.setActive(l) to re-activate

it.

filel///E|/manual/Dynamic_Cube Maps.1.html (3 of 3)2006/11/21 oUoE 06:01:43

Panda3D Manual

Panda3D Manual: Automatic Texture Animation

<<prev top next>> Search

It's possible to generate a model that automatically rotates through a sequence of textures
when it is in the scene graph, without having to run a special task to handle this.

To do this, use the egg-t ext ur e- car ds command-line utility. This program will accept a

number of texture filenames on the command line, and output an egg file that rotates through
each texture at the specified frame rate:

egg-texture-cards -o flip.egg -fps 30 expl osi on*.
jpg

This actually creates a model with a different polygon for each frame of the texture animation.
Each polygon is put in a separate node, and all the nodes are made a child of a special node
called a SequenceNode.

The SequenceNode is a special node that only draws one of its children at a time, and it
rotates through the list of children at a particular frame rate. You can parent the model under
render and it will automatically start animating through its textures. If you need it to start at a
particular frame, use something like this:

flip = | oader.| oadModel (' flip.egq')
flip.find('**/+SequenceNode').node().setVisibleChild
(start Frane)

flip.reparentTo(render)

By default, all of the polygons created by egg-t ext ur e- car ds will have the same size. This

means that all of your textures must be the same size as well. While this is a simple
configuration, it may not be ideal for certain effects. For instance, to animate an explosion,
which starts small and grows larger, it would be better to use a small texture image on a small
polygon when the image is small, and have a larger image on a larger polygon when it grows
larger. You can achieve this effect, with the -p parameter; specifying -p scales each frame's
polygon in relation to the size of the corresponding texture.

egg-texture-cards -o flip.egg -fps 30 -p 240, 240 expl osi on*.
i pg

There are several other parameters as well; use egg-texture-cards -h for a complete list.

file///Efmanual/Automatic_Texture_Animation.1.html (1 of 2)2006/11/21 aUnE 06:01:44

Panda3D Manual

<<prev top next>> - |

| -

file:///E|/manual/Automatic_Texture_Animation.1.html (2 of 2)2006/11/21 sUsE 06:01:44

Panda3D Manual

Panda3D Manual: Playing MPG and AVI files

<<prev top next>>

Panda now supports AVI format for textures in Panda.

Usage

nyMovi eText ur e=l oader. | oadText ure(" myMvi e. avi ")
nyCbj ect . set Text ur e(nyMovi eText ur e)

there are also a bunch of utility functions (by default the texture loops)

myMovi eText ure. pl ay()

myMovi eTexture. pl ay(<first frame>, <end frane>)
myMovi eText ure. | oop()

myMovi eTexture. | oop(<first frame>, <end frane>)
myMovi eText ure. st op()

myMovi eText ure. pose(<frame to junp to>)

Issues

The video texure works by decoding on a frame by frame basis and copying into the texture
buffer. As such, it is inadvisable to use more than a few high res video textures at the same
time.

Certain encoding formats do not work. So far, DV format has been determined incompatible
with Panda.

<<prev top next=>> - |

file:///E)/manual/Playing_MPG_and_AVI_files.1.htm|2006/11/21 aUoE 06:01:45

Panda3D Manual

Panda3D Manual: Transparency and Blending

<<prev top next>> Search

HOW TO FIX TRANSPARENCY ISSUES
Note: this page is cut-and-pasted from a howto we found. We'll polish it later.

Usually transparency works as expected in Panda automatically, but sometimes it just seems
to go awry, where a semitransparent object in the background seems to partially obscure a
semitransparent object in front of it. This is especially likely to happen with large flat polygon
cutouts, or when a transparent object is contained within another transparent object, or when
parts of a transparent object can be seen behind other parts of the same object.

The fundamental problem is that correct transparency, in the absence of special hardware
support involving extra framebuffer bits, requires drawing everything in order from farthest
away to nearest. This means sorting each polygon--actually, each pixel, for true correctness--
into back-to-front order before drawing the scene.

It is, of course, impossible to split up every transparent object into individual pixels or
polygons for sorting individually, so Panda sorts objects at the Geom level, according to the
center of the bounding volume. This works well 95% of the time.

You run into problems with large flat polygons, though, since these tend to have parts that are
far away from the center of their bounding volume. The bounding-volume sorting is especially
likely to go awry when you have two or more large flats close behind the other, and you view
them from slightly off-axis. (Try drawing a picture, of the two flats as seen from the top, and
imagine yourself viewing them from different directions. Also imagine where the center of the
bounding volumes is.)

Now, there are a number of solutions to this sort of problem. No one solution is right for every
situation.

First, the easiest thing to do is to use M_dual transparency. This is a special transparency
mode in which the completely invisible parts of the object aren't drawn into the Z-buffer at all,
so that they don't have any chance of obscuring things behind them. This only works well if
the flats are typical cutouts, where there is a big solid part (alpha == 1.0) and a big
transparent part (alpha == 0.0), and not a lot of semitransparent parts (0.0 < alpha < 1.0). It
is also a slightly more expensive rendering mode than the default of M_alpha, so it's not
enabled by default in Panda. But egg-palettize will turn it on automatically for a particular
model if it detects textures that appear to be cutouts of the appropriate nature, which is
another reason to use egg-palettize if you are not using it already.

If you don't use egg-palettize (you really should, you know), you can just hand-edit the egg
files to put the line:

<Scal ar> al pha { dual }

within the <Texture> reference for the textures in question.

filel///Efmanual/Transparency_and_Blending.1.html (1 of 2)2006/11/21 sUxE 06:01:46

Panda3D Manual

A second easy option is to use M_multisample transparency, which doesn't have any ordering
issues at all, but it only looks good on very high-end cards that have special multisample bits
to support full-screen antialiasing. Also, at the present it only looks good on these high-end
cards in OpenGL mode (since our pandadx drivers don't support M_multisample explicitly right
now). But if M_multisample is not supported by a particular hardware or panda driver, it
automatically falls back to M_binary, which also doesn't have any ordering issues, but it
always has jaggy edges along the cutout edge. This only works well on texture images that
represent cutouts, like M_dual, above.

If you use egg-palettize, you can engage M_multisample mode by putting the keyword "ms"
on the line with the texture(s). Without egg-palettize, hand-edit the egg files to put the line:

<Scal ar> al pha { ns }
within the <Texture> reference for the textures in question.

A third easy option is to chop up one or both competing models into smaller pieces, each of
which can be sorted independently by Panda. For instance, you can split one big polygon into a
grid of little polygons, and the sorting is more likely to be accurate for each piece (because the
center of the bounding volume is closer to the pixels). You can draw a picture to see how this
works. In order to do this properly, you can't just make it one big mesh of small polygons,
since Panda will make a mesh into a single Geom of tristrips; instead, it needs to be separate
meshes, so that each one will become its own Geom. Obviously, this is slightly more expensive
too, since you are introducing additional vertices and adding more objects to the sort list; so
you don't want to go too crazy with the smallness of your polygons.

A fourth option is simply to disable the depth write on your transparent objects. This is most
effective when you are trying to represent something that is barely visible, like glass or a soap
bubble. Doing this doesn't improve the likelihood of correct sorting, but it will tend to make the
artifacts of an incorrect sorting less obvious. You can achieve this by using the transparency
option "blend_no_occlude” in an egg file, or by explicitly disabling the depth write on a loaded
model with node_path.set_depth_write(false). You should be careful only to disable depth
write on the transparent pieces, and not on the opaque parts.

A final option is to make explicit sorting requests to Panda. This is often the last resort
because it is more difficult, and doesn't generalize well, but it does have the advantage of not
adding additional performance penalties to your scene. It only works well when the
transparent objects can be sorted reliably with respect to everything else behind them. For
instance, clouds in the sky can reliably be drawn before almost everything else in the scene,
except the sky itself. Similarly, a big flat that is up against an opaque wall can reliably be
drawn after all of the opaque objects, but before any other transparent object, regardless of
where the camera happens to be placed in the scene. See howto.control_render_order.txt for
more information about explicitly controlling the rendering order.

<<prev top next>> Search

filel///Efmanual/Transparency_and_Blending.1.html (2 of 2)2006/11/21 sUxE 06:01:46

Panda3D Manual

Panda3D Manual: Pixel and Vertex Shaders

<<prev top next>> Search

Currently, Pixel and Vertex shaders are supported through Cg. The following section tells how
to bring Cg shaders into Panda3D.

<<prev top next>> Search

file///E/manual/Pixel_and_Vertex_Shaders.1.html2006/11/21 aUcE 06:01:46

Panda3D Manual

Panda3D Manual: Shader Basics

<<prev top next>> Search

Writing Panda3D Shaders

Currently, Panda3D only supports the Cg shading language. This section assumes that you

have a working knowledge of the Cg shader language. If not, it would be wise to read about
Cg before trying to understand how Cg fits into Panda3D.

To write a shader, you must create a shader program that looks much like this:

/1 Cg

voi d vshader (float3 vtx position : PCSI Tl ON,
float2 vtx_ texcoordO : TEXCOORDO,
out float4 out position : PGCSITION,
out float2 out texcoord0 : TEXCOORDO,
uni form fl oat 4x4 mat _nodel proj)
{
out position=rmul (mat _nodel proj,
vt X_position);
out texcoordO=vtx_texcoordoO;

}

voi d fshader (fl oat2 vtx_texcoord0 : TEXCOORDO,
sanpl er2D arg tex : TEXUN TO,
out float4 out color : COLOR)

{

out col or=tex2D(arg_tex, vtx_ texcoord0);

}

The first line of a Cg shader needs to be //Cg. Do not put a space between the two slashes and
the word "Cg". In the future, we may support other shader languages, in which case, those
shader languages will have their own header identifiers.

The shader must contain the two subroutines named vshader and f shader, the vertex shader
and fragment shader. In addition, it may contain additional routines named vshader 1,
f shader 1, vshader 2, f shader 2, and so forth. These latter pairs of subroutines represent

fallback codepaths, to be used when the video card doesn't support the first pair. If none of
the pairs is supported, the shader is disabled and has no effect (ie, rendering proceeds
normally using the standard pipeline).

In the following code sample, a shader is loaded and applied to a model:

file:///E|/manual/Shader_Basics.1.html (1 of 4)2006/11/21 aUcE 06:01:47

Panda3D Manual

myShader = Shader. | oad(" myshader.
sha")
myModel . set Shader (nyShader)

In the first line, the shader is loaded. The object returned is of class Shader. The call to
set Shader causes myModel to be rendered with that shader. Shaders propagate down the
scene graph: the node and everything beneath it will use the shader.

The Shader can Fetch Data from the Panda Runtime

Each shader program contains a parameter list. Panda3D scans the parameter list and
interprets each parameter name as a request to extract data from the panda runtime. For
example, if the shader contains a parameter declaration fl oat 3 vt x_position : PCSI Tl ON,

Panda3D will interpret that as a request for the vertex position, and it will satisfy the request.
Panda3D will only allow parameter declarations that it recognizes and understands.

Panda3D will generate an error if the parameter qualifiers do not match what Panda3D is
expecting. For example, if you declare the parameter f | oat 3 vt x_posi ti on, then Panda3D

will be happy. If, on the other hand, you were to declare uni f orm shader 2d vt x_posi tion,

then Panda3D would generate two separate errors: Panda3D knows that vtx_position is
supposed to be a float-vector, not a texture, that it is supposed to be varying, not uniform.

Again, all parameter names must be recognized. There is a list of possible shader inputs that
shows all the valid parameter names, and the data that Panda3D will supply.

Supplying data to the Shader Manually

Most of the data that the shader could want can be fetched from the panda runtime system by
using the appropriate parameter names. However, it is sometimes necessary to supply some
user-provided data to the shader. For this, you need set Shader | nput . Here is an example:

nyModel . set Shader | nput ("tint", Vec4(1.0, 0.5, 0.5,
1.0))

The method set Shader | nput stores data that can be accessed by the shader. It is possible to
store data of type Texture, NodePath, and Vec4. The set Shader | nput method also accepts
separate floating point numbers, which it combines into a Vec4.

The data that you store using set Shader | nput isn't necessarily used by the shader. Instead,

the values are stored in the node, but unless the shader explicitly asks for them, they will sit
unused. So the set Shader | nput ("tint", Vec4(1.0, 0.5, 0.5, 1.0)) above simply stores

the vector, it is up to the shader whether or not it is interested in a data item labeled "tint.”

To fetch data that was supplied using set Shader | nput , the shader must use the appropriate

filel///E|/manual/Shader_Basics.1.html (2 of 4)2006/11/21 aUcE 06:01:47

Panda3D Manual

parameter name. See the list of possible shader inputs, many of which refer to the data that
was stored using set Shader | nput .

Shader Inputs propagate down the scene graph, and accumulate as they go. For example, if
you store set Shader | nput ("x", 1) on a node, and set Shader | nput ("y", 2) on its child, then

the child will contain both values. If you store set Shader | nput ("z", 1) on a node, and

set Shader I nput ("z", 2) on its child, then the latter will override the former. The method

set Shader | nput accepts a third parameter, priority, which defaults to zero. If you store

set Shader | nput ("w', 1, 1000) on a node, and set Shader | nput ("w', 2, 500) on the child, then
the child will contain ("w"==1), because the priority 1000 overrides the priority 500.

Shader Render Attributes

The functions nodePat h. set Shader and nodePat h. set Shader | nput are used to apply a

shader to a node in the scene graph. Internally, these functions manipulate a render attribute
of class Shader Attri b on the node.

In rare occasions, it is necessary to manipulate ShaderAttrib objects explicitly. The code below
shows how to create a ShaderAttrib and apply it to a camera, as an example.

myShader Attri b Shader Attri b. make()

myShader Attri b myShader Attri b. set Shader (Shader . | oad(" nyshader. sha"))
myShader Attrib myShader Attri b. set Shader | nput ("tint", Vec4
(1.0,0.5,0.5,1.0))

base. cam node().setlnitial State(render.get State().addAttri b(myShaderAttri b))

Be careful: attribs are immutable objects. So when you apply a function like set Shader or
set Shader | nput to a ShaderAttrib, you aren't modifying the attrib. Instead, these functions
work by returning a new attrib (which contains the modified data).

Deferred Shader Compilation

When you create an object of class shader, you are just storing the shader's body. You are not
(yet) compiling the shader. The actual act of compilation takes place during the rendering
process.

Therefore, if the shader contains a syntax error, or if the shader is not supported by your
video card, then you will not see any error messages until you try to render something with
the shader.

In the unusual event that your computer contains multiple video cards, the shader may be
compiled more than once. It is possible that the compilation could succeed for one video card,
and fail for the other.

filel///E|/manual/Shader_Basics.1.html (3 of 4)2006/11/21 aUcE 06:01:47

Panda3D Manual

<<prev top next>> - |

| -

file:///E|/manual/Shader_Basics.1.html (4 of 4)2006/11/21 aUcE 06:01:47

Panda3D Manual

Panda3D Manual: List of Possible Shader Inputs

<<prev top next>> Search

Shader parameters must have names that are recognized by panda. Here is a list of the
allowable parameter names:

The nodel's first texture. This requires that
t he nodel be textured in the nornmal nanner
You may al so use tex 1, tex 2, and so forth,
if the nodel is nultitextured. If the npdel
uses a 3D texture or a cubemap, you may al so
speci fy sanpl er 3D or sanpl er CUBE

uni form sanpl er2D tex_0

btain a texture by concatenating a hyphen and
the suffix to the filenane of the nodel's

first texture. For exanple, if tex 0 is "wonan.
j pg", then tex O normal map i s "wonman- nor nal map.
j pg", and tex 0O _specul ar is "woman-specul ar.

j pg". You nmay al so use tex 1 suffix,
tex 2 suffix, and so forth, if the nodel is
multitextured. If the nodel uses a 3D texture
or a cubemap, you nay al so specify sanpl er 3D
or sanpl er CUBE.

uni form sanpl er2D tex_0_suffix

Vertex Position. Vertex shader only. You nmay

ULIEELEI Wil Il EliE A0SO N al so use float4, in which case (w==1).

float3 vtx_normal: NORVAL Vertex Normal. Vertex shader only.

Texture coordinate associated with the nodel's
first texture. This requires that the nodel be
textured in the normal manner. You nmay al so
use vtx_ texcoordl, vtx texcoord2, and so forth
if the nodel is nmultitextured. Vertex shader
only.

float2 vtx_texcoord0: TEXCOORDO

Tangent vector associated with the nodel's
first texture. This can only be used if the
nodel has been textured in the normal manner
float3 vtx_tangentO and if binormals have been preconputed. You
may al so use vtx_tangentl, vtx tangent2, and
so forth if the nodel is nultitextured. Vertex
shader only.

Bi nor mal vector associated with vtx texcoordO.
This can only be used if the nodel has been
textured in the normal manner, and if

float3 vtx_binormal 0 bi normal s have been preconputed. You can al so
use vtx_binormal 1, vtx _binormal 2, and so forth
if the nodel has been nmultitextured. Vertex
shader only.

file:///EJ/manual/List_of Possible Shader_Inputs.1.ntml (1 of 3)2006/11/21 aUcE 06:01:48

Panda3D Manual

Panda makes it possible to store arbitrary
colums of user-defined data in the vertex

tabl e; see GeomVertexData. You can access

float X vt x_anyt hi ng this data using this syntax. For exanple,
vt x_chicken will look for a col um naned
"chicken" in the vertex array. Vertex shader
only.

A matrix that transforns from coordi nate
system X to coordi nate system Y. See the

section on Shaders and Coordinate Spaces f or
nore information.

uni formfl oat4x4 trans x to_ y

|uni form fl oat 4x4 tpose_x to_y |Tr anspose of trans_x to_y

|uni formfloat4 row0_x to_y |Row 0 of trans_x_to_y.
|uni formfloat4 rowl x to_ y |Row 1 of trans_x_to_y.
|uni formfloat4 row2 x to_ y |Row 2 of trans_x_to_y.
|uni formfloat4 row3d x to y |Row 3 of trans_x to. y.
|uni formfloat4 col0 x to y |Co| 0 of trans_x to. y.
|uni formfloat4 coll x to y |Co| 1 of trans_x to_y.
|uni formfloat4 col2 x to y |Co| 2 of trans_x to. y.
|uni formfloat4 col3 x to y |Oo| 3 of trans_x to_y.

Model - Space Transform of X, aka

uni form fl oat 4x4 nstrans X
- trans_x_to_nodel

Caner a- Space Transform of X, aka

uni form fl oat 4x4 cstrans x
- trans_x to_canera

Wor | d- Space Transform of X, aka

uni form fl oat 4x4 wstrans X
- trans_x to world

|uni formfloat4 nspos_x |I\/bde| -Space Position of X, aka row3 X to_nodel

Caner a- Space Position of X, aka

uni form fl oat4 cspos_x
POS_ rowd_x to canera

|uni formfloat4 wspos X |W)r| d- Space Position of X, aka row3 x to world

|uni form fl oat 4x4 mat _nodel vi ew |I\/bde| view Matrix

|uni form fl oat 4x4 i nv_nodel vi ew |I nver se Model vi ew Matri X

|uni form fl oat 4x4 t ps_nodel vi ew |Tr ansposed Mbdel view Matri x

|uni form float4x4 itp_nodel vi ew |I nver se Transposed Model vi ew Matri x

|uni form fl oat 4x4 mat _proj ection |Pr oj ection Matrix

|uni form float4x4 i nv_projection |I nverse Projection Matrix

|uni form float4x4 tps_projection |Tr ansposed Projection Mtrix

|uni formfloat4x4 itp_projection |I nver se Transposed Projection Mtrix

|uni form fl oat 4x4 mat _nodel proj |Corrposed Model vi ew Proj ecti on Matri x

|uni form fl oat 4x4 i nv_nodel proj |I nver se Model Proj Matri x

|uni form fl oat 4x4 t ps_nodel proj |Tr ansposed Model Proj Matri x

file:///E)/manual/List_of Possible Shader_Inputs.1.ntml (2 of 3)2006/11/21 aUcE 06:01:48

Panda3D Manual

uni form fl oat4x4 itp_nodel proj [Inverse Transposed Mddel Proj Matri x

A constant vector that was stored using

set Shader | nput. Par anet er k_anyt hi ng woul d

mat ch data supplied by the call setShaderl nput
("anything", Vec4d(x,y,z,w))

A constant texture that was stored using

set Shader | nput. Paraneter k_anyt hi ng woul d

mat ch data supplied by the call set Shaderl nput
("anyt hi ng", myTex)

A constant matrix that was stored using

set Shader | nput. Paraneter k_anyt hi ng woul d

uni form fl oat 4x4 k_anyt hi ng mat ch data supplied by the call set Shaderl nput
("anyt hi ng", myNodePat h). The matrix supplied
is the nodepath's | ocal transform

uni form fl oat4 k_anyt hi ng

uni f orm sanpl er 2d k_anyt hi ng

Texture coordi nates of center of this w ndow s
texture card. To generate texture coords for
this window s texture card, use (clipx,clipy)
* cardcenter + cardcenter.

uni form fl oat2 sys cardcenter

Linearly interpolated Position, as supplied by
the vertex shader to the fragnent shader
Declare "out" in the vertex shader, "in" in
the fragment shader.

float X | _position: POSITION

Linearly interpolated Prinmary col or, as
suppl i ed by the vertex shader to the fragnent
shader. Declare "out" in the vertex shader
"in" in the fragnent shader.

float X | _col or0: COLCRO

Linearly interpol ated Secondary col or, as
suppl i ed by the vertex shader to the fragnent
shader. Declare "out" in the vertex shader
"in" in the fragnent shader.

float X | _colorl: COLORL

Linearly interpolated Texture Coordi nate 0, as
suppl i ed by the vertex shader to the fragnent
float X | _texcoordO: TEXCOORDO shader. You may al so use | _texcoordl

| texcoord2, and so forth. Declare "out" in
the vertex shader, "in" in the fragnment shader

Qut put Col or, as supplied by the fragnent
out floatX o _color: COLOR shader to the blending units. Fragnent shader
only.

file:///E)/manual/List_of Possible Shader_Inputs.1.ntml (3 of 3)2006/11/21 aUcE 06:01:48

Panda3D Manual

Panda3D Manual: Shaders and Coordinate Spaces

<<prev top next>> Search

The Major Coordinate Spaces

When writing complex shaders, it is often necessary to do a lot of coordinate system
conversion. In order to get this right, it is important to be aware of all the different coordinate
spaces that panda uses. You must know what "space" the coordinate is in. Here is a list of the
major coordinate spaces:

Model Space: If a coordinate is in model space, then it is relative to the center of the model
currently being rendered. The vertex arrays are in model space, therefore, if you access the
vertex position using vtx_position, you have a coordinate in model space. Model space is z-up
right-handed.

World Space: If a coordinate is in world space, then it is relative to the scene's origin. World
space is z-up right-handed.

View Space: If a coordinate is in view space, then it is relative to the camera. View space is z-
up right-handed.

APl View Space: This coordinate space is identical to view space, except that the axes may be
flipped to match the natural orientation of the rendering API. In the case of opengl, APl view
space is y-up right-handed. In the case of directx, APl view space is y-up left-handed.

Clip Space: Panda's clip space is a coordinate system in which (X/W, Y/W) maps to a screen
pixel, and (Z/W) maps to a depth-buffer value. All values in this space range over [-1,1].

API Clip Space: This coordinate space is identical to clip space, except that the axes may be
flipped to match the natural orientation of the rendering API, and the numeric ranges may be
rescaled to match the needs of the rendering API. In the case of opengl, the (Z/W) values
range from [-1, 1]. In the case of directx, the (Z/W) values range from [0,1].

Supplying Translation Matrices to a Shader

You can use a shader parameter named "trans_x_to_y" to automatically obtain a matrix that
converts any coordinate system to any other. The words x and y can be "model," "world,"
"view," "apiview," "clip," or "apiclip." Using this notation, you can build up almost any
transform matrix that you might need. Here is a short list of popular matrices that can be
recreated using this syntax. Of course, this isn't even close to exhaustive: there are seven
keywords, so there are 7x7 possible matrices, of which 7 are the identity matrix.

Desired Matrix Syntax

The Modelview Matrix trans_model_to_apiview
The Projection Matrix trans_apiview_to_apiclip
the DirectX world matrix trans_model _to_world

file:///E)ymanual/Shaders_and_Coordinate Spaces.1.html (1 of 3)2006/11/21 sUcE 06:01:49

Panda3D Manual

the DirectX view matrix trans_world_to_apiview
gsg.getCameraTransform() trans_view_to_world
gsg.getWorldTransform() trans_world_to_view
gsg.getExternalTransform() trans_model_to_view
gsg.getinternalTransform() trans_model_to_apiview
gsg.getCsTransform() trans_view_to_apiview
gsg.getinvCsTransform() trans_apiview_to_view

Recommendation: Don't use API View Space or API Clip Space

The coordinate systems "API View Space" and "API Clip Space" are not very useful. The fact
that their behavior changes from one rendering API to the next makes them extremely hard to
work with. Of course, you have to use the composed modelview/projection matrix to transform
your vertices, and in doing so, you are implicitly using these spaces. But aside from that, it is
strongly recommended that you not use these spaces for anything else.

Model_of X, View_of x, Clip_of_x

When you use the word "model” in a trans directive, you implicitly mean "the model currently
being rendered." But you can make any nodepath accessible to the shader subsystem using
set Shader | nput :

nyhouse = | oader. | oadModel (" myhouse")
render . set Shader | nput (' nyhouse',
myhouse)

Then, in the shader, you can convert coordinates to or from the model-space of this particular
nodepath:

uni form f | oat 4x4
trans_worl d to nodel of myhouse

or, use the syntactic shorthand:

uni form f | oat 4x4
trans_worl d_to_nyhouse

Likewise, you can create a camera and pass it into the shader subsystem. This is particularly
useful when doing shadow mapping:

file:///E)ymanual/Shaders_and_Coordinate Spaces.1.html (2 of 3)2006/11/21 sUcE 06:01:49

Panda3D Manual

render . set Shader | nput (' shadowcani, self.
shadowcam)

Now you can transform vertices into the clip-space of the given camera using this notation:

uni form f | oat 4x4
trans_nodel to _clip_of shadowcam

If you transform your model's vertices from model space into the clip space of a shadow
camera, the resulting (X/W,Y/W) values can be used as texture coordinates to projectively
texture the shadow map onto the scene (after rescaling them), and the (Z/W) value can be
compared to the value stored in the depth map (again, after rescaling it).

Panda does support the notation "trans_x_to_apiclip_of_y", but again, our recommendation is
not to use it.

You can transform a vertex to the view space of an alternate camera, using "view of x." In
fact, this is exactly identical to "model of x," but it's probably good form to use "view of x"
when X is a camera.

<<prev top next>>

| -

file:///E|/manual/Shaders_and_Coordinate_Spaces.1.html (3 of 3)2006/11/21 aUcE 06:01:49

Panda3D Manual

Panda3D Manual: Known Shader Bugs and Limitations

<<prev top next=>>=> Search

Known Bugs in the Shader Subsystem
Here is a list of known bugs, with workarounds:
Problem: Register Allocation.

Problem: nVidia's Cg compiler tries to assign registers to parameters. Under a variety of
circumstances, the Cg compiler will assign the same register to two parameters, or to a
parameter and to a constant in the program.

Workaround: We have found that if you manually allocate registers by supplying a semantic
string for each parameter, this problem is bypassed.

Problem: Bad Target Languages.

Problem: nVidia's Cg compiler will choose one of several different "target™" languages to
translate the Cg program into. When the Cg compiler tries to translate the program into the
VP40/FP40 language, it often produces incorrect output.

Workaround: We have discovered that translation into ARBVP1/ARBFP1 seems to work
reliably. Since that language is supported on essentially every video card, it is usually safe to
translate into that language. We have provided a directive where you can recommend a target
language to the Cg compiler:

//Cg profile arbvpl arbfpl

If you supply this directive, it will use the recommended language. If you supply more than
one directive, it will try the languages in the order provided.

Problem: Untested/Unfinished DirectX Support.

Problem: Shader development is currently being done in OpenGL. The DirectX support typically
lags behind, and is often less fully-tested.

Workaround: The default setting for Panda is to use OpenGL, not DirectX. For now, when using
shaders, do not change this setting.

<<prev top next=>=> -

file:///E|/manual/Known_Shader Bugs and_Limitations.1.html2006/11/21 sUsE 06:01:50

Panda3D Manual

Panda3D Manual: Finite State Machines

<<prev top next>> Search

A "Finite State Machine" is a concept from computer science. Strictly speaking, it means any
system that involves a finite number of different states, and a mechanism to transition from
one state to another.

In Panda3D, a Finite State Machine, or FSM, is implemented as a Python class. To define a
new FSM, you should define a Python class that inherits from the FSM class. You define the
available states by writing appropriate method names within the class, which define the
actions the FSM takes when it enters or leaves certain states. Then you can request your FSM
to transition from state to state as you need it to.

You may come across some early Panda3D code that creates an instance of the ClassicFSM
class. ClassicFSM is an earlier implementation of the FSM class, and is now considered
deprecated. It is no longer documented here. We recommend that new code use the FSM class
instead, which is documented on the following pages.

<<prev top next=>> Search

file///E|/manual/Finite_State Machines.1.ntml2006/11/21 sUrE 06:01:50

Panda3D Manual

Panda3D Manual: FSM Introduction

<<prev top next>> Search

In Panda3D, FSM's are frequently used in game code to automatically handle the cleanup logic
in game state changes. For instance, suppose you are writing a game in which the avatar
spends most of his time walking around, but should go into swim mode when he enters the
water. While he is walking around, you want certain animations and sound effects to be
playing, and certain game features to be active; but while he is swimming, there should be a
different set of animations, sound effects, and game features (this is just an example, of

course):
Walk state Swim state
. Should be playing "walk" animation . Should be playing "swim" animation
. Should hear footsteps sound effect . Should hear underwater sound effect
. Collision detection with doors should . Should have fog on camera
be active . Should have an air timer running

So, when your avatar switches from walking to swimming, you would need to stop the
footsteps sound effect, disable the door collisions, start playing the "swim" animation, start the
underwater sound effect, enable the fog on the camera, and start the air timer.

You could do all this by hand, of course. But using an FSM can make it easier. In this simple
model, you could define an FSM with two states, "Walk™ and "Swim". This might be
represented graphically like this:

Walk Swim

To implement this as a Panda3D FSM, you would declare an new class that inherits from FSM.
FSM, and within this class you would define four methods: enterWalk(), exitWalk(), enterSwim
(), and exitSwim(). This might look something like this:

file///Efmanual/FSM_Introduction.1.html (1 of 3)2006/11/21 aUxE 06:01:52

Panda3D Manual
fromdirect.fsminport FSM

cl ass Avat ar FSM FSM FSM) :
def __init__(self):#optional because FSM already defines __init__
#if you do wite your own, you *nust* call the base __init__ :
FSMFSM _init_ (self,"'avatarFSM)
##do your init code here

def enterWal k(sel f):
avatar. | oop(' wal k")
f oot st epsSound. pl ay()
enabl eDoor Col |'i si ons()

def exitWal k(self):
avat ar . st op()
f oot st epsSound. st op()
di sabl eDoor Col | i si ons()

def enter Swin(self):
avatar. | oop(' swinm)
under wat er Sound. pl ay()
render . set Fog(under wat er Fog)
start AirTinmer()

def exitSw n(self):
avat ar . st op()
under wat er Sound. st op()
render . cl ear Fog()
st opAi r Ti mer ()

nyfsm = Avat ar FSM)

Keep in mind this is just an imaginary example, of course; but it should give you an idea of
what an FSM class looks like.

Note that each enter method activates everything that is important for its particular state,
and--this is the important part--the corresponding exit method turns off or undoes everything
that was turned on by the enter method. This means that whenever the FSM leaves a
particular state, you can be confident that it will completely disable anything it started when it
entered that state.

Now to switch from Walk state to Swim state, you would just need to request a transition, like
this:

nyfsm request (' Swi m)

This FSM is a very simple example. Soon you will find the need for more than two states. For
instance, you might want to play a transition animation while the avatar is moving from Walk
state to Swim state and back again, and these can be encoded as separate states. There might

file///E/manual/FSM_Introduction.1.html (2 of 3)2006/11/21 aUxE 06:01:52

Panda3D Manual

be a "drowning" animation if the avatar stays too long underwater, which again might be
another state. Graphically, this now looks like this:

In a real-world example, you might easily find you have a need for dozens of states. This is
when using the FSM class to manage all of these transitions for you can really make things a
lot simpler; if you had to keep all of that cleanup code in your head, it can very quickly get out
of hand.

<<prev top next>>

file:///EJ/manual/FSM_I ntroduction.1.html (3 of 3)2006/11/21 aUsE 06:01:52

Panda3D Manual

Panda3D Manual: Simple FSM Usage

<<prev top next>> Search

A Panda3D FSM is implemented by defining a new Python class which inherits from the class
direct.fsm.FSM.FSM (normally imported as FSM.FSM or simply FSM), and defining the
appropriate enter and exit methods on the class.

FSM states are represented by name strings, which should not contain spaces or punctuation
marks; by Panda3D convention, state names should begin with a capital letter. An FSM is
always in exactly one state a time; the name of the current state in stored in f sm st at e.

When it transitions from one state to another, it first calls exi t O dSt at e() , and then it calls
ent er NewSt at e() , where OldState is the name of the previous state, and NewState is the

name of the state it is entering. While it is making this transition, the FSM is not technically in
either state, and f sm st at e will be None--but you can find both old and new state names in

fsm ol dSt at e and f sm newSt at e, respectively.

To define a possible state for an FSM, you only need to define an ent er St at eNane() and/or
exi t St at eNane() method on your class, where StateName is the name of the state you would
like to define. The ent er St at eNanme() method should perform all the necessary action for
entering your new state, and the corresponding exi t St at eNanme() method should generally
undo everything that was done in ent er St at eNanme() , so that the world is returned to a
neutral state.

An FSM starts and finishes in the state named "Off". When the FSM is created, it is already in
"Off"; and when you destroy it (by calling f sm cl eanup()), it automatically transitions back to

"Off".

To request an FSM to transition explicitly to a new state, use the call f sm r equest
(' StateNane'), where StateName is the state you would like it to transition to.

Arguments to enterStateName methods

Normally, both ent er St at eNane() and exi t St at eNane() take no arguments (other than self).
However, if your FSM requires some information before it can transition to a particular state,
you can define any arguments you like to the enterStateName method for that state; these
arguments should be passed in to the r equest () call, following the state name.

file///Efmanual/Simple_FSM_Usage.1.html (1 of 3)2006/11/21 aUcE 06:01:53

Panda3D Manual
fromdirect.fsminport FSM

cl ass Avat ar FSM FSM FSM) :
def enterWal k(sel f, speed, door Mask):
avat ar . set Pl ayRat e(speed, 'wal k')
avatar. | oop(' wal k")
f oot st epsSound. pl ay()
enabl eDoor Col | i si ons(door Mask)

def exitWal k(self):
avat ar . st op()
f oot st epsSound. st op()
di sabl eDoor Col | i si ons()

nyfsm = Avat ar FSM)
nyfsmrequest (' Val k', 1.0, BitMask32.bit(2))

Note that the exitStateName method must always take no arguments.
Allowed and disallowed state transitions

By default, every state transition request is allowed: the call f sm request (' St at eNane') will

always succeed, and the the FSM will be left in the new state. You may wish to make your FSM
more robust by disallowing certain transitions that you don't want to happen.

For instance, consider the example FSM described previously, which had the following state
diagram:

Walk2Swim
0 [
Walk Swim Drowning
Swim2Walk
[[

In this diagram, the arrows represent legal transitions. It is legal to transition from 'Walk' to
'Walk2Swim’, but not from 'Walk' to 'Swim2Walk'. If you were to request the FSM to enter
state 'Swim2Walk’ while it is currently in state ‘Walk’, that's a bug; you might prefer to have
the FSM throw an exception, so you can find this bug.

To enforce this, you can store sel f. defaul t Transiti ons inthe FSM's _init__ () method.

This should be a map of allowed transitions from each state. That is, each key of the map is a
state name; for that key, the value is a list of allowed transitions from the indicated state. Any
transition not listed in defaultTransitions is considered invalid. For example:

file///Efmanual/Simple_FSM_Usage.1.html (2 of 3)2006/11/21 aUcE 06:01:53

Panda3D Manual

cl ass Avat ar FSM FSM FSM :
def __init_ (self):

FSMFSM __init__ (self)

sel f.defaultTransitions = {
"Walk' ["walk2Swinm],
"walk2swim ;["Swinm],
"Swim o [' SwimWal k', 'Drowning'],
"Swim2Wal k' ["walk' T,
"Drowning' : [],

}

If you do not assign anything to self.defaultTransitions, then all transitions are legal. However,
if you do assign a map like the above, then requesting a transition that is not listed in the map
will raise the exception FSM Request Deni ed.

<<prev top next>=>

e

file:///E|/manual/Simple_FSM_Usage.1.html (3 of 3)2006/11/21 aUxE 06:01:53

Panda3D Manual

Panda3D Manual: FSM with input

<<prev top next>> Search

Another common use for FSM's is to provide an abstraction for Al state. For this purpose, you
would like to supply an "input" string to the FSM, and let the FSM decide which state it should
transition to, rather than explicitly specifying the target state name.

Consider the following FSM state diagram:

* straight * straight

et Bt

I left T left
West - left [South

* straight * straight

Here the text next to an arrow represents the "input" string given to the FSM, and the
direction of the arrow represents the state transition that should be made for that particular
input string, from the indicated starting state.

In this example, we have encoded a simple FSM that determines which compass direction a
character will be facing after either turning left or continuing straight. The input will be either
"left" or "straight”, and the result is a transition to a new state that represents the new
compass direction, based on the previous compass direction. If we request "left" from state
North, the FSM transitions to state West. On the other hand, if we request "left" from state
South, the FSM transitions to state East. If we request "straight" from any state, the FSM
should remain in its current state.

To implement this in Panda3D, we define a number of filter functions, one for each state.
The purpose of this function is to decide what state to transition to next, if any, on receipt of a
particular input.

A filter function is created by defining a python method named fi |l t er St at eNane() , where
StateName is the name of the FSM state to which this filter function applies. The
filterStateName method receives two parameters, a string and a tuple of arguments (the
arguments contain the optional additional arguments that might have been passed to the f sm
request () call; it's usually an empty tuple). The filter function should return the name of the
state to transition to. If the transition should be disallowed, the filter function can either return
None to quietly ignore it, or it can raise an exception. For example:

file///Efmanual/FSM_with_input.1.html (1 of 3)2006/11/21 aUcE 06:01:54

Panda3D Manual

cl ass ConpassDi r (FSM FSM :
def filterNorth(self, request, args):

if request == 'straight':
return 'North'

elif request == "left':
return ' West'

el se:

return None

def filterWest(self, request, args):

if request == 'straight':
return ' West'

elif request == "left':
return ' South'

el se:

return None

def filterSouth(self, request, args):

if request == 'straight':
return ' South'

elif request == "left':
return ' East'

el se:

return None

def filterEast(self, request, args):

if request == 'straight':
return ' East'

elif request == "left':
return 'North'

el se:

return None

Note that input strings, by convention, should begin with a lowercase letter, as opposed to
state names, which should begin with an uppercase letter. This allows you to make the
distinction between requesting a state directly, and feeding a particular input string to an FSM.
To feed input to this FSM, you would use the request() call, just as before:

myfsmrequest ('l eft')
myfsmrequest ('l eft')
myf sm request (' strai ght)
myfsmrequest ('l eft')

If the FSM had been in state North originally, after the above sequence of operations it would
now be in state East.

The defaultFilter method

Although defining a series of individual filter methods gives you the most flexibility, for many

file///E/manual/FSM_with_input.1.html (2 of 3)2006/11/21 aUcE 06:01:54

Panda3D Manual

FSM's you may not need this much explicit control. For these cases, you can simply define a
defaultFilter method that does everything you need. If a particular fi |t er St at eNane()

method does not exist, then the FSM will call the method named defaul t Fil ter () instead;
you can put any logic here that handles the general case.

For instance, we could have defined the above FSM using just the defaultFilter method, and a
lookup table:

cl ass ConpassDi r (FSM FSM :
next State = {
("North', 'straight') : '"North',

("North', "left') : 'Wst',
('"West', 'straight') : 'Wst',
("West', 'left') : 'South',
("South', 'straight') : 'South',
("South', "left') : 'East',
('East', 'straight') : 'East',
('"East', 'left') : "North',

}

def defaultFilter(self, request, args):
key = (self.state, request)
return sel f.next State. get (key)

The base FSM class defines a defaul tFil ter () method that implements the default FSM

transition rules (that is, allow all direct-to-state (uppercase) transition requests unless self.
defaultTransitions is defined; in either case, quietly ignore input (lowercase) requests).

In practice, you can mix-and-match the use of the defaultFilter method and your own custom
methods. The defaultFilter method will be called only if a particular state's custom filter
method does not exist. If a particular state's filterStateName method is defined, that method
will be called upon a new request; it can do any custom logic you require (and it can call up to
the defaultFilter method if you like).

<<prev top next=>=>

file///Efmanual/FSM_with_input.1.html (3 of 3)2006/11/21 aUcE 06:01:54

Panda3D Manual

Panda3D Manual: Advanced FSM Tidbits

<<prev top next>> Search

request vs. demand

As stated previously, you normally request an FSM to change its state by calling either f sm
request (' NewState', argl, arg2, ...),orfsmrequest('inputString , argl,

arg2, ...), where argl, arg2, ... represent optional arguments to the destination state's
enter function (or to the filter function). The call to r equest () will either succeed or fail,

according to what the filter function for the current state does. If it succeeds, it will return the
tuple (' NewSt ate', argl, arg2), indicating the new state it has transitioned to. If it fails, it

will simply return None (unless the filter function was written to throw an exception on
failure).

If you request an FSM to make a transition, and the request fails, you might consider this an
error condition, and you might prefer to have your code to stop right away rather than
continuing. In this case, you should call f sm denmand() instead. The syntax is the same as that

for request (), but instead of returning None on failure, it will always raise an exception if the
state transition is denied. There is no return value from denmand() ; if it returns, the transition
was accepted.

FSM.AlreadylInTransition

An FSM is always in exactly one state, except while it is in the process of transitioning between
states (that is, while it is calling the exitStateName method for the previous state, followed by
the enterStateName method for the new state). During this time, the FSM is not considered in
either state, and if you query f sm st at e it will contain None.

During this transition time, it is not legal to call f sm request () to request a new state. If you
try to do this, the FSM will raise the exception FSM Al r eadyl nTransi ti on. This is a

particularly common error if some cleanup code that is called from the exitStateName method
has a side-effect that triggers a transition to a new state.

However, there's a simple solution to this problem: call f sm denmand() instead. Unlike r equest
(), demand() can be called while the FSM is currently in transition. When this happens, the

FSM will queue up the demand, and will carry it out as soon as it has fully transitioned into its
new state.

forceTransition()

There is also a method f sm forceTransi ti on(). This is similar to demand() in that it never

fails and does not have a return value, but it's different in that it completely bypasses the filter
function. You should therefore only pass an uppercase state name (along with any optional
arguments) to forceTransition, never a lowercase input string. The FSM will always transition
to the named state, even if it wouldn't otherwise be allowed. Thus, f orceTransi ti on() can be

useful in special cases to skip to another state that's not necessarily connected to the current

file:///E)/manual/Advanced_FSM_Tidbits.1.html (1 of 2)2006/11/21 aUsE 06:01:55

Panda3D Manual

state (for instance, to handle emergency cleanup when an exception occurs). Be careful that
you don't overuse forceTransi ti on(), though; consider whether denand() would be a better

choice. If you find yourself making lots of calls to forceTransi ti on(), it may be that your

filter functions (or your defaultTransitions) are poorly written and are disallowing what should
be legitimate state transitions.

Filtering the optional arguments

The filterStateName method receives two parameters: the string request, and a tuple, which
contains the additional arguments passed to the request (or demand) call. It then normally
returns the state name the FSM should transition to, or it returns None to indicate the
transition is denied.

However, the filter function can also return a tuple. If it returns a tuple, it should be of the
form (‘StateName', argl, arg2, ...), where argl, arg2, ... represent the optional arguments
that should be passed to the enterStateName method. Usually, these are the same arguments
that were passed to the filterStateName method (in this case, you can generate the return
value tuple with the python syntax (' St at eNane',) + args).

The returned arguments are not necessarily the same as the ones passed in, however. The
filter function is free to check, modify, or rearrange any of them; or it might even make up a
completely new set of arguments. In this way, the filter function can filter not only the state
transitions themselves, but also the set of data passed along with the request.

Search

file:///E[/manual/Advanced_FSM_Tidbits.1.html (2 of 2)2006/11/21 sUxE 06:01:55

Panda3D Manual

Panda3D Manual: Advanced operations with Panda's internal structures

<<prev top next>> Search

The following pages provide descriptions of Panda's internal representation of vertices and the
renderable geometry that uses them, as well as instructions for directly reading or
manipulating this data.

This is an advanced topic of Panda3D and is not necessary for ordinary model rendering and
animation, but the advanced user may find this information useful.

<<prev top next>> Search

file///E/manual/Advanced_operations with_Panda's_internal_structures.1.html2006/11/21 sUcE 06:01:56

Panda3D Manual

Panda3D Manual: How Panda3D Stores Vertices and Geometry

<<prev top next=>>

This section describes the structure and interconnections of Panda's internal vertex and
geometry data objects, in general terms.

You should read through this section carefully, so that you have a good understanding of
Panda’'s data structures, before attempting to read the section about generating procedural
data.

<<prev top next>>

-

file:///EJ/manual/How_Panda3D_Stores Vertices and_Geometry.1.htm|2006/11/21 aUsE 06:01:56

Panda3D Manual

Panda3D Manual: GeomVertexData

<<prev top next>> Search

The fundamental object used to store vertex information in Panda is the GeomVertexData.
This stores a list of vertices, organized conceptually as a table, where each row of the table
represents a different vertex, and the columns of the table represent the different kinds of per-
vertex data that may be associated with each vertex. For instance, the following table defines
four vertices, each with its own vertex position, normal vector, color, and texture coordinate
pair:

vertex normal color texcoord
l(1,0,0) |[0,0,1) [|(0,0,1,1) [z, 0)
l(1,1,0 |[0,0,1) [|(0,0,1,1) [[a, D)
[(0,1,0) |[(0,0,1) [|(0,0,1,1) [0, 1)
[(0,0,0) |[(0,0,1) [|(0,0,1,1) [[0,0)

w N Fk O

Vertices are always numbered beginning at O, and continue to the number of rows in the table
(minus 1).

Not all GeomVertexData objects will use these same four columns; some will have fewer
columns, and some will have more. In fact, all columns, except for "vertex", which stores the
vertex position, are optional.

The order of the columns is not meaningful, but the column names are. There are certain
column names that are reserved for Panda, and instruct Panda what the meaning of each
column is. For instance, the vertex position column is always named "vertex", and the lighting
normal column, if it is present, must be named "normal". See GeomVertexFormat for the

complete list of reserved column names.

You can define your own custom columns. If there are any columns that have a name that
Panda does not recognize, Panda will not do anything special with the column, but it can still
send it to the graphics card. Of course, it is then up to you to write a vertex shader that

understands what to do with the data in the column.

It is possible to break up a GeomVertexData into more than one array. A GeomVertexArray
is table of vertex data that is stored in one contiguous block of memory. Typically, each
GeomVertexData consists of just one array; but it is also possible to distribute the data so that
some columns are stored in one array, while other columns are stored in another array:

vertex texcoord normal color
l(1,0,0 |[[, 0) [(0,0,1) [0, 0,1, 1)
d,1,0 |[@ v [(0,0,1) [0, 0,1, 1)
l(0,1,0) [0, 1) [(0,0,1) [0, 0,1, 1)
[0, 0, 0) |[[(0, 0) [(0,0,1) |0, 0,1, 1)

w N kO

file:///E)ymanual/GeomV ertexData.1.html (1 of 2)2006/11/21 aUsE 06:01:57

Panda3D Manual

You might want to do this, for instance, if you have certain columns of data that are always
the same between different blocks of vertices; you can put those columns in a separate array,
and then use the same array within multiple different GeomVertexData objects. There is no
limit to the number of different arrays you can have within one GeomVertexData; you can
make each column a separate array if you like. (There may be performance implications to

consider. Some graphics drivers may work better with one block of contiguous data--one
array--while others may prefer many different arrays. This performance difference is likely to
be small, however.)

top next>>

file:///E|/manual/GeomV ertexData.1.html (2 of 2)2006/11/21 aUsE 06:01:57

Panda3D Manual

Panda3D Manual: GeomVertexFormat

<<prev top next>> Search

The GeomVertexFormat object describes how the columns of a GeomVertexData are
ordered and named, and exactly what kind of numeric data is stored in each column. Every
GeomVertexData has an associated GeomVertexFormat, which describes how the data in
that object is stored.

Just as a GeomVertexData object is really a list of one or more GeomVertexArrayData
objects, a GeomVertexFormat object is a list of one or more GeomVertexArrayFormat
objects, each of which defines the structure of the corresponding array. There will be one
GeomVertexArrayFormat object for each array in the format. Each
GeomVertexArrayFormat, in turn, consists of a list of GeomVertexColumn objects, one for
each column in the array. For instance, the format for a GeomVertexData with six columns,
distributed over three different arrays, might look like this:

GeomVertexFormat

GeomVertexArrayFormat

GeomVertexArrayFormat

GeomVertexArrayFormat

Each GeomVertexColumn has a number of properties:

file:///E|/manual/GeomV ertexFormat.1.html (1 of 8)2006/11/21 sUsE 06:01:59

Panda3D Manual

getNumComponents() This defines the number of numeric components of the data in
the column. For instance, the vertex position, which is typically
an (X, Y, 2) triple, has three components: X, Y, and Z. A
texture coordinate usually has two components (U, V), but
sometimes has three components (U, V, W).

getNumericType() This defines the kind of numeric data that is stored in each
component. It must be one of the following symbols:

Geom.NTFloat32 Each component is a 32-bit floating-
point number. This is by far the most
common type.

Geom.NTUINnt8 Each component is a single 8-bit
integer, in the range 0 - 255. OpenGL
encodes an RGBA color value as a
four-component array of 8-bit
integers of this type, in R, G, B, A
order.

Geom.NTUInt16 Each component is a single 16-bit
integer, in the range O - 65535.

Geom.NTUInt32 Each component is a single 32-bit
integer, in the range 0 - 4294967295.

Geom.NTPackedDcba Each component is a 32-bit word,
with four 8-bit integer index values
packed into it in little-endian order
(D, C, B, A), DirectX-style. This is
usually used with a 1-component
column (since each component
already has four values). DirectX uses
this format to store up to four
indexes into a transform table for
encoding vertex animation. (The
GeomVertexReader and
GeomVertexWriter classes will
automatically reorder the A, B, C, D
parameters you supply into DirectX's
D, C, B, A order.)

file:///E)/manual/GeomV ertexFormat.1.html (2 of 8)2006/11/21 sUxE 06:01:59

Panda3D Manual

Geom.NTPackedDabc Each component is a 32-bit word,

with four 8-bit integer index values
packed into it in ARGB order (D, A, B,
C). As above, this is normally used
with a 1-component column. DirectX
uses this format to represent an
RGBA color value. (The
GeomVertexReader and
GeomVertexWriter classes will
automatically reorder the R, G, B, A
parameters you supply into DirectX's
A, R, G, B order.)

getContents() This defines, in a general way, the semantic meaning of the
data in the column. It is used by Panda to decide how the data
should be modified when a transform matrix or texture matrix
is applied; it also controls the default value for the column
data, as well as the way data is stored and fetched from the

column.

The contents specification must be one of the following

symbols:

Geom.CPoint

Geom.CClipPoint

file:///E)/manual/GeomV ertexFormat.1.html (3 of 8)2006/11/21 sUxE 06:01:59

The data represents a point in object
coordinates, either in 3-D space (if it is
a 3-component value) or in 4-D
homogenous space (if it is a 4-
component value). When a transform
matrix is applied to the vertex data, the
data in this column is transformed as a
point. If a 4-component value is stored
into a 3-component column, the fourth
component is understood to be a
homogenous coordinate, and it
implicitly scales the first three.
Similarly, if a 4-component value is
read from a 3-component column, the
fourth value is implicitly 1.0.

The data represents a point already
transformed into clip coordinates; that
is, these points have already been
transformed for rendering directly.
Panda will not transform the vertices
again during rendering. Points in clip
coordinates should be in 4-D
homogeneous space, and thus usually
have four components.

Panda3D Manual

Geom.CVector

Geom.CTexcoord

Geom.CColor

Geom.Clndex

Geom.CMorphDelta

Geom.COther

file:///E)/manual/GeomV ertexFormat.1.html (4 of 8)2006/11/21 sUxE 06:01:59

The data represents a 3-D vector, such
as a normal, tangent, or binormal, in
object coordinates. When a transform
matrix is applied to the vertex data, the
data in this column is transformed as a
vector (that is, ignoring the matrix's
translation component).

The data represents a texture
coordinate, either 2-D or 3-D. When a
texture matrix (not a transform matrix)
is applied to the vertex data, it
transforms the data in this column, as a
point.

The data represents an RGBA color
value. If a floating-point value is used
to read or write into an integer color
component, it is automatically scaled
from 0.0 .. 1.0 into the full integer
range. Also, the default value of a color
columnis (1, 1, 1, 1), as opposed to
any other column type, whose default
value is O.

The data represents an integer index
into some table.

The data represents an offset value that
will be applied to some other column
during animation.

The data has some other, custom
meaning; do not attempt to transform
it.

Panda3D Manual

getName() The column name is the most important single piece of
information to Panda. The column name tells Panda the specific
meaning of the data in the column. The name is also a unique
handle to the column; within a given GeomVertexFormat, there
may not be two different columns with the same name.

There are a number of column names that have special

meaning to Panda:

vertex

normal

texcoord

file:///E)/manual/GeomV ertexFormat.1.html (5 of 8)2006/11/21 sUxE 06:01:59

The position in space of each vertex,
usually given as an (X%, vy, z) triple in 3-
D coordinates. This is the only
mandatory column for rendering
geometry; all other columns are
optional. The vertex is usually Geom.
NTFloat32, Geom.CPoint, 3
components.

The surface normal at each vertex.
This is used to compute the visible
effects of lighting; it is not related to
the collision system, which has its own
mechanism for determining the
surface normal. You should have a
normal column if you intend to enable
lighting; if this column is not present,
the object may look strange in the
presence of lighting. The normal
should always be Geom.NTFloat32,
Geom.CVertex, 3 components.

The U, V texture coordinate pair at
each vertex, for the default coordinate
set. This column is necessary in order
to apply a texture to the geometry
(unless you use a TexGenAttrib). It is
usually a 2-D coordinate pair, but
sometimes, when you are using 3-d
textures or cube maps, you will need
a 3-D U, V, W coordinate triple. The
texcoord should be Geom.NTFloat32,
Geom.CTexcoord, 2 or 3 components.

Panda3D Manual

texcoord.foo

tangent
binormal

tangent.foo
binormal.foo

color

rotate
size
aspect_ratio

file:///E)/manual/GeomV ertexFormat.1.html (6 of 8)2006/11/21 sUxE 06:01:59

This is the U, V texture coordinate pair
for the texture coordinate set with the
name "foo" (where foo is any arbitrary
name). It is only necessary if you
need to have multiple different texture
coordinate sets on a piece of
geometry, in order to apply
multitexturing. As with texcoord,
above, it may be a 2-d or a 3-d value.

These two columns work together,
along with the normal column, to
implement normal maps (bump
maps). They define the normal map
space at each vertex. Like a normal,
these should be Geom.NTFloat32,
Geom.CVertex, 3 components.

These column names define a tangent
and binormal for the texture
coordinate set with the name "foo".

This defines an RGBA color value. If
this column is not present, the default
vertex color is white (unless it is
overridden with a nodePath.setColor()
call). Internally, OpenGL expects the
color format to be Geom.NTUint8 (or
Geom.NTFloat32), Geom.CColor, 4
components, while DirectX expects
the color to be Geom.NTPackedDabc,
Geom.CColor, 1 component. In fact,
you may use either format regardless
of your current rendering backend,
and Panda will automatically convert
the column as necessary.

These three columns are used when
rendering sprites (that is, GeomPoints
with nodePath.
setRenderModeThickness() in effect).
If present, they control the rotation
counterclockwise in degrees, the per-
vertex thickness, and the aspect ratio
of the square, respectively. Each of
these should be Geom.NTFloat32,
Geom.COther, 1 component.

Panda3D Manual

The remaining column names have meaning only to define
vertex animation, for instance to implement Actors. Although
these column names are documented below, vertex animation
is an advanced feature of the Panda vertex representation;
we recommend you let Panda take care of setting up the
vertex animation tables, rather than attempting to create
them yourself.

transform_blend This is used to control vertex
assignment to one or more animated
transform spaces. The value in this
column is an integer index into the
TransformBlendTable that is
associated with the GeomVertexData;
each entry in the
TransformBlendTable defines a
different weighted combination of
transform spaces, so by indexing into
this table, you can associate each
vertex with a different weighted
combination of transform spaces.

transform_weight These two columns work together, in

transform_index a manner similar to transform_blend,
but they index into the
TransformTable associated with the
GeomVertexData, instead of the
TransformBlendTable. This is
particularly suited for sending vertices
to OpenGL or DirectX to do the
animation, rather than performing the
animation on the CPU.

column.morph.slider Columns with names of this form
define a floating-point morph offset
that should be scaled by the value of
the morph slider named "slider”, and
then added to the column named
"column” (where slider and column
are arbitrary names). This is used
during vertex animation on the CPU.

A column may have any name (though each name must be
unique within a given GeomVertexFormat). If there are
additional columns with names other than those in the above
table, Panda will not do anything special with the columns, but
it will send the vertex data to any vertex shader that requests
that data by name, using the vtx_columnname parameter
name. See List of Possible Shader Inputs. </tr> <td

valign="top" style="border-top: 1px solid black; padding:

file:///E)/manual/GeomV ertexFormat.1.html (7 of 8)2006/11/21 sUxE 06:01:59

Panda3D Manual

5pt'></td> <td style="border-top: 1px solid black; padding:
5pt'></td> </td></tr> </table></center>

There are also additional properties associated with each
GeomVertexColumn that determine its exact offset and byte-
alignment within each row of the array, but normally you do
not need to worry about these, unless you are designing a
GeomVertexFormat that matches some already-existing block
of data. See the auto-generated API specification for more
details.

<<prev top next=>=>

file:///E|/manual/GeomV ertexFormat.1.html (8 of 8)2006/11/21 sUsE 06:01:59

Panda3D Manual

Panda3D Manual: GeomPrimitive

<<prev top next>> Search

In order to use the vertices in a GeomVertexData to render anything, Panda needs to have a

GeomPrimitive of some kind, which indexes into the vertex table and tells Panda how to tie
together the vertices to make lines, triangles, or individual points.

There are several different kinds of GeomPrimitive objects, one for each different kind of
primitive. Each GeomPrimitive object actually stores several different individual primitives,
each of which is represented simply as a list of vertex numbers, indexing into the vertices
stored in the associated GeomVertexData. For some GeomPrimitive types, like GeomTriangles,
all the primitives must have a fixed number of vertex numbers (3, in the case of
GeomTriangles); for others, like GeomTristrips, each primitive can have a different number of
vertex numbers.

For instance, a GeomTriangles object containing three triangles, and a GeomTristrips
containing two triangle strips, might look like this:

GeomTriangles GeomTristrips
0		0
1		2
2		3
5		
2		6
1		1
3		
5		
0		1
5		3
6		2

Note that the GeomPrimitive objects don't themselves contain any vertex data; they only
contain a list of vertex index numbers, which is used to look up the actual vertex data in a
GeomVertexData object, stored elsewhere.

GeomTriangles

This is the most common kind of GeomPrimitive. This kind of primitive stores any number of
connected or unconnected triangles. Each triangle must have exactly three vertices, of course.
In each triangle, the vertices should be listed in counterclockwise order, as seen from the front
of the triangle.

filex///E)ymanual/GeomPrimitive.1.html (1 of 6)2006/11/21 sUxE 06:02:00

Panda3D Manual

[

GeomTristrips

This kind of primitive stores lists of connected triangles, in a specific arrangement called a
triangle strip. You can store any number of individual triangle strips in a single GeomTristrips
object, and each triangle strip can have an arbitrary number of vertices (at least three).

The first three vertices of a triangle strip define one triangle, with the vertices listed in
counterclockwise order. Thereafter, each additional vertex defines an additional triangle, based
on the new vertex and the preceding two vertices. The vertices go back and forth, defining
triangles in a zig-zag fashion.

Note that the second triangle in a triangle strip is defined in clockwise order, the third triangle
is in counterclockwise order, the fourth triangle is in clockwise order again, and so on.

On certain hardware, particularly older SGI hardware and some console games, using triangle
strips is an important optimization to reduce the number of vertices that are sent to the
graphics pipe, since most triangles (except for the first one) can be defined with only a single
vertex, rather than three vertices for each triangle.

Modern PC graphics cards prefer to receive a group of triangle strips connected together into
one very long triangle strip, by the introduction of repeated vertices and degenerate triangles.

filex///E)ymanual/GeomPrimitive.1.html (2 of 6)2006/11/21 sUxE 06:02:00

Panda3D Manual

Panda will do this automatically, but in order for this to work you should ensure that every
triangle strip has an even number of vertices in it.

Furthermore, since modern PC graphics cards incorporate a short vertex cache, they can
generally render individual, indexed triangles as fast as triangle strips; so triangle strips are
less important on PC hardware than they have been in the past. Unless you have a good
reason to use a GeomTristrips, it may be easier just to use GeomTriangles.

When loading a model from an egg file, Panda will assemble the polygons into triangle strips if
it can do so without making other compromises; otherwise, it will leave the polygons as
individual triangles.

GeomTrifans

This is similar to a GeomTristrips, in that the primitive can contain any number of triangle
fans, each of which has an arbitrary number of vertices. Within each triangle fan, the first
three vertices (in counterclockwise order) define a triangle, and each additional vertex defines
a new triangle. However, instead of using the preceding two vertices to define each new
triangle, a triangle fan uses the previous vertex and the first vertex, which means that all of
the resulting triangles fan out from a single point, like this:

ad

Like the triangle strip, a triangle fan can be an important optimization on certain hardware.
However, its use can actually incur a performance penalty on modern PC hardware, because it
is impossible to send more than one triangle fan in one batch, so you probably shouldn't use
triangle fans on a PC. Use GeomTriangles or GeomTristrips instead.

GeomLines

This kind of GeomPrimitive stores any number of connected or unconnected line segments. It
is similar to a GeomTriangles, but it draws lines instead of triangles. Each line has exactly two
vertices.

filex///E)/manual/GeomPrimitive.1.html (3 of 6)2006/11/21 sUxE 06:02:00

Panda3D Manual

By default, line segments are one pixel wide, no matter how far away they are from the
camera. You can use nodePath.setRenderModeThickness() to change this; if you specify a
thickness greater than 1, this will make the lines render as thick lines, the specified number of
pixels wide. However, the lines will always be the same width in pixels, regardless of how far
away from the camera they are.

Thick lines are not supported by the DirectX renderer; in DirectX, the thickness parameter is
ignored.

GeomLinestrips

This is the analogue of a GeomTristrips object: the GeomLinestrips object can store any
number of line strips, each of which can have any number of vertices, at least two. Within a
particular line strip, the first two vertices define a line segment; and thereafter, each new
vertex defines an additional line segment, connected end-to-end with the previous line
segment. This primitive type can be used to draw a curve approximation with many bends
fairly easily.

GeomPoints

This is the simplest kind of GeomPrimitive; it stores a number of individual points. Each point

filex///E)ymanual/GeomPrimitive.1.html (4 of 6)2006/11/21 sUxE 06:02:00

Panda3D Manual

has exactly one vertex.

Lad

By default, each point is rendered as one pixel. You can use nodePath.
setRenderModeThickness() to change this; if you specify a thickness greater than 1, this
will make the points render as squares (which always face the camera), where the vertex
coordinate is the center point of the square, and the square has the specified number of pixels
along each side. Each point will always be the same width in pixels, no matter how far it is
from the camera. Unlike line segments, thick points are supported by DirectX.

Lad

In addition to ordinary thick points, which are always the same size no matter how far they
are from the camera, you can also use nodePath.setRenderModePerspective() to enable a
mode in which the points scale according to their distance from the camera. This makes the
points appear more like real objects in the 3-D scene, and is particularly useful for rendering
sprite polygons, for instance for particle effects. In fact, Panda's SpriteParticleRenderer takes
advantage of this render mode. (This perspective mode works only for points; it does not
affect line segments.)

Even though the sprite polygons are rendered as squares, remember they are really defined
with one vertex, and each vertex can only supply one UV coordinate. This means each sprite
normally has only one UV coordinate pair across the whole polygon. If you want to apply a

texture to the face of each sprite, use nodePath.setTexGen() with the mode TexGenAttrib.

MPointSprite; this will generate texture coordinates on each polygon in the range (0O, 0) to

filex///E)/manual/GeomPrimitive.1.html (5 of 6)2006/11/21 sUcE 06:02:00

Panda3D Manual

(1, 1). You can then transform the texture coordinates, if you wish, using one of the methods
like nodePath.setTexOffset(), setTexScale(), etc.

top next>>

file:///E|/manual/GeomPrimitive.1.html (6 of 6)2006/11/21 aUsE 06:02:00

Panda3D Manual

Panda3D Manual: Geom

<<prev top next=>>=> Search

The Geom object collects together a GeomVertexData and one or more GeomPrimitive

objects, to make a single renderable piece of geometry. In fact, an individual Geom is the
smallest piece into which Panda will subdivide the scene for rendering; in any given frame,
either an entire Geom is rendered, or none of it is.

Fundamentally, a Geom is very simple; it contains a pointer to a single GeomVertexData, and
a list of one or more GeomPrimitives, of various types, as needed. All the associated
GeomPrimitives index into the same GeomVertexData.

Geom

GeomTriangles

GeomTriangles

GeomTristrips

The GeomVertexData pointer may be unique to each Geom, or one GeomVertexData may be
shared among many different Geoms (each of which might use a different subset of its
vertices). Also, although the GeomPrimitive objects are usually unique to each Geom, they
may also be shared between different Geoms.

Although a Geom can have any number of GeomPrimitives associated with it, all of the
GeomPrimitives must be of the same fundamental primitive type: triangles, lines, or points. A
particular Geom might have GeomTriangles, GeomTristrips, and GeomTrifans; or it might have
GeomLines and GeomLinestrips; or it might have GeomPoints. But no one Geom can have
primitives from two different fundamental types. You can call geom.getPrimitiveType() to
determine the fundamental primitive type stored within a particular Geom.

<<prev top next>> Search

file:///E|/manual/Geom.1.html2006/11/21 sUcE 06:02:01

Panda3D Manual

Panda3D Manual: GeomNode

<<prev top next=>>=> Search

Finally, GeomNode is the glue that connects Geoms into the scene graph. A GeomNode
contains a list of one or more Geoms.

GeomNode

The GeomNode class inherits from PandaNode, so a GeomNode can be attached directly to the

scene graph like any other node; and like any node, it inherits a transform and a render state
from its parents in the scene graph. This transform and state is then applied to each of the
node's Geoms.

Furthermore, the GeomNode stores an additional render state definition for each Geom. This
allows each Geom within a given GeomNode to have its own unique state; for instance, each
Geom may have a different texture applied.

When a model is loaded from an egg file, normally all the state definitions required to render
the geometry will be stored on these per-Geom state definitions, rather than at the GeomNode
level. These per-Geom states will override any state that is inherited from the scene graph,
unless that scene graph state has a priority higher than the default priority of zero. (This is
why it is necessary to specify a second parameter of 1 to the nodePath.setTexture() call, if you
want to replace a texture that was applied to a model in the egg file.)

file:///E|/manual/GeomNode. 1.htm| 2006/11/21 sUsE 06:02:01

Panda3D Manual

Panda3D Manual: Procedurally Generating 3D Models

<<prev top next>> Search

Building on the fundamental concepts introduced in the last section, the following section
explains how to use Panda's basic geometry building blocks to generate your own custom
geometry at runtime.

<<prev top next>> -

file:///E|/manual/Procedurally_Generating_3D_M odels.1.html2006/11/21 aUoE 06:02:02

Panda3D Manual

Panda3D Manual: Defining your own GeomVertexFormat

<<prev top next>> Search

Before you can create any geometry in Panda3D, you must have a valid GeomVertexFormat.

You can decide exactly which columns you want to have in your format, by building the format
up one column at a time. (But you might be able to avoid this effort by taking advantage of
one of the pre-defined formats listed on the next page.)

To build up your custom format, you need to first create an empty
GeomVertexArrayFormat, and add columns one at a time by calling addColumn():

array = GeonVertexArrayFor mat ()
array. addCol utm(I nt er nal Nane. make(' vertex'),
3,

Geom NTFI oat 32, Geom CPoi nt)

The parameters to addColumn() are, in order, the column name, the number of components,
the numeric type, and the contents specification. See GeomVertexFormat for a detailed

description of each of these parameters and their appropriate values. You may also supply an
optional fifth parameter, which specifies the byte offset within the row at which the column's
data begins; but normally you should omit this to indicate that the column's data immediately
follows the previous column’'s data.

Note that the column name should be an InternalName object, as returned by a call to
InternalName.make(). This is Panda's mechanism for tokenizing a string name, to allow for
fast name lookups during rendering. Other than this detail, the column name is really just an
arbitrary string.

It is your responsibility to ensure that all of the parameters passed to addColumn() are
appropriate for the column you are defining. The column data will be stored exactly as you
specify. When rendering, Panda will attempt to convert the column data as it is stored to
whatever format your graphics APl (e.g. OpenGL or DirectX) expects to receive.

For instance, to define a vertex format that includes a vertex position and a (U, V) texture
coordinate:

array = GeonVertexArrayFormat ()
array. addCol um(I nt er nal Nane. make(' vertex'), 3,
Geom NTFl oat 32, Geom CPoi nt)
array. addCol um(I nt er nal Nanme. make(' t excoord'),
2y
Geom NTFl oat 32, Geom CTexcoor d)

Once you have defined the columns of your array, you should create a GeomVertexFormat to
hold the array:

filel///E/manual/Defining_your_own_GeomV ertexFormat.1.html (1 of 2)2006/11/21 nUsE 06:02:03

Panda3D Manual

format = GeonVert exFor mat ()
format . addArray(array)

If you want your format to consist of multiple different arrays, you can create additional arrays
and add them at this point as well.

Finally, before you can use your new format, you must register it. Registering a format builds
up the internal tables necessary to use the vertex format for rendering. However, once you
have registered a format, you can no longer add or remove columns, or modify it in any way;

if you want to make changes to the format after this point, you'll have to start over with a new
GeomVertexFormat object.

format = GeonVert exFormat.regi st er For mat (f or mat)

You should always register a format with a syntax similar to the above: that is, you should use
the return value of registerFormat as your new, registered format object, and discard the
original format object. (The returned format object may be the same format object you started
with, or it may be a different object with an equivalent meaning. Either way, the format object
you started with should be discarded.)

<<prev top next>>

| -

file:///E|/manual/Defining_your_own GeomV ertexFormat.1.html (2 of 2)2006/11/21 aUsE 06:02:03

Panda3D Manual

Panda3D Manual: Pre-defined vertex formats

<<prev top next=>>=> Search

Panda3D pre-defines a handful of standard GeomVertexFormat objects that might be useful to

you. If you don't have any special format needs, feel free to use any of these standard
formats, which have already been defined and registered, and are ready to use for rendering.

Each of these formats includes one or more of the standard columns vertex, normal, color,
and/or texcoord. For the formats that include a color column, there are two choices, since
OpenGL and DirectX have competing internal formats for color (but you can use either form
regardless of your current rendering API; Panda will automatically convert the format at
render time if necessary).

color, 4-
vertex normal component Elfel, LI texcoord
Standard format X, Y,2) (XY, 2) RGBA (DirSCCiEAs\,t le) u, V)
(OpenGL style) Y
GeomVertexFormat. O
getv3()
GeomVertexFormat. 0 [
getv3n3()
GeomVertexFormat. O O
getVv3t2()
GeomVertexFormat. O 0 O
getvV3n3t2()
GeomVertexFormat. 0 0
getV3c4()
GeomVertexFormat. 0 0 0
getv3c4n3()
GeomVertexFormat. O 0 O
getvV3cat2()
GeomVertexFormat.
getV3c4n3t2() 5 . - .
GeomVertexFormat. 0 0
getV3cp()
GeomVertexFormat. O 0 0
getV3cpn3()
GeomVertexFormat. O 0 O
getV3cpt2()
GeomVertexFormat.
getV3cpn3t2() 5 H - -

<<prev top next>> Search

file:///E|/manual/Pre-defined_vertex_formats.1.ntml2006/11/21 sUcE 06:02:03

Panda3D Manual

Panda3D Manual: Creating and filling a GeomVertexData

<<prev top next>> Search

Once you have a GeomVertexFormat, registered and ready to use, you can use it to create a
GeomVertexData.

vdat a = CGeonVertexData(' nane', format, Geom UHStati c)

The first parameter to the GeomVertexData constructor is the name of the data, which is any
arbitrary name you like. This name is mainly for documentation purposes; it may help you
identify this vertex data later. You can leave it empty if you like.

The second parameter is the GeomVertexFormat to use for this GeomVertexData. The format

specifies the number of arrays that will be created for the data, the names and formats of the
columns in each array, and the number of bytes that need to be allocated for each row.

The third parameter is a usage hint, which tells Panda how often (if ever) you expect to be
modifying these vertices, once you have filled them in the first time. If you will be filling in the
vertices once (or only once in a while) and using them to render many frames without
changing them, you should use Geom.UHStatic. The vast majority of vertex datas are of this
form. Even GeomVertexDatas that include vertex animation tables should usually be declared
Geom.UHStatic, since the vertex data itself will not be changing (even though the vertices
might be animating).

However, occasionally you might create a GeomVertexData whose vertices you intend to
adjust in-place every frame, or every few frames; in this case, you can specify Geom.
UHDynamic, to tell Panda not to make too much effort to cache the vertex data. This is just a
performance hint; you're not required to adhere to the usage you specify, though you may get
better render performance if you do.

If you are unsure about this third parameter, you should probably use Geom.UHStatic.

Now that you have created a GeomVertexData, you should create a number of
GeomVertexWriters, one for each column, to fill in the data.

vertex = GeonVertexWiter(vdata, 'vertex')
normal = GeomVertexWiter(vdata, 'normal')
color = GeonVertexWiter(vdata, 'color')
texcoord = GeonVertexWiter(vdata, 'texcoord')

It is your responsibility to know which columns exist in the GeomVertexFormat you have used.
It is legal to create a GeomVertexWriter for a column that doesn't exist, but it will be an error
if you later attempt to use it to add data.

file///E|/manual/Creating_and_filling_a_GeomV ertexData.1.html (1 of 2)2006/11/21 aUnE 06:02:04

Panda3D Manual

To add data, you can now iterate through your vertices and call one of the addData methods
on each GeomVertexWriter.

vert ex. addDat a3f (1, 0, 0)
nor mal . addDat a3f (0, 0, 1)
col or. addDat a4f (0, 0, 1, 1)
t excoor d. addDat a2f (1, 0)

vert ex. addDat a3f (1, 1, 0)
nor mal . addDat a3f (0, 0, 1)
col or. addDat a4f (0, 0, 1, 1)
t excoor d. addDat a2f (1, 1)

vert ex. addDat a3f (0, 1, 0)
nor mal . addDat a3f (0, 0, 1)
col or. addDat a4f (0, 0, 1, 1)
t excoor d. addDat a2f (0, 1)

vert ex. addDat a3f (0, 0, O0)
nor mal . addDat a3f (0, 0, 1)
col or. addDat a4f (0, 0, 1, 1)
t excoor d. addDat a2f (0, 0)

Each call to addData() adds a new row (vertex) to the vertex data, if there is not already one
there. The above sample code creates the following data table:

vertex normal color texcoord
l(1,0,0) |[[0,0,1) [|(0,0,1,1) [z, 0)
l(1,1,0 |[0,0,1) [|(0,0,1,1) [, D)
[(0,1,0) |[0,0,1) [|(0,0,1,1) [0, D)
[(0,0,0) |[(0,0,1) [|(0,0,1,1) [0, 0)

w N Fk O

Note that there is no relationship between the different GeomVertexWriters, other than the
fact that they are operating on the same table. Each GeomVertexWriter maintains its own
counter of its current row. This means you must fill in the data for every row of each column,
even if you don't care about writing the data for some particular column on certain rows. For
instance, even if you want to allow the default color for vertex 1 and 2, you must still call color.
addData4f() four times, in order to fill in the color value for vertex 3.

filel///E|/manual/Creating_and_filling_a_GeomV ertexData.1.html (2 of 2)2006/11/21 aUcE 06:02:04

Panda3D Manual

Panda3D Manual: Creating the GeomPrimitive objects

<<prev top next>> Search

Now that you have a GeomVertexData with a set of vertices, you can create one or more
GeomPrimitive objects that use the vertices in your GeomVertexData.

In general, you do this by first creating a GeomPrimitive of the appropriate type, and then
calling addVertex() for each vertex in your primitive, followed by closePrimitive() after each
primitive is complete.

Different GeomPrimitive types have different requirements for the number of vertices per
primitive. For instance, for a GeomTriangles object, whose primitive type (triangle) has exactly
three vertices each, you should call addVertex() three times, followed by closePrimitive() after
every three vertices. For a GeomTristrips object, whose primitive type (triangle strip) may
have three or more vertices, you should call addVertex() once for each vertex in your triangle
strip, followed by closePrimitive() to mark the end of the triangle strip. Then you can begin
adding vertices for the second triangle strip in the primitive, and so on.

For example:

prim= Ceonilri angl es(Geom UHSt ati c)

pri m addVert ex(0)
pri m addVert ex(1)
pri m addVert ex(2)
primclosePrimtive()
pri m addVert ex(2)
pri m addVert ex(1)
pri m addVert ex(3)
primclosePrimtive()
pri m addVert ex(0)
pri m addVert ex(5)
pri m addVert ex(6)
primclosePrimtive()

Note that the GeomPrimitive constructor requires one parameter, which is a usage hint, similar
to the usage hint required for the GeomVertexData constructor. Like that usage hint, this tells

Panda whether you will frequently adjust the vertex indices on this primitive after it has been
created. Since it is very unusual to adjust the vertex indices on a primitive (usually, if you
intend to animate the vertices, you would operate on the vertices, not these indices), this is
almost always Geom.UHStatic, even if the primitive is associated with a dynamic
GeomVertexData. However, there may be special rendering effects in which you actually do
manipulate this vertex index table in-place every few frames, in which case you should use
Geom.UHDynamic. As with the GeomVertexData, this is only a performance hint; you're not
required to adhere to the usage you specify.

filel///E|/manual/Creating_the_GeomPrimitive_objects.1.html (1 of 3)2006/11/21 aUcE 06:02:06

Panda3D Manual

If you are unsure about this parameter, you should use Geom.UHStatic.

The above sample code defines a GeomTriangles object that looks like this:

The actual positions of the vertices depends on the values of the vertices numbered O, 1, 2, 3,
and 5 in the associated GeomVertexData (you will associate your GeomPrimitives with a

GeomVertexData in the next step, when you attach the GeomPrimitives to a Geom).

Finally, there are a few handy shortcuts for adding multiple vertices at once:

prim.addVertices(vl, v2)
prim.addVertices(vl, v2, v3) Adds 2, 3, or 4 vertices in a single call.
prim.addVertices(vl, v2, v3, v4)

Adds numVertices consecutive vertices,

prim.addConsecutiveVertices(start, beginning at vertex start. For instance,
numVertices) addConsecutiveVertices(5, 3) adds vertices 5,
6, 7.

Adds numVertices consecutive vertices,
beginning with the next vertex after the last
vertex you added, or beginning at vertex O if

prim.addNextVertices(numVertices) these are the first vertices. For instance, prim.
addVertex(10) adds vertex 10. If you
immediately call prim.addNextVertices(4), it
adds vertices 11, 12, 13, 14.

None of the above shortcut methods calls closePrimitive() for you; it is still your responsibility
to call closePrimitive() each time you add the appropriate number of vertices.

filel///E|/manual/Creating_the_GeomPrimitive_objects.1.html (2 of 3)2006/11/21 aUcE 06:02:06

Panda3D Manual

]
<<prev top next=>= - I

-

file:///E|/manual/Creating_the_GeomPrimitive_objects.1.html (3 of 3)2006/11/21 aUcE 06:02:06

Panda3D Manual

Panda3D Manual: Putting your new geometry in the scene graph

<<prev top next>> Search

Finally, now that you have a GeomVertexData and one or more GeomPrimitive objects, you
can create a Geom object and a GeomNode to put the new geometry in the scene graph, so
that it will be rendered.

geom = Geomn(vdat a)
geom addPrimtive(prim

node = GeonmNode(' gnode')
node. addGeon(geom)

nodePat h = render. att achNewNode(node)

The Geom constructor requires a pointer to the GeomVertexData object you will be using.
There is only one GeomVertexData associated with any particular Geom. You can reset the
Geom to use a different GeomVertexData later, if you like, by calling geom.setVertexData().

The GeomNode constructor requires a name, which is the name of the node and will be visible
in the scene graph. It can be any name you like that means something to you.

In the above example, we have created only one Geom, and added only one GeomPrimitive to
the Geom. This is the most common case when you are creating geometry at runtime,
although in fact a GeomNode may include multiple Geoms, and each Geom may include
multiple GeomPrimitives. (However, all of the primitives added to a Geom must have the same
fundamental primitive type: triangles, lines, or points. You can add GeomTriangles and
GeomTristrips to the same Geom, or you can add GeomLines and GeomLinestrips, but if you
have GeomTriangles and GeomLinestrips, you must use two different Geoms.)

It is important that the range of vertex index numbers used by your GeomPrimitives is
consistent with the number of vertices in your GeomVertexData (for instance, if you have 100
vertices in your GeomVertexData, your GeomPrimitives must only reference vertices
numbered O through 99). If this is not the case, you will get an exception when you call
addPrimitive().

<<prev top next>> Search

file:///E|/manual/Putting_your_new_geometry_in_the scene_graph.1.htm|2006/11/21 aUsE 06:02:07

Panda3D Manual

Panda3D Manual: Other Vertex and Model Manipulation

<<prev top next>> Search

This section shows some other ways to manipulate low-level geometry and vertex information,
including dynamically creating other kinds of Panda3D objects like Textures.

<<prev top next>> Search

file///E/manual/Other_Vertex_and_Model_Manipulation.1.html2006/11/21 aUcE 06:02:07

Panda3D Manual

Panda3D Manual: Reading existing geometry data

<<prev top next>> Search

You can fairly easily extract and examine or operate on the vertices for an existing model,
although you should be aware that the order in which the vertices appear in a model is
undefined. There is no correlation between the order in which vertices are listed in an egg file,
and the order in which they will appear in the resulting loaded model. Panda may rearrange
the vertices, or even add or remove vertices, as needed to optimize the model for rendering
performance. Even from one session to the next, the vertices might come out in a different
order.

This does make certain kinds of vertex operations difficult; if you plan to write code that
expects to encounter the vertices of a model in a particular order, we recommend you build up
those vertices yourself using a GeomVertexWriter (as described in Creating and filling a

GeomVertexData), so that you have explicit control over the vertex order.

However, if you have no need to operate on the vertices in any particular order, or if you just
want to casually browse the vertices in a model, feel free to use the following instructions to
read the data.

When you load a model, you have a handle to the root node of the model, which is usually a
ModelRoot node. The geometry itself will be stored in a series of GeomNodes, which will be

children of the root node. In order to examine the vertex data, you must visit the GeomNodes
in the model. One way to do this is to walk through all the GeomNodes like this:

geonNodeCol | ection = nodel . fi ndAl | Mat ches("' **/ +GeonNode')
for nodePat h in geomNodeCol | ection. asList():

geonNode = nodePat h. node()

pr ocessCGeonNode(geomNode)

Once you have a particular GeomNode, you must walk through the list of Geoms stored on

that node. Each Geom also has an associated RenderState, which controls the visible
appearance of that Geom (e.g. texture, backfacing, etc.).

def processCGeonNode(geomNode) :
for i in range(geonNode. get NumGeons()):
geom = geonNode. get Geonti)
state = geomNode. get GeonfSt at e(i)
print geom
print state
pr ocessCGeon{ geomn

Note that geomNode.getGeom() is only appropriate if you will be reading, but not modifying,
the data. If you intend to modify the geom data in any way (including any nested data like
vertices or primitives), you should use geomNode.modifyGeom() instead.

file///E/manual/Reading_existing_geometry _data.1.ntml (1 of 3)2006/11/21 sUaE 06:02:08

Panda3D Manual

Each Geom has an associated GeomVertexData, and one or more GeomPrimitives. Some

GeomVertexData objects may be shared by more than one Geom, especially if you have used
flattenStrong() to optimize a model.

def processGeon(geom :

vdat a = geom get Vert exDat a()

print vdata

processVert exDat a(vdat a)

for i in range(geom get NunPrimtives()):
prim= geomgetPrimtive(i)
print prim
processPrimtive(prim vdata)

As above, getVertexData() is only appropriate if you will only be reading, but not modifying,
the vertex data. Similarly, getPrimitive() is appropriate only if you will not be modifying the
primitive index array. If you intend to modify either one, use modifyVertexData() or
modifyPrimitive(), respectively.

You can use the GeomVertexReader class to examine the vertex data. You should create a

GeomVertexReader for each column of the data you intend to read. It is up to you to ensure
that a given column exists in the vertex data before you attempt to read it (you can use vdata.
hasColumn() to test this).

def processVert exDat a(vdat a) :
vertex = GeonVert exReader (vdata, 'vertex')
texcoord = GeonVert exReader (vdata, 'texcoord')
whil e not vertex.isAtEnd():
v = vertex. get Dat a3f ()
t = texcoord. get Dat a2f ()
print "v = 9%, t = %" % (repr(v), repr(t))

Each GeomPrimitive may be any of a handful of different classes, according to the primitive
type it is; but all GeomPrimitive classes have the same common interface to walk through the
list of vertices referenced by the primitives stored within the class.

You can use the setRow() method of GeomVertexReader to set the reader to a particular
vertex. This affects the next call to getData(). In this way, you can extract the vertex data for
the vertices in the order that the primitive references them (instead of in order from the
beginning to the end of the vertex table, as above).

file///E/manual/Reading_existing_geometry _data.1.html (2 of 3)2006/11/21 sUaE 06:02:08

Panda3D Manual

def processPrinmitive(prim vdata):
vertex = GeomVert exReader (vdata, 'vertex')

prim = prim deconpose()

primgetPrimtiveStart(p)
primgetPrimtiveEnd(p)
for i in range(s, e):
vi = primgetVertex(i)
vert ex. set Row Vi)
v = vertex. get Dat a3f ()
print "prim% has vertex %: %" % (p, vi, repr(v))
pri nt

p in range(primgetNunPrinmitives()):

You may find the call to prim.decompose() useful (as shown in the above example). This call
automatically decomposes higher-order primitive types, like GeomTristrips and GeomTrifans,
into the equivalent component primitive types, like GeomTriangles; but when called on a
GeomTriangles, it returns the GeomTriangles object unchanged. Similarly, GeomLinestrips will
be decomposed into GeomLines. This way you can write code that doesn't have to know
anything about GeomTristrips and GeomTrifans, which are fairly complex; it can assume it will
only get the much simpler GeomTriangles (or, in the case of lines or points, GeomLines and
GeomPoints, respectively).

<<prev top next>>

file:///E/manual/Reading_existing_geometry_data.1.html (3 of 3)2006/11/21 aUsE 06:02:08

Panda3D Manual

Panda3D Manual: Modifying existing geometry data

<<prev top next>> Search

If you want to load a model and operate on its vertices, you can walk through the vertices as
shown in the previous section, but you should substitute modifyGeom(), modifyVertexData(),
and modifyPrimitive() for getGeom(), getVertexData(), and getPrimitive(), respectively. These
calls ensure that, in case the data happens to be shared between multiple different
GeomNodes, you will get your own unique copy to modify, without inadvertently affecting
other nodes.

If you want to modify the vertex data, you have two choices. The simplest option is to create a
new GeomVertexData and fill it up with your new vertex data (as described in Creating and

filling a GeomVertexData), and then assigning this data to the geom with the call geom.

setVertexData(). You must ensure that you add enough vertices to the new GeomVertexData
to satisfy the GeomPrimitives that reference it.

Your second choice is to modify the vertex data in-place, by operating on the existing vertices.
You can do this with a GeomVertexWriter. For instance, if you want to copy the (X, Y) position

of each vertex to its (U, V) texture coordinate, you could do something like this:

texcoord = GeonVertexWiter(vdata, 'texcoord')
vertex = GeonVert exReader (vdata, 'vertex')

whil e not vertex.isAtEnd():
v = vertex. get Dat a3f ()
texcoord. set Dat a2f (v[0], v[1])

Important! When you are simultaneously reading from and writing to the same
GeomVertexData object, you should create all of the GeomVertexWriters you need before
you create any GeomVertexReader. This is because of Panda's internal referencing-
counting mechanism; creating a GeomVertexWriter may automatically (and
transparently) force a copy of the data in the GeomVertexData, which could invalidate
any GeomVertexReaders you have already created.

Writing to a column with a GeomVertexWriter does require that the GeomVertexData's format
already has the appropriate columns to handle the data you are writing (in the above example,
for instance, the format must already have a 'texcoord' column, or the above code will fail).
Furthermore, the columns must have the appropriate format. For instance, if you wanted to
upgrade a model's texture coordinates from 2-D texture coordinates to 3-D texture
coordinates, simply calling texcoord.setData3f(u, v, w) wouldn't change the fact that the
existing texcoord column is a 2-component format; you would just be trying to stuff a 3-
component value into a 2-component column.

If you want to add a new column to a GeomVertexData, or modify the format of an existing
column, you will have to create a new GeomVertexFormat that includes the new column (see

Defining your own GeomVertexFormat), and then change the format on the GeomVertexData
via vdata.setFormat(format). This call will internally adjust all of the data to match the new

filel///E/manual/Modifying_existing_geometry data.1.html (1 of 2)2006/11/21 aUcE 06:02:09

Panda3D Manual

format. (Because of this internal adjustment, it is important to do this before you create the
first GeomVertexWriter or GeomVertexReader.)

top next>>

file:///E/manual/Modifying_existing_geometry data.1.html (2 of 2)2006/11/21 aUcE 06:02:09

Panda3D Manual

Panda3D Manual: More about GeomVertexReader, GeomVertexWriter, and
GeomVertexRewriter

<<prev top next>>

The classes GeomVertexReader and GeomVertexWriter together represent the core
interface for reading and writing the numeric data stored within a GeomVertexData object.

These two classes work similarly. Both are designed to get a temporary pointer to the data for
a particular column when they are constructed, and they increment that pointer as you walk
through the vertices. Initially, they start at row number O (the first vertex in the table), and
after each setData/getData operation, they automatically increment to the next row (the next
vertex).

You construct a GeomVertexReader or GeomVertexWriter with a pointer to the
GeomVertexData object you are operating on, and the name of the column you wish to

process, €e.g.:

col or = GeonVertexReader (vdata, 'color')

Because the GeomVertexReader and GeomVertexWriter classes only store a temporary
pointer, which might become invalid between frames or even between different tasks within a
frame, these objects should not be stored in any persistent object. Instead, they are desighed
to be temporary objects that are constructed locally, used immediately to iterate through a list
of vertices, and then released. If you need to keep a persistent iterator for your vertex data,
to be used over a long period of time (e.g. over several frames), then you should store just
the GeomVertexData pointer (along with the current vertex index number if you require this),
and construct a temporary GeomVertexReader/Writer each time you need to access it.

The following methods are available to read and write data in a column:

GeomVertexReader GeomVertexWriter

setDatalf(x)
addDatalf(x)

setData2f(x, y)
setData2f(v2)
addData2f(x, y)
addData2f(v2)

setData3f(x, vy, z)
setData3f(v3)
addData3f(x, vy, z)
addData3f(v3)

setData4f(x, y, z, w)
setData4f(v4)
addData4f(x, y, z, w)
addData4f(v4)

X = getDatalf()

v2 = getData2f()

v3 = getData3f()

v4 = getData4f()

file///E/manual/More_about_GeomVertexReader, GeomV ertexWriter,_and_GeomV ertexRewriter.1.ntml (1 of 3)2006/11/21 aUcE 06:02:10

Panda3D Manual

setDatali(x)
addDatali(x)

setData2i(x, y)
addDatazi(x, y)

setData3i(x, vy, 2)
addData3i(x, Y, z)

setData4i(x, y, z, w)
addData4i(x, y, z, w)

X = getDatali()

Each of the getData family of functions supported by GeomVertexReader returns the value of
the data in the current column, converted to the requested type. The 'f' suffix indicates a
floating-point value, while 'i* indicates an integer value; the digit indicates the number of
components you expect to receive.

For instance, getData2f() always returns a VBase2, regardless of the type of data actually
stored in the column. If the column contains a 2-component value such as a 2-D texture
coordinate, then the returned value will represent the (U, V) value in that column. However, if
the column type does not match the requested type, a conversion is quietly made; for
instance, if you call getData2f() but the column actually contains a 3-D texture coordinate, the
third component will be omitted from the return value, which will still be a VBaseZ2.

Similarly, the setData and addData family of functions supported by GeomVertexWriter accept
a value in the indicated format, and convert it to whatever format is required by the column.
So if you call setData3f(), and the column has three components, you will set all three
components with the x, y, z parameters of setData3f(); but if the column has only two
components, only the x, y parameters will be used to set those two components, and the third
parameter will be ignored.

Certain kinds of numeric conversions are performed automatically, according to the column's
designated contents. For instance, if you store a floating-point value into an integer column,
the fractional part of the value is usually truncated. However, if the column contents indicates
that it represents a color value, then the floating-point value is automatically scaled from the
range 0.0 .. 1.0 into the full numeric range of the column's integer value. This allows you to
store color components in the range 0.0 .. 1.0, and get the expected result (that is, the value
is scaled into the range O .. 255). A similar conversion happens when data is read.

There are no getDataZ2i, 3i, or 4i methods available, simply because Panda does not currently
define a multi-component integer value that can be returned to Python. Since most multi-
component column types are floating-point, or can be expressed as floating-point, this is not
generally a limitation.

Each GeomVertexReader keeps track of the current read row, which is initially O; the current
value can be retrieved by getReadRow(). Each call to a getData function returns the value of
the column at the current read row, and then increments the current read row. It is an error to
call getData when the read row has reached the end of the data, but you can call isAtEnd(),
which returns true when the reader has reached the end. Thus, you can iterate through all the
rows of a vertex table by repeatedly calling getData until isAtEnd() returns true.

Similarly, each GeomVertexWriter keeps track of the current write row, which is initially O, and
can be retrieved by getWriteRow(). Each call to setData or addData stores the given value in

file///E/manual/More_about_GeomVertexReader, GeomV ertexWriter,_and_GeomV ertexRewriter.1.ntml (2 of 3)2006/11/21 aUcE 06:02:10

Panda3D Manual

the current write row, and then increments the current write row. It is an error to call setData
when the write row has reached the end of the data; but as with the GeomVertexReader, you
can call isAteEnd() to determine when you have reached the end of the data.

The addData family of functions work exactly like the setData functions, except that addData
can be called when the GeomVertexWriter has reached its end. In this case, addData will add a
new row to the table, and then fill in the specified data in that row (and then increment the
current write row). If addData is called when the current write row already exists, it behaves
exactly the same as setData.

With either GeomVertexReader or GeomVertexWriter, you can set the current read or write
row at any time with the call setRow(). This sets the current read row (GeomVertexReader) or
current write row (GeomVertexWriter) to the indicated value; the next call to getData or
setData/addData will then operate on the specified row, and increment from there.

GeomVertexRewriter

The GeomVertexRewriter class exists as a convenience for code that needs to alternately read
and write the data on a column. GeomVertexRewriter multiply inherits from
GeomVertexReader and GeomVertexWriter, so it supports the getData family of functions, as
well as the setData and addData family of functions. It also has both a current read row and a
current write row, which might be different.

Normally, you would use a GeomVertexRewriter to walk through the list of vertices from the
beginning to end, reading and writing as it goes. For instance, to set all of the Z components
of a piece of geometry to 0.0, while preserving the X and Y components, you might write a
loop such as:

vertex = GeonVertexRewiter(vdata, 'vertex')
whil e not vertex.isAtEnd():

v = vertex. get Dat a3f ()

vertex. set Data3f (v[0], v[1], 0.0)

Note that this example code calls getData3f() and setData3f() exactly once through each
iteration, which increments the current read row and current write row, respectively; so the
current read row and current write row are kept in sync with each other.

Important! When you are simultaneously reading from and writing to the same
GeomVertexData object, you should create all of the GeomVertexWriters and
GeomVertexRewriters you need before you create any GeomVertexReader. This is
because of Panda's internal referencing-counting mechanism; creating a
GeomVertexWriter may automatically (and transparently) force a copy of the data in the
GeomVertexData, which could invalidate any GeomVertexReaders you have already
created.

<<prev top next=>> Search

file///E/manual/More_about_GeomVertexReader, GeomV ertexWriter,_and_GeomV ertexRewriter.1.ntml (3 of 3)2006/11/21 aUcE 06:02:10

Panda3D Manual

Panda3D Manual: Creating New Textures from Scratch

<<prev top next>> Search

Creating Texture

The PNMIMage Class

This class is how Panda3D handles regular images (.gif, .jpg, and the like). This class allows
you to manipulate individual pixels of the image. You can load existing images using the
function read(fil eNanme) where fil enane is the path to the image file (in Panda Filename

Syntax) wrapped in a Fi | enane object. Or, you can create a brand new image from scratch,
by passing the X, y size to the constructor.

ny| mage=PNM mage()

nyl mage. read(Fi | enane("t est | ng.
gif"))

nyEnpt yl mage = PNM nage(256, 256)

You can get the size of the image you have read using the get XSi ze() and get YSi ze()

functions. Although you cannot change the size of an image directly, you can rescale an image
by filtering it into a larger or smaller PNMImage:

full Si ze=PNM nmage(Fi | enane("test | ng.
gif"))

reduced=PNM mage(256, 256)

reduced. gaussi anFilterFron(1.0, full Size)

You can get individual RGB values using the get Red(x,y), getGeen(x,y), getBlue(x,y) or
get RedVal (x,y), getGeenVal (x,y), getBlueVal (x,y) where x and y tell what pixel to
look at (lower-left is 0,0 upper right is get XSi ze() -1, getYSi ze() -1 The difference between
these functions is that the get *Val functions return a number between 0 and 1 while the get *

functions retrun their value as an integer. For example, if your image uses 8-bit color calling
get G eenVal on a green pixel will return 255 and calling get G een will return 1. You can also

get all the RGB information at the sametime using get Xel (x,y) and get Xel Val (x,y) which
return a 3 component vector with red in the x, green in the y, and blue in the z.

file:///E|/manual/Creating_New_Textures from_Scratch.1.html (1 of 3)2006/11/21 aUxE 06:02:11

Panda3D Manual

#the pixel at 0,0 is red and we're using 8-bit
col or
myl mage. get RedVel (0, 0) #returns 255
nmyl mage. get Red(0, O) #returns 1

col or s=nyl mage. get Xel Val (0, 0) #returns (255,0,0)
col or Val =nyl mage. get Xel (0, 0) #returns (1,0,0)

The functions for setting pixel information are set Red(x, y, val ue), setGeen(x,y, value),
set Bl ue(x,y, value) or setRedVal (Xx,y, value), setGeenVal (x,y, value), setBlueVal
(x,y, val ue). Theres still the same dichotomy as above when it comes to regular sets and
using setvals. You can also use set Xel (X, Yy, col or Vec) and set Xel Val (x,y, colorVec). You
can also fill an image with a color by using fill(r,g,b) andfill Val (r, g, b).

nyl mage. set GreenVal (0,0, 255) # if pixel (0,0) was red before, nowit is
yel | ow (255, 255, 0)
nyl mage. set Bl ue(0, 0, 1) #pixel (0,0) is now white

gray=Vec3(0.5,0.5,0.5)

#both of these set the origin to gray
nyl mage. set Xel Val (0, O, gr ay* 255)
nyl mage. set Xel (0, 0, gray)

#makes every pi xel red
nyl mage. fill Val (255, 0, 0)
#makes every pixel green
nyl mage.fill (0, 1, 0)

There are also gets and sets for the alpha channel using the same interface as above.
However, if you use them on an image that doesn't have an alpha channel you will cause a
crash. To see if an image has an alpha channel use hasAl pha() which returns True if there is

an alpha channel and False otherwise. You can add an alpha channel using addAl pha() . You
can also remove it using r enoveAl pha() .

You can also make an image grayscale by using nekeG ayscal e() . You can now use sets and
gets for Gray too. Using get G- ay* on a color image just returns the value in the blue channel.

If you want to get the grayscale value of a pixel regardless of whether the image is a grayscale
or a color image, you can use get Bri ght (x, y), which works equally well on color or on

grayscale images. If you want to weight the colors use get Bri ght(x,y, r, g, b) wherer,g,b
are the weights for their respective channels.

There are several other useful functions in the class this the APl Reference for more
information.

Getting the Image of a Texture

filel///E/manual/Creating_New_Textures from_Scratch.1.html (2 of 3)2006/11/21 oUsE 06:02:11

Panda3D Manual

The Panda Text ur e class does not allow for pixel manipulation. However the PNM mage class
below does. Therefore, if you want to change the image in a Text ur e object you must call its
st ore(myl mage) which saves the image of the texture into nyl nage.

myl mage=PNM nage()
myText ur e=l oader .| oadText ure(" myTex. | pg")

#after this call, nylnmage now hol ds the sanme i mage as the

texture
myText ur e. st or e(nyl mage)

Loading a PNMImage Into a Texture

Once you have changed all the data in the image you can now load it into a texture using the
Text ur e objects | oad(nyl nage) function, where nyl nage is the PNMImage to make the

texture from.

#assune we al ready have nyl mage which is our nodified
PNM mage
myText ur e=Text ur e()

#Thi s texture now represents nyl nage
nmyText ure. | oad(myl mage)

Remember however, that most graphics cards require that the dimensions of texture have to
be a power of two. PNM mage does not have this restriction and Panda will not automatically

scale the image when you put it into a texture.

<<prev top next=>= - I

file:///E|/manual/Creating_New_Textures from_Scratch.1.html (3 of 3)2006/11/21 aUxE 06:02:11

Panda3D Manual

Panda3D Manual: Writing 3D Models out to Disk

<<prev top next>> Search

Panda has two native file formats for models.

Egg files (with the extension . egg) are written in an ASCII human readable format. The egg

format is designed to be easy to read and modify if necessary, and easy to write a convert into
from another third-party format. Also, the egg format is intended to be backward-compatible
from all future versions of Panda3D, so if you have an egg file that Panda can load now, it
should always be able to load that file. (Well, we can't really make guarantees, but this is what
we shoot for.) See Parsing and Generating Egg Files for more information about the egg

format.
BAM Files

Because of the way the egg syntax is designed, an egg file might be very large, sometimes
many times larger than the file it was converted from. It can also sometimes take several
seconds for Panda to load a large egg file.

Bam files (with the extension . bam), on the other hand, are binary files that are closely tied to

a particular version of Panda3D. The bam format is designed to be as similar as possible to the
actual Panda data structures, so that a bam file is relatively small and can be loaded very
quickly. However, you should not consider the bam file format to be a good long-term storage
format for your models, since a future version of Panda3D may not be able to load bam files
from older versions.

You can always convert egg files to bam files using the program egg2bam. For many simple
models, it is also possible to convert back again with the program bam2egg, but you should

not rely on this, since it does not convert advanced features like animation; and some
structure of the original egg file may be lost in the conversion.

You can load files of these formats, as well as any other supported format, using the loader.
loadModel interface. Any file types other than . bamor . egg will be automatically converted at
runtime, exactly as if you had run the appropriate command-line conversion tool first.

The Bam Interface

The easiest way to save geometry is to use to call witeBanFil e(fil enane) from the
NodePath that contains your geometry.

filel///Efmanual/Writing_3D_Models out_to_Disk.1.html (1 of 3)2006/11/21 aUcE 06:02:11

Panda3D Manual
myPanda=| oader . | oadMVbdel (" panda")

#do sone fancy cal culations on the normals, or texture coordinates that you dont
#want to do at runtine

#Save your new custom Panda
myPanda. wri t eBantFi | e(" cust onPanda. bam')

The Egg Interface

One easy way to create . egg file for geometry that has already been made is to create a . bam

file and use bam2egg. However, you will often want to use the egg interface to create
geometry in the first place; this is usually the easiest way to create geometry in Panda3D.

The complete documentation for using the egg interfaces has yet to be written, but the egg
library is really quite simple to use. The basic idea is that you create an EggData, and an
EggVertexPool to hold your vertices; and then you can create a series of EggVertex and
EggPolygon objects. If you want to create some structure in your egg file, you can create one
or more EggGroups to separate the polygons into different groups. Here is an example:

def makeWedge(angl eDegrees = 360, nunfSteps = 16):
data = EggDat a()

vp = EggVertexPool ('fan')
dat a. addChi | d(vp)

poly = EggPol ygon()
dat a. addChi | d(pol y)

v = EggVertex()
v. set Pos(Poi nt3D(0, 0, 0))
pol y. addVert ex(vp. addVert ex(Vv))

angl eRadi ans = deg2Rad(angl eDegr ees)

for i in range(nuntSteps + 1):
a = angl eRadians * i / nunfteps
y = math. sin(a)
X = mat h. cos(a)
v = EggVertex()

v. set Pos(Poi nt 3D(x, 0, y))
pol y. addVert ex(vp. addVert ex(Vv))

To wite the egg file to disk, use this:
data. writeEgg(Fil enane("wedge. egg"))

To load the egg file and render it imedi ately, use this:

node = | oadEggDat a(dat a)
return NodePat h(node)

filel///Efmanual/Writing_3D_Models_out_to_Disk.1.html (2 of 3)2006/11/21 aUcE 06:02:11

Panda3D Manual

See the generated APl documentation for more complete information about the egg library.

<<prev top next=>>

-

file:///E|/manual/Writing_3D_Models out_to_Disk.1.html (3 of 3)2006/11/21 aUnE 06:02:11

Panda3D Manual

Panda3D Manual: Generating Heightfield Terrain

<<prev top next>> Search

WRITE ME: this section will tell how to implement a patch-based LOD heightfield terrain.

<<prev top next=>> Search

filel///E|/manual/Generating_Heightfield_Terrain.1.html2006/11/21 sUcE 06:02:12

Panda3D Manual

Panda3D Manual: Panda Rendering Process

<<prev top next>> Search

The rendering process in Panda is comprised by four classes and their interactions:
GraphicsPipe, GraphicsEngine, GraphicsStateGaurdian, and GraphicsOutput. The following
sections will explain the purpose of each of these classes in detail.

Note that the following interfaces are for the advanced user only. If you are writing a simple
application that only needs to open a window and perform basic 3-D rendering, there is no
need to use any of these interfaces, as the appropriate calls to open a default window are
made automatically when you i nport direct. directbase. DirectStart at the start of your

application.

<<prev top next>> Search

filel///E/manual/Panda_Rendering_Process.1.html2006/11/21 sUsE 06:02:12

Panda3D Manual

Panda3D Manual: The Graphics Pipe

<<prev top next>> Search

The G aphi csPi pe class is Panda3D's interface to the available 3-D API's, for instance OpenGL

or DirectX. In order to create a window that renders using a particular API, you must have a
GraphicsPipe for that API.

Normally, there is one default graphics pipe created for you automatically when you import
DirectStart, accessible as base. pi pe. For most applications, there is no need to create any

additional graphics pipes.

There are two Config.prc variables that determine the graphics pipe or pipes that will be
available to an application:

load-display: this variable specifies the first choice for the graphics pipe. It names the type of
GraphicsPipe that should be attempted first, e.g. pandagl or pandadx8. If for some reason a
GraphicsPipe of this type cannot be created, for instance because of lack of driver support,
then Panda3D will fall back to the next variable:

aux-display: this variable can be repeated multiple times, and should list all of the available
GraphicsPipe implementations. If Panda3D is unable to open a pipe of the type named by load-
display, then it will walk through the list of pipes named by aux-display, in the order they
appear in the Config.prc file, and try them one at a time until one is successfully opened.

Note that the name specified to each of the above variables, e.g. pandagl, actually names a
Windows DLL or Unix shared-library file. Panda3D will put "lib" in front of the name and ".dlI"
or ".so" (according to the operating system) after the name, and then attempts to import that
library. This means that "load-display pandagl” really means to try to import the file
"libpandagl.dll”. The various display DLL's are written so that when they are successfully
imported, they will register support for the kind of GraphicsPipe they implement.

You can create additional graphics pipes, for instance to provide an in-game interface to switch
between OpenGL and DirectX rendering. The easiest way to do this is to call base.

makeAl | Pi pes() . Then you can walk through the list of GraphicsPipes in base. pi peLi st to see
all of the available GraphicsPipes available in particular environment.

When you walk through the GraphicsPipes in base.pipeList, you can call the following interface
methods on each one:

pi pe. i sVal i d() Eeturn; True if the pipe is available for rendering, False if it can't
e used.

pi pe. get Di spl aywW dt h() Returns the width of the desktop, or the maximum width of any
buffer for an offscreen-only GraphicsPipe.

pi pe. get Di spl ayHei ght () Returns the height of the desktop,'or 'Fhe maximum height of any
buffer for an offscreen-only GraphicsPipe.

pi pe. get | nt er f aceNane() Returns the name _of the API that this GraphicsPipe impements, e.
g. "OpenGL" or "DirectX8".

file///E/manual/The_Graphics_Pipe.1.html (1 of 2)2006/11/21 nUcE 06:02:13

Panda3D Manual

pi pe. get Type() Returns a unique TypeHandle object for each kind of pipe.

<<prev top next>>

[=

file:///E|/manual/The_Graphics Pipe.1.html (2 of 2)2006/11/21 sUsE 06:02:13

Panda3D Manual

Panda3D Manual: The Graphics Engine

<<prev top next>> Search

The graphics engine is the heart of the rendering process. The G aphi csEngi ne class is
ultimately responsible for all of the drawing and culling operations per frame.

Normally, there is no need to create a GraphicsEngine, as Panda3D will create one for you at
startup. This default GraphicsEngine is stored in base. gr aphi csEngi ne.

Note also that the following interfaces are strictly for the advanced user. Normally, if you want
to create a new window or an offscreen buffer for rendering, you would just use the base.

openW ndow() or wi ndow. nakeText ur eBuf f er () interfaces, which handle all of the details for
you automatically.

However, please continue reading if you want to understand in detail how Panda manages
windows and buffers, or if you have special needs that are not addressed by the above
convenience methods.

Rendering a frame

There is one key interface to rendering each frame of the graphics simulation:

</td>
base. gr aphi csEngi ne. r ender Fr ane

0

This method causes all open GraphicsWindows and GraphicsBuffers to render their contents for
the current frame.

In order for Panda3D to render anything, this method must be called once per frame.
Normally, this is done automatically by the task "igloop"”, which is created when you start
Panda.

Using a GraphicsEngine to create windows and buffers

In order to render in Panda3D, you need a GraphicsStateGuardian, and either a
GraphicsWindow (for rendering into a window) or a GraphicsBuffer (for rendering
offscreen). You cannot create or destroy these objects directly; instead, you must use
interfaces on the GraphicseEngine to create them.

Before you can create either of the above, you need to have a GraphicsPipe, which specifies

the particular graphics APl you want to use (e.g. OpenGL or DirectX). The default GraphicsPipe
specified in your Config.prc file has already been created at startup, and can be accessed by
base. pi pe.

file///E|/manual/The_Graphics_Engine.1.html (1 of 3)2006/11/21 oUcE 06:02:14

Panda3D Manual

Now that you have a GraphicsPipe and a GraphicsEngine, you can create a
GraphicsStateGuardian object. This object corresponds to a single graphics context on the
graphics API, e.g. a single OpenGL context. (The context owns all of the OpenGL or DirectX
objects like display lists, vertex buffers, and texture objects.) You need to have at least one
GraphicsStateGuardian before you can create a GraphicsWindow:

</td>

nmyGsg=base. gr aphi csEngi ne. mnakeGsg(base.
pi pe)

Now that you have a GraphicsStateGuardian, you can use it to create an onscreen
GraphicsWindow or an offscreen GraphicsBuffer:

</td>

base. gr aphi csEngi ne. makeW ndow(gsg, nhane, sort)
base. gr aphi cséngi ne. makeBuf f er (gsg, nane, sort, xSize, ySize,
want Text ur e)

gsg is the GraphicsStateGuardian, nane is an arbitrary name you want to assign to the window/
buffer, and sort is an integer that determines the order in which the windows/buffers will be
rendered.

The buffer specific arguments xSi ze and ySi ze decide the dimensions of the buffer, and
want Text ur e should be set to Tr ue if you want to retrieve a texture from this buffer later on.

You can also use gr aphi csEngi ne. makePar asi t e(host, nane, sort, xSi ze, ySi ze) , where host
is a GraphicsOutput object. It creates a buffer but it does not allocate room for itself. Instead

it renders to the framebuffer of host . It effectively has want Text ur e set to Tr ue so you can
retrieve a texture from it later on.

See The GraphicsOutput class and Graphics Buffers and Windows for more information.

nmyW ndow=base. gr aphi csEngi ne. makeW ndow(nyGsg, "Hello Wrld", 0)
nmyBuf f er =base. gr aphi csEngi ne. makeBuf fer (nyGsg, "H World", 0, 800, 600, True)
nmyPar asi t e=base. gr aphi csEngi ne. makeBuf f er (nyBuffer,"Ima | eech", 0, 800,
600)

Note: if you want the buffers to be visible add show buf f ers true to your configuration file.
This causes the buffers to be opened as windows instead, which is useful while debugging.

Sharing graphics contexts

file///E|/manual/The_Graphics_Engine.1.html (2 of 3)2006/11/21 oUcE 06:02:14

Panda3D Manual

It is possible to share the same GraphicsStateGuardian among multiple different
GraphicsWindows and/or GraphicsBuffers; if you do this, then the graphics context will be used
to render into each window one at a time. This is particularly useful if the different windows
will be rendering many of the same objects, since then the same texture objects and vertex
buffers can be shared between different windows.

It is also possible to use a different GraphicsStateGuardian for each different window. This
means that if a particular texture is to be rendered in each window, it will have to be loaded
into graphics memory twice, once in each context, which may be wasteful. However, there are
times when this may be what you want to do, for instance if you have multiple graphics cards
and you want to to render to both of them simultaneously. (Note that the actual support for
simultaneously rendering to multiple graphics cards is currently unfinished in Panda at the
time of this writing, but the APl has been designed with this future path in mind.)

Closing windows

To close a specific window or buffer you use r enoveW ndow(wi ndow) . To close all windows
removeAl | Wndows()

base. gr aphi csEngi ne. r emoveW ndow

(myW ndow)
base. gr aphi csEngi ne. renoveAl | W ndows ()

More about GraphicsEngine

Here is some other useful functionality of the G aphi csEngi ne class.

get Num ndows () Rejcurntc, the number of windows and buffers that this Gr aphi csEngi ne

object is managing.

i SEnpt y() Ee:furns True if this G aphi csEngi ne is not managing any windows or
uffers.

See API for advanced functionality of Gr aphi csEngi ne and Gr aphi csSt at eCGuar di an class.

<<prev top next>=> Search

file///E|/manual/The_Graphics_Engine.1.html (3 of 3)2006/11/21 aUcE 06:02:14

Panda3D Manual

Panda3D Manual: The GraphicsOutput class

<<prev top next>> -

Buffers and windows, encapsulated in the G aphi csBuf f er and G aphi csW ndow classes are almost
interchangable in Panda. In fact most operations in the G- aphi cEngi ne class are defined on and return
Gr aphi cCQut put objects, the class that both Graphi csBuf f er and G- aphi csW ndow inherit from.
Therefore, we will discuss the properties of G aphi cQut put objects first.

The first very important note is that none of these classes are not meant to be constructed directly, i.e.:

my Qut put =Gr aphi csCQut put
0
nyW ndow=G aphi csW ndow

0
nmyBuf f er =G aphi csBuf f er

0

will not work. Refer to The Graphics Engine for how to create these objects. Furthermore, since
G aphi csQut put is an abstract class, G aphi csW ndow objects will be used in code examples.

All Graphi csQut put objects have get Gsg(), get Pi pe(), and get Name() which return respectively their
GraphicsStateGuardian, GraphicsPipe, and name. You can also get the width and length using get XSi ze
() and get YSi ze() .

from pandac. PandaMbdul es i nport Graphi csW ndow

#assume we al ready have a wi ndow setup and in
myW ndow

myW ndowGsg=nmyW ndow. get Gsg()

myW ndowPi pe=nmyW ndow. get Pi pe()

myW ndowNane=nmyW ndow. get Nane()

my W ndowW dt h=nyW ndow. get XSi ze()
myW ndowLengt h=nyW ndow. get YSi ze()

You can also save a screenshot from any G aphi csQut put by using saveScr eenShot (fi | eNane) , where
fil eNanme is the name of the picture(the format of the picture is specified by the extension of fi | enane).
Returns Tr ue upon succes and Fal se otherwise. The picture is saved in the directory of the script you
are running.

from pandac. PandaMbdul es i nport Fil enane
myW ndow. saveScr eenShot (Fi | enanme(' hel | o.

brmp*))

This naturally flows into rendering into a texture. We'll start with copying a scene. If you want to get a
texture that simply copies whats in it G aphi csQut put object, you must first make a call to

file:///E|/manual/The_GraphicsOutput_class.1.html (1 of 3)2006/11/21 aUxE 06:02:15

Panda3D Manual

set upCopyText ure(). You can then get the texture by using get Text ure() . You can now apply the
texture to a NodePath as you would a texture loaded from memory. Thanks to the magic of pointers, the
texture automatically updates itself if the contents of its G aphi csCQut put change. If you do not want
this behaviour you should use det achText ure() when you no longer want the textute to be updated.
However, since the first frame is always blank, the best way to use det achText ure() is in a do-later
task or event.

</td>

nmy W ndow. set upCopy Text ur e()
my Text ur e=ny W ndow. get Text ure()

#assune myModel is al ready setup
myModel . set Text ur e(myText ur e)

#and if you want to stop the texture from updating
itself
def stopUpdating():
gl obal nmyW ndow
nmyW ndow. det achText ure()
taskMgr. doMet hodLat er (1, st opUpdati ng, ' stops updati ng')

While this is helpful, you may want to render an entirely new scene into a Gr aphi csQut put and then

place it on screen (i.e. you have a televsion in your main scene and want to generate the show on the
spot). The first thing you do is create a G aphi csQut put to hold the scene. You do this by calling

nmakeText ur eBuf f er . It makes a G aphi csQut put specifically for rendering a scene and then retrieving it
by get Texture().

makeText ur eBuf f er (name, xSi ze,
ySi ze)

The arguments nane, xSi ze, and ySi ze mean the same things they do for makeWindow and
makeBuffer.

You then have to create a new camera for the new scene, using
</td>

base. makeCanera(wi n, sort=0, scene=None, displayRegi on=(0,1,0,1), aspectRati o=None,
camNane="' cam)

Here's a break down of what the parameters mean:

Wi n The G aphi csQut put object that you want to make the camera for

S The sort value of the camera. Decides the order in which D spl ayRegi ons in the same
window are drawn. See API for more information.

scene Due to deprecation of other functions this parameter does not affect anything.

file:///E|/manual/The_GraphicsOutput_class.1.html (2 of 3)2006/11/21 aUxE 06:02:15

Panda3D Manual

The area of the new Graphi csQut put that you want to cover in the form (left start

di spl ayRegi on Point, right end point, bottom start point, top end point). (0,0) represent the bottom
left of the screen and (1,1) represents the top right. Therefore (0,1,0,1) represents the
entire area. Arguments must be between 0 and 1.

The aspectRatio of the Gr aphi csQut put . When this is left to None makeCaner a uses the
aspectRatio of the default window.
carmNane The name of the node that represents this camera in the scene graph

aspectRatio

Cameras render whatever is connected to their ancestors in the scene graph. Therefore if you want a
truly independent scene you have to start a new scene graph. Create a dummy NodePath and now

r epar ent To the new camera to this node. Now you can treat the new scene and the new camera like
you would render and your scene gets drawn to your Gr aphi csQupt ut .

However, any state changes you make to the NodePath caner a will no longer affect your new camera.
Also, since the standard mouse controls work on the caner a NodePath, these will not work either. You
can alternatively use the Camera class method set Scene(scenePat h) , where scenePat h is the top of
the scene graph you want to draw. This preserves the standard heirarchy stated in Camera Conrol.

#| use a GraphicsBuffer only because this is a process you probably want the user to see

nmyBuf f er =nyW ndow. nakeText ur eBuf f er (" Anot her Scene", 800, 600)

#You must pass a string to the NodePath constructor or attenpts to set it as
a parent will renove the child fromthe graph

myNewScene=NodePat h(" nyRender ")

myNewCaner a=base. nakeCaner a(nyBuf f er)

myNewCaner a. r epar ent To(myNewScene)

#or myNewCaner a. node() . set Scene(myNewScene)

#You can now get a texture that represents anything you do in this new scene
(that is still automatically updated)
my Text ur e=nyBuf f er. get Text ure()

<<prev top next=>> -

file:///E|/manual/The_GraphicsOutput_class.1.html (3 of 3)2006/11/21 aUxE 06:02:15

http://panda3d.org/wiki/index.php?title=Camera_Conrol&action=edit

Panda3D Manual

Panda3D Manual: Graphics Buffers and Windows

<<prev top next>> Search

We'll now describe in detail what functions are specfic to buffers and windows in Panda.
GraphicsBuffer and ParasiteBuffer

Use these if you want to do off-screen rendering. You must pass Tr ue when you create it if

you want to get a texture from it. Otherwise, there is no difference in functionality than a
GraphicsOutput.

The only difference between a G aphi csBuffer and a Parasi t eBuffer is that a
Par asi t eBuf f er does not create it own framebuffer space. To create a Par asi t eBuf f er you
call makePar asi t e() from the graphics engine.

makePar asi t e(host, nane, sort, xSize,
ySi ze)

The arguments nane, sort, xSi ze, and ySi ze mean the same things they mean for
makeWindow and makeBuffer. The new argument host is the GraphicsOutput object whose

space in memory it will use. Any rendering done to the parasite is done to the same space in
memory as its host. The function makeTextureBuffer sometimes returns a Par asi t eBuf f er for

space saving reasons. It is also useful for API that dont support offscreen rendering.

Par asi t eBuf f er objects are automatically setup for calls to get Text ure() since their contents
get cleared when host draws itself.

GraphicsWindows

Unlike Gr aphi csBuf f er objects Gr aphi csW ndow objects have a lot more functionality than
Gr aphi csQut put objects.

The most basic of these functions is hasKeyboar d() and hasPoi nt er () which returns whether

or not this window has the focus of keyboard and pointer respectively. Any calls to keyboard
or pointer functions when you do not have control of them generates an error.

You can get the number of input devices for this window by using get Num nput Devi ces() . In

the abscence of a joystick, etc. there usually only one input device, the 'keyboard/mouse’
device. If the APl you are using supports it, you can move a mouse to a certain place in the
window by using novePoi nt er (devi ce, X,Yy) where devi ce is the name of the device that

holds the mouse (most probabaly 'keyboard/mouse’) and x and y is the screen position where
you mwant to move the pointer. Returns Tr ue if it was succesful, Fal se otherwise.

filel///E/manual/Graphics Buffers and_Windows.1.html (1 of 3)2006/11/21 nUsE 06:02:15

Panda3D Manual

You can also ask a window if iti sFul |l screen() and if iti sC osed() . It is important to note
that a window is not automatically opened after a call to makeWindow and is not automatically
closed after a call to closeWindow.

In order to get the full set of properties for a given window you use the function
get Properties(). This returns a W ndowPr operti es object that holds all the information for

the given screen. See API for the full functionality of the W ndowPr operti es class.

If you want to change these properties use get Request edPr operti es() and apply the proper
W ndowPr operti es functions.

To run panda3d in full screen, rather than a window, do the following:

wp = W ndowProperties()
wp. setfull creen(true)
base. wi n. request Properties

(wp)

An alternate exists. Modify the fullscreen configuration variable before importing direct.
directbase.directstart.

from pandac. PandaModul es i nport | oadPrcFil eDat a
| oadPrcFil eData("", """fullscreen 1
W n-size 1024 768""")

from direct.showbase. Di rect Obj ect inport DirectObject # for event
handl i ng
import direct.directbase.DirectStart

i mport sys
class Wrld(Direct Cbject):

def __init_ (self):
sel f. accept ("escape", sys.exit)

w= Wor | d()
run()

If a requested change is not possible or invalid you can call get Rej ect edProperties. It
returns a W ndowPr operti es object that holds all the properties that could not be changed.

Windows can also send Events when the user changes a property of the window. You can get
the name of this event by calling get W ndowEvent () . Initially, all windows send the same
event when changed. If you want to setup events for a certain window use set W ndowEvent
(nare) where nane is the name of the event you want sent when this window gets changed
externally.

file///E/manual/Graphics Buffers_and_Windows.1.html (2 of 3)2006/11/21 nUsE 06:02:15

Panda3D Manual

For more advanced functionality see Gr aphi csW ndow in the API.

top next>>

file:///E|/manual/Graphics Buffers and_Windows.1.html (3 of 3)2006/11/21 sUsE 06:02:15

Panda3D Manual

Panda3D Manual: Multi-Pass Rendering

<<prev top next>> Search

Multi-Pass Rendering

Sometimes you may need to draw the same scene more than once per frame, each view
looking different. This is where multi-pass rendering comes into play.

The easiest way to do implement multi-pass rendering is to use the method mentioned near
the bottom in The GraphicsOutput class. You:

1) setup a GraphicsBuffer object
2) create a camera for it and
3) place the camera in the scene.

However, this method assumes you have two independent scene graphs. If you use this
method to render the same scene graph, it is only useful for showiing the scene from a
different camera view. To actually make the scenes have different RenderStates (i.e. one

without lighting, one with lighting) you must also change how each Camera renders the scene.

Each Camera node has a function called setIniti al St ate(state). It makes every object in
the scene get drawn as if the top node in its scene graph has st at e as its RenderState. This
still means that attributes can be changed/overriden after the Camera has been put on a
scene.

#t hi s makes everything drawn by the default canmera use nyNodePath's
Render St at e
base. cam set | niti al St at e(myNodePat h. get St at e())

You may, however, want more control over what RenderState gets assigned to each node in
the scene. You can do this using the Camera class methods set TagSt at eKey(key) and

set TagSt at e(val ue, st ate). For any NodePaths that you want to recieve special treatment
you call set Tag(key, val ue) (See Common State Changes). Now, anytime the Camera sees a
NodePath with a tag named key the Camera assigns it whatever RenderState is associated
with val ue.

filel///E|/manual/Multi-Pass_Rendering.1.html (1 of 2)2006/11/21 aUcE 06:02:16

http://panda3d.org/wiki/index.php?title=Render_Objects&action=edit

Panda3D Manual

#Assune we have CgShaderAttrib instances toonShadi ngAttrib and
bl ur Shadi ngAttrib
#and we have a Canera whose NodePath is nyCanera

base. cam node() . set TagSt at eKey(" Toon Shadi ng")
base. cam node() . set TagSt at e(" True", Render St at e. make(t oonShadi ngAttri b))

nmyCaner a. node() . set TagSt at eKey (" Bl ur Shadi ng")
nmyCaner a. node() . set TagSt at e(" True", Render St at e. make(bl ur Shadi ngAttri b))

#t hi s makes nmyNodePath and its children get toonShaded when rendered by the
default canera
myNodePat h. set Tag(" Toon Shadi ng", "True")

#now i f you want nyNodePath to be blurred when seen by nyCanera its as easy as
addi ng a tag
myNodePat h. set Tag(" Bl ur Shadi ng", "True")

<<prev top next>>
-

file:///E|/manual/Multi-Pass_Rendering.1.html (2 of 2)2006/11/21 aUcE 06:02:16

Panda3D Manual

Panda3D Manual: Render to Texture

<<prev top next>> Search

Render to Texture Basics
In Panda3D, rendering to a texture consists of three basic steps:

. Create a hidden window (class GraphicsBuffer).
. Render into the hidden window.
. Transfer the contents of the hidden window into a texture.

When | say "transfer" the contents of a window into a texture, | don't necessarily mean
"copy." There are other ways to transfer the contents of a window into a texture that may be
faster. For example, if the OpenGL implementation supports the ARB_pbuffers extension, then
the transfer might be achieved using wglBindTexlmageARB. The Panda user does not need to
worry about how the transfer is done. It is only important that you know that Panda will use
the fastest means available to transfer the contents of the window into the texture.

To generalize that a bit, although render-to-texture is usually done with a hidden window
(class GraphicsBuffer), it can also be done with a visible window (class GraphicsWindow). You
can transfer the contents of any window, hidden or not, into a texture. That's potentially useful
- for example, you can transfer the contents of the main window into a texture, which you can
then use when rendering the next frame. This can be used to create accumulation-buffer-like
effects without an accumulation buffer.

The Simple API1: makeTextureBuffer

Here is a short snippet of code that creates a hidden window, creates a camera that renders
into that window, and creates a scene graph for that camera:

nybuf fer = base.w n. makeTextureBuffer ("M Buffer", 512,
512)

nyt exture = nybuffer. get Texture()</br>

nmybuf f er. set Sort (-100) </ br >

nycanmera = base. makeCaner a(nybuf fer)

nyscene = NodePat h(" My Scene")

nmycaner a. node() . set Scene(nyscene)

The makeText ur eBuf f er is the simple interface to the render-to-texture functionality. It

creates a new hidden window (usually a GraphicsBuffer), creates a texture to render into, and
connects the texture to the hidden window. The (512, 512) in the function call specifies the
size of the hidden window and texture. Of course, you need to use a power-of-two size. The
get Text ur e method retrieves the texture, which will be rendered into every frame.

The set Sort method sets a window's sort order. This controls the order in which panda
renders the various windows. The main window's sort order is zero. By setting the sort order

file///E/manual/Render_to_Texture.1.ntml (1 of 2)2006/11/21 aUcE 06:02:17

Panda3D Manual

of mybuffer to a negative number, we ensure that mybuffer will be rendered first. That, in
turn, ensures that mytexture will be ready to use by the time that the main window is
rendered.

The new hidden window is not automatically connected to the scene graph. In this example,
we create a separate scene graph rooted at myscene, create a camera to view that scene
graph, and connect the camera to mybuffer.

The function makeText ur eBuf f er usually creates a GraphicsBuffer (hidden window), but if the
video card is not powerful enough to create an offscreen window, it may not be able to do so.
In that case, nakeText ur eBuf f er will create a par asi t eBuf f er instead. A parasite buffer is
primarily a trick to emulate a GraphicsBuffer on video cards that are less powerful. The trick is
this: instead of rendering to an offscreen window and then transferring the data into a texture,
panda renders into the main window and then copies the data into the texture. The limitations
of this trick are self-evident. First, it garbles the contents of the main window. This is usually
no big deal, since the main window is usually cleared and rendered from scratch every frame
anyway. The other problem with this trick is that it fails if the main window is smaller than the
desired texture. Since neither of these problems is common in practice, makeText ur eBuf f er

will use parasite buffers transparently if GraphicsBuffers are not available.

There is a debugging mode in which makeText ur eBuf f er will create a visible window (class

GraphicsWindow) instead of a hidden one (class GraphicsBuffer). To enable this debugging
mode, set the boolean variable "show-buffers #t" in your panda configuration file.

The Advanced API: addRenderTexture

The simple API is convenient, but there are a few things it can not do. For instance, it can not:

. Copy the main window into a texture.

. Copy the Z-buffer into a depth texture.

. Copy the window into a texture, but not every frame.
. Limit or force the use of Parasite buffers.

If you need this level of control, you need to use a lower-level API.

I'll finish this section later. -Josh

<<prev top next>> -

file///E|/manual/Render_to_Texture.1.ntml (2 of 2)2006/11/21 aUcE 06:02:17

Panda3D Manual

Panda3D Manual: How to Control Render Order

<<prev top next>> Search

How to Control Render Order

In most simple scenes, you can naively attach geometry to the scene graph and let Panda
decide the order in which objects should be rendered. Generally, it will do a good enough job,
but there are occasions in which it is necessary to step in and take control of the process.

To do this well, you need to understand the implications of render order. In a typical OpenGL-
or DirectX-style Z-buffered system, the order in which primitives are sent to the graphics
hardware is theoretically unimportant, but in practice there are many important reasons for
rendering one object before another.

Firstly, state sorting is one important optimization. This means choosing to render things that
have similar state (texture, color, etc.) all at the same time, to minimize the number of times
the graphics hardware has to be told to change state in a particular frame. This sort of
optimization is particularly important for very high-end graphics hardware, which achieves its
advertised theoretical polygon throughput only in the absence of any state changes; for many
such advanced cards, each state change request will completely flush the register cache and
force a restart of the pipeline.

Secondly, some hardware has a different optimization requirement, and may benefit from
drawing nearer things before farther things, so that the Z-buffer algorithm can effectively
short-circuit some of the advanced shading features in the graphics card for pixels that would
be obscured anyway. This sort of hardware will draw things fastest when the scene is sorted in
order from the nearest object to the farthest object, or "front-to-back" ordering.

Finally, regardless of the rendering optimizations described above, a particular sorting order is
required to render transparency properly (in the absence of the specialized transparency
support that only a few graphics cards provide). Transparent and semitransparent objects are
normally rendered by blending their semitransparent parts with what has already been drawn
to the framebuffer, which means that it is important that everything that will appear behind a
semitransparent object must have already been drawn before the semitransparent parts of the
occluding object is drawn. This implies that all semitransparent objects must be drawn in order
from farthest away to nearest, or in "back-to-front" ordering, and furthermore that the opaque
objects should all be drawn before any of the semitransparent objects.

Panda achieves these sometimes conflicting sorting requirements through the use of bins.

Cull Bins

The CullBinManager is a global object that maintains a list of all of the cull bins in the world,
and their properties. Initially, there are five default bins, and they will be rendered in the
following order:

Bi n Nane Sort Type

file///E/manual/How_to_Control_Render_Order.1.html (1 of 3)2006/11/21 cUcE 06:02:18

Panda3D Manual

"backgr ound” 10 BT fixed
"opaque" 20 BT state_sorted
"transparent” 30 BT back to _front
"fixed" 40 BT fi xed

"unsort ed" 50 BT unsorted

When Panda traverses the scene graph each frame for rendering, it assigns each Geom it
encounters into one of the bins defined in the CullBinManager. (The above lists only the
default bins. Additional bins may be created as needed, using either the CullBinManager::
add_bin() method, or the Config.prc "cull-bin" variable.)

You may assign a node or nodes to an explicit bin using the NodePath::set_bin() interface.
set_bin() requires two parameters, the bin name and an integer sort parameter; the sort
parameter is only meaningful if the bin type is BT_fixed (more on this below), but it must
always be specified regardless.

If a node is not explicitly assigned to a particular bin, then Panda will assign it into either the
"opague" or the "transparent” bin, according to whether it has transparency enabled or not.
(Note that the reverse is not true: explicitly assigning an object into the "transparent” bin does
not automatically enable transparency for the object.)

When the entire scene has been traversed and all objects have been assigned to bins, then the
bins are rendered in order according to their sort parameter. Within each bin, the contents are
sorted according to the bin type.

If you want geometry that's in back of something to render in front of something that it
logically shouldn't, add the following code to the model that you want in front:

nodel . set Bi n("fi xed", 40)
nodel . set Dept hTest (Fal se)
nodel . set Dept hWite

(Fal se)

The following bin types may be specified:
BT fixed

Render all of the objects in the bin in a fixed order specified by
the user. This is according to the second paraneter of the
NodePat h: : set _bin() mnmethod; objects with a | ower val ue are drawn
first.

BT state sorted

Col l ects together objects that share simlar state and renders
themtogether, in an attenpt to nmnimze state transitions in the
scene.

file///E/manual/How_to_Control_Render_Order.1.html (2 of 3)2006/11/21 cUcE 06:02:18

Panda3D Manual

BT back _to_front

Sorts each Geom according to the center of its bounding volunme, in
i near distance fromthe canera plane, so that farther objects are
drawn first. That is, in Panda's default right-handed Z-up

coordi nate system objects with large positive Y are drawn before
objects with smaller positive Y.

BT _front _to_back

The reverse of back to front, this sorts so that nearer objects
are drawn first.

BT unsorted

hjects are drawn in the order in which they appear in the scene
graph, in a depth-first traversal fromtop to bottomand then from
left to right.

<<prev top next>>

e

file:///E|/manual/How_to_Control_Render_Order.1.html (3 of 3)2006/11/21 aUcE 06:02:18

Panda3D Manual

Panda3D Manual: Panda Utility Functions

<<prev top next>> Search

Panda3D has a set of utilities that may be used to learn more about various objects and
methods within an application. To access these utilities you need to import the PythonUtil
module as follows.

from direct.showbase. Pyt honUtil i nport

*

The * can be replaced by any of the utility functions in that module.

To get a detailed listing of a class or an object's attributes and methods, use the pdir()
command. pdir() prints the information out to the command console. pdir() can take many
arguments for formatting the output but the easiest way to use it is to provide it a NodePath.

pdir() will list all of the functions of the class of NodePath including those of its base classes

pdi r (NodePat h)
e.g. pdir
(caner a)

There are many other useful functions in the PythonUtil module. All of these are not
necessarily Panda specific, but utility functions for python. There are random number
generators, random number generator in a gaussian distribution curve, quadratic equation
solver, various list functions, useful angle functions etc. A full list can be found in the API.

An alternative command to pdi r is i nspect () . This command will create a window with
methods and attributes on one side, and the details of a selected attribute on the other.

i nspect () also displays the current values of a class&€ ™ attributes. If these attributes are
changing, you may have to click on a value to refresh it. To use inspect() you have to do the
following:

fromdirect.tkpanel s.inspector inport
i nspect
i nspect (NodePat h)

E.g. inspect
(caner a)

While the directtools suite calls upon a number of tools, if the suite is disabled, the user may

filel///E/manual/Panda_Utility_Functions.1.html (1 of 2)2006/11/21 aUcE 06:02:18

Panda3D Manual

activate certain panels of the suite. The pl ace() command opens the object placer console.
The expl ore() opens the scene graph explorer, which allows you to inspect the hierarchy of a
NodePath. Finally, in order to change the color of a NodePath, the r gbPanel () command
opens color panel.

camer a. pl ace()
render . expl ore

()
panda. r gbPanel

0

Useful DirectTool panels are explained in the Panda Tools section.

<<prev top next>>

-

file:///E|/manual/Panda_Utility Functions.1.html (2 of 2)2006/11/21 aUsE 06:02:18

Panda3D Manual

Panda3D Manual: Particle Effects

<<prev top next>> Search

Particle effects involve the use of several small images acting on the same set of forces. These
particles are created, they move, and they die out. These systems are dynamic, and may be
used for such effects as fireworks, bubbling cauldrons, and even swarms of balloons.

In essence, any particle effect needs three key parts: the renderer, the emitter, and the
factory. The renderer translates the particle object into a visible object on the screen. The
emitter assigns initial locations and velocity vectors for the particles. The factory generates
particles and assigns their attributes. There are many different types of each part, and they
each have their own parameters.

Creating your own particle effects using code alone may be difficult. A particle effect panel is
available to ease through this process. This section will discuss using the particle panel and the
large number of variables associated with particle effects.

<<prev top next>> Search

filel///E/manual/Particle_Effects.1.htm|2006/11/21 nUsE 06:02:19

Panda3D Manual

Panda3D Manual: Using the Particle Panel

<<prev top next=>>=> Search

The particle panel must be used from the python command prompt. Open a command prompt
and enter the folder you wish to run this in.

ppyt hon
inmport direct.directbase.DirectStart

fromdirect.tkpanels inport Particl ePanel
pp = Particl ePanel . Particl ePanel ()
run()

Once the desired effect is achieved, save the file out. This, after some alterations, may be
inserted into your current project code. First, copy and paste the code into your existing
project code. Above the first line, add this line:

fromdirect.particles.ParticleEffect inport ParticleEffect
f = ParticleEffect.Particl eEffect()

After that, replace any a€ ceselfa€ « variable with the variable &€ cef.&4€ « Finally, add these lines
to the end of your particle effect code:

t = Sequence(Func(f.start, render, render),)
t.start()

Also, to use any particle effects, they must be enabled through a base command.

base. enabl eParticl es()

T e B =2

file:///EJ/manual/Using_the Particle Panel.1.htm|2006/11/21 aUsE 06:02:19

Panda3D Manual

Panda3D Manual: Particle Effect Basic Parameters

<<prev top next>> Search

Every particle effect needs at least eleven parameters. These govern the overall properties,
such as the number of particles on the screen, the birth and death rates, and the renderer,
emitter, and factory that are used.

Variable Definition Values
poolSize Maximum number of simultaneous particles [0, infinity)
birthRate Seconds between particle births (0, infinity)
litterSize Number of particles created at each birth [1, infinity)
litterSpread Variation of litter size [0, infinity)
localVelocityFlag Whether or not velocities are absolute Boolean
systemGrowsOlder Whether or not the system has a lifespan Boolean
systemLifespan Age of the system in seconds [0, infinity)
BaseParticleRenderer* renderer Pointer to particle renderer Renderer type
BaseParticleRenderer* emitter Pointer to particle emitter Emitter type
BaseParticleRenderer* factory Pointer to particle factory Factory type

The renderer, emitter, and factory types will be discussed in the next three sections.

<<prev top next>> Search

file///E/manual/Particle_Effect_Basic_Parameters.1.ntml2006/11/21 aUcE 06:02:20

Panda3D Manual

Panda3D Manual: Particle Factories

<<prev top next>> Search

There are two types of particle factories, Point and ZSpin. The particle panel shows a third,
Oriented, but this factory does not currently work. The differences between these factories lie
in the orientation and rotational abilities.

First, there are some common variables to the factories.

Variable Definition Values

lifespanBase Average lifespan in seconds [0, infinity)
lifespanSpread Variation in lifespan [0, infinity)
massBase Average particle mass [O, infinity)
massSpread Variation in particle mass [0, infinity)

terminalVelocityBase Average particle terminal velocity [0, infinity)
terminalVelocitySpread Variation in terminal velocity [0, infinity)

Point particle factories generate simple particles. They have no additional parameters.

ZSpin particle factories generate particles that spin around the Z axis, the vertical axis in
Panda3D. They have some additional parameters.

Variable Definition Values
initialAngle Starting angle in degrees [0, 360]
initialAngleSpread Spread of initial angle [0, 360]
finalAngle Final angle in degrees [0, 360]
fnalAngleSpread Spread of final angle [0, 360]

<<prev top next=>=>

file:///E|/manual/Particle_Factories.1.ntml2006/11/21 cUcE 06:02:20

Panda3D Manual

Panda3D Manual: Particle Emitters

<<prev top next>> Search

There are a large number of particle emitters, each categorized by the volume of space they
represent. Additionally, all emitters have three modes: explicit, radiate, and custom. Explicit
mode emits the particles in parallel in the same direction. Radiate mode emits particles away
from a specific point. Custom mode emits particles with a velocity determined by the particular
emitter.

All emitters have a number of common parameters.

Variable Definition Values
emissionType Emission mode 32RO (E1_RARIAUIE:
yp ET_CUSTOM

explicittaunchVector Initial velocity in explicit mode (X, Yy, z)
Point particles launch away

e from in radiate mode .y, 2)

amplitude Launch velocity multiplier (-infinity, infinity)
. Spread for launch velocity e

amplitudeSpeed multiplier [0, infinity)

The following list contains the different types of emitters, their unique parameters, and the
effect of the custom mode.

BoxEmitter

Variable Definition Values
minBound Minimum point for box volume (X, vy, z)
maxBound Maximum point for box volume (X, vy, z)

Custom mode generates particles with no initial velocity.

DiscEmitter

Variable Definition Values

radius Radius of disc [0, infinity)
outerAngle Particle launch angle at edge of disc [0, 360]
innterAngle Particle launch angle at center of disc [0, 360]
outerMagnitude Launch velocity multiplier at edge of disc (-infinity, infinity)
innerMagnitude Launch velocity multiplier at center of disc (-infinity, infinity)

cubicLerping Whether or not magnitude/angle interpolation is cubic Boolean

Custom mode uses the last five parameters. Particles emitted from areas on the inside use
interpolated magnitudes and angles, either liner or cubic.

file///E|/manual/Particle_Emitters.1.html (1 of 3)2006/11/21 aUsE 06:02:21

Panda3D Manual

PointEmitter

Variable Definition Values
location Location of outer point (X, vy, z)

Custom mode generates particles with no initial velocity.

RectangleEmitter

Variable Definition Values
minBound 2D point defining the rectangle (X, z)
maxBound 2D point defining the rectangle (X, z)

Custom mode generates particles with no initial velocity.

RingEmitter

Variable Definition Values
radius Radius of disc [0, infinity)
angle Particle launch angle [0, 360]

Custom mode uses the second parameter to emit particles at an angle with respect to the
vector from the ring center to the spawn point. O degrees emits particles away from the
center, and 180 degrees emits particles into the center.

SphereSurfaceEmitter
Variable Definition Values
radius Radius of sphere [0, infinity)

Custom mode generates particles with no initial velocity.

SphereVolumeEmitter

Variable Definition Values
radius Radius of sphere [0, infinity)

Custom mode emits particles away from the sphere center. Their velocity is dependent on
their spawn location within the sphere. It is O at the center, of magnitude 1 at the outer edge
of the sphere, and linearly interpolated in between.

TangentRingEmitter

Variable Definition Values
radius Radius of ring [0, infinity)

filel///E|/manual/Particle_Emitters.1.html (2 of 3)2006/11/21 aUcE 06:02:21

Panda3D Manual

Custom mode emits particles tangentially to the ring edge, with a velocity magnitude of 1.

top next>>

file:///E|/manual/Particle_Emitters.1.html (3 of 3)2006/11/21 aUrE 06:02:21

Panda3D Manual

Panda3D Manual: Particle Renderers

<<prev top next>> Search

Particle renderers add particles to the visible scene graph according to the information stored
in the particle objects and the type of renderer. All particle renderers have the following
parameters:

Variable Definition Values

PR_ALPHA_NONE, PR_ALPHA_OUT,

alphaMode Alpha setting over particle lifetime PR_ALPHA_IN, PR_ALPHA_USER

Alpha value for ALPHA_USER

alpha mode SeElCER

userAlpha

The following list contains the different types of renderers and their unique parameters.

PointParticleRenderer

Renders particles as pixel points.

Variable Definition Values

pointSize Width and height of points, in pixels [0, infinity)

startColor Starting color (r,g, b, a)

endColor Ending color (r,g, b, a)

blendType 1OW the particles blend from the start -) or BLEND_LIFE, BLEND_VEL

color to the end color
blendMethod Interpolation method between colors LINEAR, CUBIC

ONE_COLOR: point is always the starting color.

BLEND_LIFE: color is interpolated from start to end according to the age of the point
BLEND_ VEL: color is interpolated between start to end according to the velocity/terminal
velocity.

LineParticleRenderer
Renders particles as lines between their current position and their last position.
Variable Definition Values

headColor Color of leading end (r, g, b, a)
tailColor Color of trailing end (r, g, b, a)

SparkleParticleRenderer

Renders particles star or sparkle objects, three equal-length perpendicular axial lines, much

file:///E|/manual/Particle_Renderers.1.html (1 of 2)2006/11/21 aUsE 06:02:22

Panda3D Manual

like jacks. Sparkle particles appear to sparkle when viewed as being smaller than a pixel.

Variable Definition Values

centerColor Color of center (r, g, b, a)
edgeColor Color of edge (r, g, b, a)
birthRadius Initial sparkle radius [0, infinity)
deathRadius Final sparkle radius [0, infinity)

lifeScale Whether or not sparkle is always of radius birthRadius NO_SCALE, SCALE

SpriteParticleRenderer

Renders particles as an image, using a Panda3D texture object. The image is always facing the

user.

Variable Definition Values
texture Panda texture object to use as the sprite image (r,g, b, a)
color Color (r, g, b, a)
xScaleFlag If true, x scale is interpolated over particlea€ ™s life Boolean
yScaleFlag If true, y scale is interpolated over particlea€ ™s life Boolean
animAngleFlag If true, particles are set to spin on the Z axis Boolean
initial_X_Scale Initial x scaling factor [0, infinity)
final_X_Scale Final x scaling factor [0, infinity)
initial_Y_Scale Initial y scaling factor [0, infinity)
final_Y_Scale Final y scaling factor [0, infinity)
nonAnimatedTheta ::1 ?elséiézzts the counterclockwise Z rotation of all sprites, Boolean
alphaBlendMethod Sets the interpolation blend method LINEAR, CUBIC
alphaDisable If true, alpha blending is disabled Boolean

GeomParticleRenderer

Renders particles as full 3D objects. This requires a geometry node.

Variable Definition Values
geomNode A geometry scene graph node <Node>

file///E/manual/Particle_Renderers.1.ntml (2 of 2)2006/11/21 aUsE 06:02:22

Panda3D Manual

Panda3D Manual: Collision Detection

<<prev top next>> Search

Collision detection allows for two objects to bump into each other and react. This includes not
only sending messages for events, but also to keep the objects from passing through each
other. Collision detection is a very powerful tool for immersion, but it is somewhat complex.

There are two ways to go about collision detection. One is to create special collision geometry,
such as spheres and polygons, to determine collisions. The other is to allow collisions against
all geometry. While the first is somewhat more complex and takes more effort to implement, it
is much faster to execute and is a better long-term solution. For quick-and-dirty applications,
though, collision with geometry can be a fine solution.

This section of the manual will address both methods.

filel///E/manual/Collision_Detection.1.html2006/11/21 sUrE 06:02:22

Panda3D Manual

Panda3D Manual: Collision Solids

<<prev top next>> Search

The CollisionSolid is the fundamental object of the collision system. CollisionSolids represent
special invisible geometry that is created solely for the purpose of performing collision tests;
these CollisionSolids are stored in the scene graph alongside the normal visible geometry.

The CollisionSolids are specifically optimized for performing collision tests quickly. Collisions
can be performed against visible geometry as well, but this is more expensive since visible
geometry is not optimized for this sort of thing.

You can create CollisionSolids interactively in program code, or you can construct them in your
modeling package and load them up from an egg or bam file along with the rest of your scene.

When you create a CollisionSolid interactively, you must also create a CollisionNode to hold the
solid. (When you load your CollisionSolids in from an egg file, the CollisionNodes are created
for you.) Often, a CollisionNode will be used to hold only one solid, but in fact a CollisionNode
can contain any number of solids, and this is sometimes a useful optimization, especially if you
have several solids that always move together as a unit.

cs = Col lisionSphere(0, 0, 0, 1)

cnodePat h = avat ar. att achNewNode(Col | i si onNode
(' cnode'))

cnodePat h. node() . addSol i d(cs)

CollisionNodes are hidden by default, but they may be shown for debugging purposes:

cnodePat h. show

0

Note: Be aware that the collision algorithm has only limited awareness of scaling transforms
applied to CollisionSolids. If unequal scaling is applied between a from collider and an into
collider, unexpected results may occur. In general, strive to have as few scaling transforms
applied to your collision solids as possible.

There are several kinds of CollisionSolids available.
CollisionSphere

The sphere is the workhorse of the collision system. Spheres are the fastest primitives for any
collision calculation; and the sphere calculation is particularly robust. If your object is even
vaguely spherical, consider wrapping a sphere around it.

Also, a sphere is a particularly good choice for use as a "from object", because a sphere can

file///E|/manual/Collision_Solids.1.html (1 of 5)2006/11/21 sUaE 06:02:23

Panda3D Manual

reliably be tested for collision with most of the other solid types. The "from objects" are the
objects that are considered the active objects in the world; see Collision Traversers. A sphere
is usually the best choice to put around the player's avatar, for instance. The sphere also
makes a good "into object”; it is the only object type that is a good choice for both "from™ and
"into" objects.

A sphere is defined in terms of a center and a radius. Note that, like any object, the sphere’'s
coordinates are defined in the sphere's own coordinate space, so that often the center is (0, O,
0).

sphere = Col | i si onSphere(cx, cy, cz,
radi us)

CollisionTube

A "tube" is a cylinder with hemispherical endcaps. This shape is sometimes called a capsule in
other collision systems.

The tube is good as an "into object”, for objects that are largely cylindrical. It is not a very
good choice for a "from object"”, because not many intersection tests have been written from
tubes into other shapes.

.

A tube is defined with its two endpoints, and the cylindrical radius.

tube = CollisionTube(ax, ay, az, bx, by, bz,
radi us)

CollisionlnvSphere

The inverse sphere is a special-purpose solid that is rarely used, but occasionally it is very
useful. It is an inside-out sphere: the solid part of the sphere is on the outside. Any object that
is on the outside of the sphere is considered to be colliding with it; any object on the inside is
not colliding.

file///E/manual/Collision_Solids.1.html (2 of 5)2006/11/21 sUaE 06:02:24

Panda3D Manual

Think of the inverse sphere as a solid mass that fills the whole universe in all directions,
except for a bubble of space in the middle. It's useful for constraining an object within a
particular space, since nothing can get out of an inverse sphere.

inv = CollisionlnvSphere(cx, cy, cz,
radi us)

CollisionPlane

The CollisionPlane is an infinite plane extending in all directions. It is not often used, but it can
be useful in certain cases, for instance as a trigger placed below the ground to detect when an
avatar has accidentally slipped through a crack in the world. You can also build a box out of six
planes to keep objects perfectly constrained within a rectangular region, similar to an inverse
sphere; such a box is much more reliable than one constructed of six polygons.

The plane actually divides the universe into two spaces: the space behind the plane, which is
all considered solid, and the space in front of the plane, which is all empty. Thus, if an object
is anywhere behind a plane, no matter how far, it is considered to be intersecting the plane.

A CollisionPlane is constructed using a Panda3D Plane object, which itself has a number of
constructors, including the A, B, C, D plane equation, or a list of three points, or a point and a
normal.

pl ane = Col | i si onPl ane(Pl ane(Vec3(0, 0, 1), Point3(0, O,
0)))

CollisionPolygon

A CollisionPolygon is the most general of the collision solids, since it is easy to model any
shape with polygons (especially using a modeling package). However, it is also the most
expensive solid, and the least robust--there may be numerical inaccuracies with polygons that
allow collisions to slip through where they shouldn't.

Like a plane and a tube, a CollisionPolygon is only a good choice as an "into object". It doesn't
support collision tests as a "from object".

In general, if you must use CollisionPolygons to model your shape, you should use as few
polygons as possible. Use quads instead of triangles if possible, since two triangles take twice
as much time to compute as a single quad. This does mean that you need to ensure that your
quads are perfectly coplanar.

You can also make higher-order polygons like five-sided and six-sided polygons or more, but
you cannot make concave polygons. If you create a concave or non-coplanar CollisionPolygon
in your modeling package, Panda will automatically triangulate it for you (but this might result
in a suboptimal representation, so it is usually better to subdivide a concave polygon by hand).

file///E/manual/Collision_Solids.1.html (3 of 5)2006/11/21 sUaE 06:02:24

Panda3D Manual

Unlike a plane, a CollisionPolygon is infinitely thin; an object is only considered to be colliding
with the polygon while it is overlapping it.

When you create a CollisionPolygon interactively, you can only create triangles or quads (the
higher-order polygons can only be loaded from an egg file). Simply specify the three or four
points to the constructor, in counter-clockwise order.

quad = Col I'i si onPol ygon(Poi nt 3(0, 0, 0), Point3(0, O,
1),
Point3(0, 1, 1), Point3(0, 1, 0))

CollisionRay

The ray, line, and segment (below) are special collision solids that are useful only as a "from"
object; since these objects have no volume, nothing will collide "into™" a ray.

The CollisionRay represents an infinite ray that begins at a specific point, and stretches in one
direction to infinity.

It is particularly useful for picking objects from the screen, since you can create a ray that
starts at the camera's point of view and extends into the screen, and then determine which
objects that ray is intersecting. (In fact, there is a method on CollisionRay called set Fr onLens

() that automatically sets up the ray based on a 2-d onscreen coordinate; this is used by the
"picker". See Clicking on 3D Objects.)

The CollisionRay is also useful in conjunction with the CollisionHandlerFloor; see Collision
Handlers.

A CollisionRay is created by specifing an origin point, and a direction vector. The direction
vector need not be normalized.

ray = CollisionRay(ox, oy, oz, dx, dy,
dz)

CollisionLine

This is essentially the same as a CollisionRay, except it extends to infinity in both directions. It
is constructed with the same parameters, an origin point and a direction vector.

line = CollisionLine(ox, oy, oz, dx, dy,
dz)

file///E|/manual/Collision_Solids.1.html (4 of 5)2006/11/21 aUaE 06:02:24

Panda3D Manual

CollisionSegment

Finally, a segment is another variant on the CollisionRay that does not extend to infinity, but
only goes to a certain point and stops. It is useful when you want to put a limit on how far the
CollisionRay would otherwise reach.

A CollisionSegment is constructed by specifying the two end points.

segnent = Col |i si onSegnent (ax, ay, az, bx, by,
bz)

top next>>

file:///E|/manual/Collision_Solids.1.html (5 of 5)2006/11/21 aUsE 06:02:24

Panda3D Manual

Panda3D Manual: Collision Handlers

<<prev top next>> Search

You will need to create a CollisionHandler that specifies what to do when a collision event is
detected. There are several possible kinds of CollisionHandler available.

CollisionHandlerQueue

The simplest kind of CollisionHandler, this object simply records the collisions that were
detected during the most recent traversal. You can then iterate through the list using queue.

get NuntEntri es() and queue. getEntry() :

queue = Col |'i si onHandl er Queue()
traverser.addCol | i der (frombj ect,
queue)
traverser.traverse(render)
for i in range(queue. getNunEntries()):
entry = queue.getEntry(i)
print entry

By default, the Collision Entries appear in the queue in no particular order. You can arrange
them in order from nearest to furthest by calling queue. sort Entri es() after the traversal.

CollisionHandlerEvent

This is another simple kind of CollisionHandler. Rather than saving up the collisions, it
generates a Panda event when collision events are detected.

There are three kinds of events that may be generated: the "in" event, when a particular
object collides with another object that it didn't in the previous pass, the "out" event, when an
object is no longer colliding with an object it collided with in the previous pass, and the "again"
event, when an object is still colliding with the same object that it did in the previous pass.

For each kind of event, the CollisionHandlerEvent will construct an event name out of the
names of the from and into objects that were involved in the collision. The exact event name
is controlled by a pattern string that you specify. For instance:

handl er. addl nPattern(' %4 n-into-%n')
handl er . addAgai nPatt ern(' % n- agai n- %
in)

handl er. addQut Pattern(' % n-out-%n')

In the pattern string, the following sequences have special meaning:

file///E|/manual/Collision_Handlers.1.ntml (1 of 4)2006/11/21 aUcE 06:02:25

Panda3D Manual

%fn the name of the "from" object's node

%in the name of the "into" object's node

%fs 't" if "from" is declared to be tangible, 'i" if intangible

%is 't" if "into" is declared to be tangible, 'i" if intangible

%ig ‘'c' if the collision is into a CollisionNode, ‘g’ if it is an ordinary visible GeomNode

%(tag)fh generate event only if "from" node has the indicated tag

%(tag)fx generate event only if "from™ node does not have the indicated tag
% (tag)ih generate event only if "into" node has the indicated tag

%(tag)ix generate event only if "into" node does not have the indicated tag
%(tag)ft the indicated tag value of the "from" node.

%(tag)it the indicated tag value of the "into" node.

You may use as many of the above sequences as you like, or none, in the pattern string. In
the tag-based sequences, the parentheses around (tag) are literal; the idea is to write the
name of the tag you want to look up, surrounded by parentheses. The tag is consulted using
the nodePat h. get Net Tag() interface.

In any case, the event handler function that you write to service the event should receive one
parameter (in addition to self, if it is a method): the CollisionEntry. For example:

cl ass MyQbj ect (Di rect Obj ect. Di rect Obj ect):
def __init__ (self):
self.accept('car-into-rail', handl eRail Collision)

def handl eRail Col I'ision(self, entry):
print entry

Note that all of the following versions of CollisionHandler also inherit from
CollisionHandlerEvent, so any of them can be set up to throw events in the same way.

CollisionHandlerPusher

This is the first of the more sophisticated handlers. The CollisionHandlerPusher, in addition to
inheriting all of the event logic from CollisionHandlerEvent, will automatically push back on its
from object to keep it out of walls. The visual effect is that your object will simply stop moving
when it reaches a wall if it hits the wall head-on, or it will slide along the wall smoothly if it
strikes the wall at an angle.

The CollisionHandlerPusher needs to have a handle to the NodePath that it will push back on,
for each from object; you pass this information to pusher. addCol | i der. This should be the

node that is actually moving. This is often, but not always, the same NodePath as the
CollisionNode itself, but it might be different if the CollisionNode is set up as a child of the
node that is actually moving.

file:///E/manual/Collision_Handlers.1.ntml (2 of 4)2006/11/21 aUcE 06:02:25

Panda3D Manual

smley = | oader.| oadMbdel (' sm | ey. egg’')
frombj ect = smiley. attachNewNode(Col | i si onNode
(' col Node'))

fronObj ect . node() . addSol i d(Col | i si onSphere(0, 0, 0, 1))

pusher = Col |i si onHandl er Pusher ()
pusher. addCol | i der (f romObj ect, snil ey)

Don't be confused by the call to pusher . addCol | i der ; it looks a lot like the call to traver ser.
addCol I i der, but it's not the same thing, and you still need to add the collider and its handler
to the traverser:

traverser.addCol | i der (fromObj ect,
pusher)
sm | ey. set Pos(x, y, 0)

If you are using Panda's drive mode to move the camera around (or some other node), then
you also need to tell the pusher about the drive node, by adding it into the pusher.

addCol | i der call:

fronmbj ect = base. caner a. att achNewNode(Col | i si onNode

(' col Node'))

fr onObj ect . node() . addSol i d(Col | i si onSphere(0, 0, 0, 1))

pusher = Col |i si onHandl er Pusher ()

pusher. addCol | i der (f romObj ect, base. canera, base.drive. node())

PhysicsCollisionHandler

This kind of handler further specializes CollisionHandlerPusher to integrate with Panda's
Physics Engine. It requires that the NodePath you pass as the second parameter to pusher.
addCol I i der actually contains an ActorNode, the type of node that is moved by forces in the
physics system.

anp = render. attachNewNode(Act or Node("' actor'))

fronbj ect = anp. att achNewNode(Col | i si onNode

(' col Node'))

fr onObj ect . node() . addSol i d(Col | i si onSphere(0, 0, 0, 1))

pusher = PhysicsCol |isionHandl er ()
pusher . addCol | i der (fronmObj ect, anp)

Whenever you have an ActorNode that you want to respond to collisions, we recommend that
you use a PhysicsCollisionHandler rather than an ordinary CollisionHandlerPusher. The

file///E|/manual/Collision_Handlers.1.ntml (3 of 4)2006/11/21 aUcE 06:02:25

Panda3D Manual

PhysicsCollisionHandler will keep the object out of walls, just like the CollisionHandlerPusher
does, but it will also update the object's velocity within the physics engine, which helps to
prevent the physics system from becoming unstable due to large accumulated velocities.

CollisionHandlerFloor

This collision handler is designed to serve one very specialized purpose: it keeps an object on
the ground, or falling gently onto the ground, even if the floor is not level, without involving
physics.

It is intended to be used with a Col |'i si onRay or Col | i si onSegnent . The idea is that you

attach a ray to your object, pointing downward, such that the topmost intersection the ray
detects will be the floor your object should be resting on. Each frame, the
CollisionHandlerFloor simply sets your object's z value to the detected intersection point (or, if
it is so configured, it slowly drops the object towards this point until it reaches it).

Using the CollisionHandlerFloor can be an easy way to simulate an avatar walking over uneven
terrain, without having to set up a complicated physics simulation (or involve physics in any
way). Of course, it does have its limitations.

sm |l ey = | oader.| oadMvbdel (' sm |l ey.egqg')

fronmObj ect = sniley. attachNewNode(Col I i si onNode

(' col Node'))

fr onObj ect . node() . addSol i d(Col | i si onRay(0, 0, 0, 0, O, -
1))

lifter = CollisionHandl er Fl oor ()
lifter.addCollider(fromObject, sniley)

<<prev top

file///E|/manual/Collision_Handlers.1.ntml (4 of 4)2006/11/21 aUcE 06:02:25

Panda3D Manual

Panda3D Manual: Collision Entries

<<prev top next>> Search

For each collision detected, a new Col | i si onEnt ry object is created. This CollisionEntry stores

all the information about the collision, including the two objects (nodes) involved in the
collision, and the point of impact and the surface normal of the into object at that point.

The CollisionEntry object is passed to the event handler method by the
Col |'i si onHandl er Event and its derivatives; it is also the object stored in the queue of

collisions maintained by the Col | i si onHand| er Queue.

However you get a handle to CollisionEntry object, you can query it for information using the
following methods:

entry. get Fr omNodePat h() Returns the NodePath of the "from" object. This
NodePath will contain a CollisionNode.

Returns the NodePath of the "into" object. This
entry. getl nt oNodePat h() NodePath will contain a CollisionNode, or if the collision
was made with visible geometry, a GeomNode.

Returns the actual CollisionSolid of the "from" object.
entry. get Fromn() This is useful if there were more than one
CollisionSolid in the "from" CollisionNode.

Returns the actual CollisionSolid of the "into" object.
However, if the collision was made with visible
geometry, there is no CollisionSolid, and this will be an
invalid call.

Returns true if the collision was made into a
entry. haslnto() CollisionSolid as opposed to visible geometry, and thus
the above call will be valid.

entry.getlnto()

' Returns the 3-D point of the collision, in the coordinate
entry. get SurfacePoi nt (nodePath) space of the supplied NodePath. This point will usually
be on the surface of the "into" object.

Returns the 3-D surface normal of the "into" object at
entry. get SurfaceNor mal (nodePat h) the point of the collision, in the coordinate space of the
supplied NodePath.

_ _ Returns the 3-D point, within the interior of the "into"
entry. getlnteriorPoint(nodePath) opject, that represents the depth to which the "from"
object has penetrated.

The three methods that return points or vectors all accept a NodePath as a parameter. This
can be any NodePath in the scene graph; it represents the coordinate space in which you
expect to receive the answer. For instance, to receive the point of intersection in the
coordinate space of the "into" object, use:

file///E/manual/Collision_Entries.1.html (1 of 2)2006/11/21 aUcE 06:02:25

Panda3D Manual

poi nt = col lisionEntry. get SurfacePoint(collisionEntry. getlntoNodePath())

If you wanted to put an axis at the point of the collision to visualize it, you might do something
like this:

axi s = | oader.| oadMbdel (' zup-axi s. egg')

axi s. reparent To(render)

poi nt = col lisionEntry. get SurfacePoi nt (render)
normal = collisionEntry. get SurfaceNormal (render)
axi s. set Pos(poi nt)

axi s. | ookAt (poi nt + normal)

<<prev top next>>

| =

file:///E|/manual/Collision_Entries.1.ntml (2 of 2)2006/11/21 aUaE 06:02:25

Panda3D Manual

Panda3D Manual: Collision Traversers

<<prev top next>> Search

A CollisionTraverser object performs the actual work of checking all solid objects for collisions.
Normally, you will create a single CollisionTraverser object and assign it to base. cTr av; this

traverser will automatically be run every frame. It is also possible to create additional
CollisionTraversers if you have unusual needs; for instance, to run a second pass over a subset
of the geometry. If you create additional CollisionTraversers, you must run them yourself.

The CollisionTraverser maintains a list of the active objects in the world, sometimes called the
"colliders" or "from objects". The remaining collidable objects in the world that are not added

to a CollisionTraverser are the "into objects". Each of the "from objects" is tested for collisions
with all other objects in the world, including the other from objects as well as the into objects.

Note that it is up to you to decide how to divide the world into "from objects” and "into
objects”. Typically, the from objects are the moving objects in the scene, and the static
objects like walls and floors are into objects, but the collision system does not require this; it
is perfectly legitimate for a from object to remain completely still while an into object moves
into it, and the collision will still be detected.

It is a good idea for performance reasons to minimize the number of from objects in a
particular scene. For instance, the user's avatar is typically a from object; in many cases, it
may be the only from object required--all of the other objects in the scene, including the walls,
floors, and other avatars, might be simply into objects. If your game involves bullets that need
to test for collisions with the other avatars, you will need to make either the bullets or the
other avatars be from objects, but probably not both.

In order to add a from object to the CollisionTraverser, you must first create a CollisionHandler
that defines the action to take when the collision is detected; then you pass the NodePath for
your from object, and its CollisionHandler, to addCol | i der .

traverser = CollisionTraverser('traverser name')
base. cTrav = traverser
traverser.addCol | i der (fronObj ect, handl er)

You only need to add the "from" objects to your traverser! Don't try to add the "into" objects
to the CollisionTraverser. Adding an object to a CollisionTraverser makes it a "from™ object. On
the other hand, every object that you put in the scene graph, whether it is added to a
CollisionTraverser or not, is automatically an "into" object.

Note that all of your "from" objects are typically "into" objects too (because they are in the
scene graph), although you may choose to make them not behave as into objects by setting
their CollideMask to zero.

file///E/manual/Collision_Traversers.1.html (1 of 2)2006/11/21 aUcE 06:02:26

Panda3D Manual

<<prev top next>> - |

| -

file:///E|/manual/Collision_Traversers.1.html (2 of 2)2006/11/21 aUcE 06:02:26

Panda3D Manual

Panda3D Manual: Collision Bitmasks

<<prev top next>> Search

By default, every "from" object added to a CollisionTraverser will test for collisions with every
other CollisionNode in the scene graph, and will not test for collisions with visible geometry.
For simple applications, this is sufficient, but often you will need more control.

This control is provided with the collide masks. Every CollisionNode has two collide masks: a
"from" mask, which is used when the CollisionNode is acting as a "from" object (i.e. it has
been added to a CollisionTraverser), and an "into" mask, which is used when the node is
acting as an "into" object (i.e. it is in the scene graph, and a from object is considering it for
collisions).

In addition, visible geometry nodes--that is, GeomNodes--also have an "into" mask, so that
visible geometry can serve as an "into" object also. (However, only a CollisionNode can serve
as a "from" object.)

Before the solids in a "from" CollisionNode are tested for collisions with another CollisionNode
or with a GeomNode, the collide masks are compared. Specifically, the "from" mask of the
from object, and the "into" mask of the into object, are ANDed together. If the result is not
zero--meaning the two masks have at least one bit in common--then the collision test is
attempted; otherwise, the two objects are ignored.

The collide masks are represented using a BitMask32 object, which is really just a 32-bit
integer with some additional methods for getting and setting particular bits.

You can only set the from collide mask on a collision node, and you must set it directly on the
node itself, not on the NodePath:

nodePat h. node() . set FronCol | i deMask(Bi t Mask32
(0x10))

However, the into collide mask may be set on the NodePath, for convenience; this recursively
modifies the into collide mask for all the nodes at the given NodePath level and below.

nodePat h. set Col | i deMask(newMask, bit sToChange,
nodeType)

The parameter newMask specifies the new mask to apply. The remaining parameters are
optional; if they are omitted, then every node at nodePath level and below is assigned
newMask as the new into collide mask. However, if bitsToChange is specified, it represents the
set of bits that are to be changed from the original; bits that are 0 in bitsToChange will not be
modified at each node level. If nodeType is specified, it should be a TypeHandle that
represents the type of node that will be modified, e.g. Col | i si onNode. get Cl assType() to

file:///E|/manual/Collision_Bitmasks.1.html (1 of 2)2006/11/21 aUcE 06:02:26

Panda3D Manual

affect only CollisionNodes.
Examples:

nodePat h. set Col | i deMask(Bi t Mask32
(0x10))

This sets the into collide mask of nodePath, and all children of nodePath, to the value 0x10,
regardless of the value each node had before.

nodePat h. set Col | i deMask(Bi t Mask32(0x04), BitMask32
(0xff))

This replaces the lower 8 bits of nodePath and all of its children with the value 0x04, leaving
the upper 24 bits of each node unchanged.

The default value for both from and into collide masks for a new CollisionNode can be retrieved
by Col I'i si onNode. get Def aul t Col | i deMask() , and the default into collide mask for a new

GeomNode is GeomNode. get Def aul t Col | i deMask() . Note that you can create a CollisionNode
that collides with visible geometry by doing something like this:

nodePat h. node() . set FronCol | i deMask(GeonNode. get Def aul t Col | i deMask
()

<<prev top next>>

file:///E|/manual/Collision_Bitmasks.1.html (2 of 2)2006/11/21 aUsE 06:02:26

Panda3D Manual

Panda3D Manual: Rapidly-Moving Objects

<<prev top next>> Search

Panda3D's collision system works by testing the current state of the world every frame for a
possible intersection. If your objects are moving so quickly that they might pass completely
through another object in the space of one frame, however, that collision might never be
detected.

To avoid this problem, the Panda3D scene graph supports an advanced feature: it can record
the previous frame's position of each moving object for the benefit of the CollisionTraverser.
The CollisionTraverser can then take advantage of this information when it is testing for
collisions. If it sees that a moving object was on one side of an object last frame, and on the
opposite side this frame, it can trigger the collision detection even though the two objects
might not currently be intersecting.

There are a few things you need to do to activate this mode.

1. First, you must tell the CollisionTraverser that you intend to use this mode; by default, it
ignores the previous position information. To activate this mode, call:

base. cTrav. set Respect PrevTr ansf or n{ Tr ue)

You only need to make this call once, at the beginning of your application (or whenever you
create the CollisionTraverser). That switches the CollisionTraverser into the new mode. If you
create any additional CollisionTraversers, you should make the call for them as well.

2. Ensure that base. reset PrevTransf or n{r ender) is called every frame. Actually, this is

already done for you automatically by ShowBase.py, so normally you don't need to do
anything for this step.

The reset PrevTransf orn() call should be made once per frame (at the very beginning of the

frame) for every different scene graph in your application that involves collisions. It ensures
that the current frame's position is copied to the previous frame's position, before beginning
the processing for that frame. Note that if you have multiple CollisionTraversers handling the
same scene graph, you only need to (and only should) call this function once, but if you have
two or more disconnected scene graphs, you will need to call it for each scene graph.

If you don't understand the above paragraph, then you aren't using disconnected scene
graphs, and you shouldn't worry about it.

3. Whenever you move an object from one point to another in your scene (except when you
put it into your scene the first time), instead of using:

obj ect . set Pos(newPos)

file:///E/manual/Rapidly-Moving_Objects.1.html (1 of 3)2006/11/21 aUsE 06:02:27

Panda3D Manual

You should use:

obj ect . set Fl ui dPos(newPos)

In general, set Pos() means "put the object here, directly” and set Fl ui dPos() means "slide

the object here, testing for collisions along the way". It is important to make a clear distinction
between these two calls, and make the appropriate call for each situation.

If you are moving an object with a Lerplnterval, and you want collisions to be active (and
fluid) during the lerp, you should pass the keyword parameter fl uid = 1 to the Lerplnterval

constructor. It is rare to expect collisions to be active while an object is moving under direct
control of the application, however.

Visualizing the previous transform

When you are using the setFluidPos() call, and you have called show() on your CollisionNode

to make it visible, you will see the CollisionNode itself each frame, plus a ghosted
representation of where it was the previous frame. This can help you visually see that the
previous-transform mechanism is working. (It does not guarantee that the

set Respect PrevTransf orn() call has been made on your CollisionTraverser, however.)

Caveats

At the present, the CollisionTraverser only uses the previous transform information when it is
testing a CollisionSphere into a CollisionPolygon--that is, when the "from" object is a
CollisionSphere, and the "into" object is a CollisionPolygon (or a wall of CollisionPolygons).
Other kinds of collision solids currently do not consider the previous transform. (However, the
other collision solids are generally thicker than a CollisionPolygon, so it is less likely that a
moving object will pass all the way through them in one frame--so it is not quite as bad as it
seems.)

Enabling the previous transform mode helps reduce slipping through walls considerably.
However, it's not perfect; no collision system is. If your object is moving tremendously fast, or
just happens to get lucky and slip through a tiny crack between adjacent polygons, it may still
get through without detecting a collision. Any good application will be engineered so that the
occasional collision slip does not cause any real harm.

The CollisionHandlerFloor is especially bad about allowing objects to slip through floors, in
spite of the previous transform state, especially when you avatar is walking up a sloping path.
This is just because of the way the CollisionHandlerFloor works. If you are having problems
with the CollisionHandlerFloor, consider reducing the slope of your floors, increasing the height
of the ray above the ground, and/or reducing the speed of your avatar.

top next=>> Search

filel///E|/manual/Rapidly-Moving_Objects.1.html (2 of 3)2006/11/21 aUsE 06:02:27

Panda3D Manual

file:///E|/manual/Rapidly-Moving_Objects.1.html (3 of 3)2006/11/21 aUxE 06:02:27

Panda3D Manual

Panda3D Manual: Pusher Example

<<prev top next=>>=> Search

Here is a short example to show two small spheres using a Pusher.

inmport direct.directbase.DirectStart
from pandac. PandaMbdul es i nport *
fromdirect.interval.lnterval G obal inport *

#initialize traverser
base.cTrav = Col |l isionTraverser()

#initialize pusher
pusher = Col | i si onHandl er Pusher ()

HHHHHHHIH

#l oad a nodel. reparent it to the camera so we can nove it.
sm | ey = | oader. | oadMVbdel (' smiley")

smi | ey. reparent To(caner a)

sm | ey. set Pos(0, 25.5,0.5)

#create a collision solid for this nodel
cNode = Col |'i si onNode(' smi | ey")

cNode. addSol i d(Col | i si onSphere(0,0,0, 1. 1))
sm | eyC = smil ey. att achNewNode(cNode)

smi | eyC. show()

SR

#| oad a nodel

frowney = | oader.| oadMbdel (' frowney"')
frowney. reparent To(render)

frowney. set Pos(5, 25, 0)

#create a collsion solid for this nodel
cNode = Col |'i si onNode(' frowney')

cNode. addSol i d(Col I i si onSphere(0,0, 0, 1. 1))
frowneyC = frowney. att achNewNode(cNode)
frowneyC. show()

AR
#add col lision node to the traverser and the pusher

base. cTrav. addCol | i der (f r owneyC, pusher)
pusher . addCol | i der (frowneyC, frowney, base. drive. node())

HHHHHIHIH

#have the one ball noving to hel p show what is happening
frowney. posl nt erval (5, Poi nt 3(5, 25, 0), start Pos=Poi nt 3(-5, 25,0), fl ui d=1). | oop
0

#run the world. nove around with the nouse to see how the novi ng ball

file:///E|/manual/Pusher_Example.1.html (1 of 2)2006/11/21 aUsE 06:02:28

Panda3D Manual

changes
#course to avoid the one attached to the canera.

run()

<<prev top next>>

-

file:///E|/manual/Pusher_Example.1.html (2 of 2)2006/11/21 aUsE 06:02:28

Panda3D Manual

Panda3D Manual: Event Example

<<prev top next>>

Here is a short example of using the Collision Handler Events

inport direct.directbase.DirectStart

fromdirect.interval.lInterval G obal inport * #to nake things flash on collisions
from pandac. PandaMbdul es i nport *

fromdirect.showbase inport Directoject #so that we can accept nessages

class Wrld(DirectObject.DirectCbject):
def __init_ (self):
#initialize traverser
base.cTrav = Col i si onTraverser ()

#initialize handl er

sel f. col | HandEvent =Col | i si onHandl er Event ()
sel f. col | HandEvent . addl nPattern('into-%n')
sel f. col | HandEvent . addCut Patt er n(' out of - % n')

#initialize collision count (for unique collision strings)
sel f. col | Count =0

#l oad a nodel. reparent it to the camera so we can nove it.
s = | oader.| oadMVbdel (' sm ley")

s. repar ent To(caner a)

s. set Pos(0, 25,0)

#setup a collision solid for this nodel
sCol | =sel f.initCollisionSphere(s, True)

#add this object to the traverser
base. cTrav .addCol | ider(sColl[0] , self.coll HandEvent)

#accept the events sent by the collisions

sel f.accept('"into-' + sColl[1], self.collide3)
sel f.accept('outof-' + sColl[1], self.collide4)
print sColl[1]

#

oad a nodel .

= | oader. | oadModel (' sm | ey')
. reparent To(render)

.set Pos(5, 25,0)

— o~ —+

#setup a collision solid for this nodel
tCol | =sel f.initCollisionSphere(t, True)

#add this object to the traverser
base.cTrav .addCol | ider(tColl[0], self.collHandEvent)

#accept the events sent by the collisions

sel f.accept('"into-' + tColl[1], self.collide)
sel f.accept('outof-' + tColl[1], self.collide2)
print tColl[1]

print "WERT"

def collide(self, collEntry):

print "WERT: object has collided into another object"

Sequence(Func(col | Entry. get FronNodePat h() . get Parent (). set Col or, VBase4(1,0,0,1)),
Vait(.2),
Func(col | Entry. get Fr onNodePat h() . get Parent () . set Col or, VBase4(0,1,0,1)),
Wait(.2),
Func(col | Entry. get Fr onNodePat h() . get Parent (). set Col or, VBase4(1,1,1,1))).start

0

file:///E)/manual /Event_Example.1.html (1 of 2)2006/11/21 aUsE 06:02:29

Panda3D Manual

def collide2(self, collEntry):
#col | Entry. get FromNodePat h() . get Parent (). renmove()
print "WERT.: object is no |longer colliding with another object"

def collide3(self, collEntry):
#col | Entry. get FromNodePat h() . get Parent (). renove()
print "WERT2: object has collided into another object"

def collide4(self, collEntry):
#col | Entry. get FronNodePat h() . get Parent (). renove()
print "WERT2: object is no |longer colliding with another object"

def initCollisionSphere(self, obj, show=Fal se):
#get the size of the object for the collision sphere

bounds = obj . get Chi | d(0) . get Bounds()
center = bounds. get Center()
radi us = bounds. get Radi us()*1.1

#create a collision sphere and name it sonething understandabl e

col | SphereStr = 'CollisionHull' +str(self.coll Count)+"_"+obj.get Nane()
sel f. col | Count +=1

cNode=Col | i si onNode(col | SphereStr)

cNode. addSol i d(Col | i si onSphere(center, radius))

cNodepat h=obj . at t achNewNode(cNode)
if show
cNodepat h. show()

return a tuple with the collision node and its corrsponding string
return the collison node so that the bitnmask can be set
return (cNodepath, col | SphereStr)

#run the world. nove around with the nouse to create collisions
w= Worl d()
run()

<<prev next>>

file:///E)/manual /Event_Example.1.html (2 of 2)2006/11/21 aUsE 06:02:29

Panda3D Manual

Panda3D Manual: Bitmask Example

<<prev top next>>

Search

Here is a short example of using bitmasks

import direct.directbase.DirectStart
fromdirect.showbase inport DirectObject
from pandac. PandaMbdul es i nport *

class Worl d(Direct Object.DirectCbject):
def __init__ (self):
#initialize traverser
base.cTrav = Col | i si onTraverser ()

#initialize handl er

sel f. col | HandEvent =Col | i si onHandl er Event ()
sel f. col | HandEvent . addl nPattern('into-%n')
sel f. col | HandEvent . addQut Pat t er n(' out of - % n')

#initialize collision count (for unique collision strings)
sel f. col | Count =0

sel f.l oadOhj 1()
sel f. |l oadObj 2()

def | oadObj 1(sel f):
#l oad a nodel. reparent it to the canera so we can nove it.
s = | oader.| oadMvbdel (' smiley')
s. repar ent To(caner a)
s. set Pos(0, 25, 0)

#setup a collision solid for this nodel
sCol | =sel f.initCollisionSphere(s, True)

#set up bit masks
#this object can only collide into things
sCol I [0] . setlntoCol |i deMask(BitMask32.all O f())

#this object will only collide with objects with this bitnmask

sCol I [O] . set FrontCol | i deMask(BitMask32.bit(1))

#add this object to the traverser
base. cTrav .addCol | i der(sColI[0] , self.coll HandEvent)

def | oadObj 2(sel f):
#| oad a nodel .
t = | oader. | oadMvbdel (' smiley')
t.reparent To(render)
t.set Pos(5, 25,0)

#setup a collision solid for this nodel
tColl=self.initCollisionSphere(t, True)

#set up bitnmasks

#this object can only be collided into and will collide with the other object

tCol I [0].setlntoCollideMask(BitMask32.bit(1))
tCol I [0].setFronCol | i deMask(Bit Mask32.all O f())

file:///E|/manual/Bitmask_Example.1.html (1 of 2)2006/11/21 sUsE 06:02:29

Panda3D Manual

#add this object to the traverser
base. cTrav .addCol lider(tColl[0], self.collHandEvent)

#accept the events sent by the collisions
self.accept('"into-' + tColl[1], self.collide)
sel f.accept('outof-' + tColl[1], self.collide2)

def collide(self, collEntry):
print "WERT: object has collided into another object"

def collide2(self, collEntry):
print "WERT: object is no longer colliding with another object"

def initCollisionSphere(self, obj, show=Fal se):
#get the size of the object for the collision sphere
bounds = obj . get Chil d(0).get Bounds()
center = bounds. get Center ()
radi us = bounds. get Radi us()*1.1

#create a collision sphere and nanme it sonethi ng understandabl e
col | SphereStr = 'Col i sionHull' +obj.get Name()
cNode=Col | i si onNode(col | SphereStr)
cNode. addSol i d(Col | i si onSphere(center, radius))
cNodepat h=0bj . at t achNewNode(cNode)
i f show
cNodepat h. show()

return a tuple with the collision node and its corrsponding string
return the collison node so that the bitmask can be set
return (cNode, col | SphereStr)

#run the world. nove around with the nopuse to create collisions
w= Wor | d()
run()

<<prev top next=>>

file:///E|/manual/Bitmask_Example.1.html (2 of 2)2006/11/21 aUsE 06:02:29

Panda3D Manual

Panda3D Manual: Clicking on 3D Objects

<<prev top next=>>=> Search

Thanks to Shao Zang and Phil Saltzman for their tutorial program included with Panda 3D
1.0.4.

The simplest way to click on 3D objects in Panda is to use very simplistic collision detection
coupled with event processing.

First, after a CollisonTraverser and a CollisionHandler have been setup, attach a CollisionRay
node to the camera. This node will have its set Fr onCol | i deMask() set to GeonNode.

get Def aul t Col | i deMask() in order to be as general as possible:

pi cker Node=Col | i sonNode(' nobuseRay")

pi cker NP=caner a. at t achNewNode(pi cker Node)

pi cker Node. set Fr onCol | i deMask(GeomNode. get Def aul t Col | i deMask
())

pi cker Ray=Col | i si onRay()

pi cker Node. addSol i d(pi cker Ray)

nmyTraver ser. addCol | i der (pi cker Node, nyHandl er)

For any object that you want to be pickable you should add a flag to it. The easiest way is to
use the set Tag() function, e.g.:

obj ect 1. set Tag(' nyQbj ect Tag'
1 1I)
obj ect 2. set Tag(' nyQbj ect Tag'
1 2I)

The above example sets the tag 'myObjectTag' on two objects in your graph that you want to
designate as pickable (we will check for the presence of this tag later, when we get the
response back from the collision system).

Now assume that the function nyFuncti on() is set up to be called for the 'mousel’ event. In
myFuncti on() is where you call pi cker Ray. set FroniLens(origin, destX, destY). This
makes the ray's origin ori gi n and the ray's vector the direction from ori gi n to the point
(dest X,dest Y).

file:///E|/manual/Clicking_on_3D_Objects.1.html (1 of 3)2006/11/21 aUaE 06:02:30

Panda3D Manual

def myFunction():
#Thi s gives up the screen coordi nates of the nouse
npos=base. nouseWat cher Node. get Mouse()

#This makes the ray's origin the canmera and nmakes the ray
poi nt
#to the screen coordi nates of the nopuse
pi cker Ray. set FronmlLens(base. canNode, npos. get X(), npos. getY())

After this, you now call the traverser like any other collision, get the closest object, and "pick
it.

def nmyFunction():
npos=base. nouseWat cher Node. get Mouse()
pi cker Ray. set Fronlens(base. camNode, npos. get X(), npos. getY())

myTraverser.traverse(render)
#assune for sinplicity's sake that nyHandler is a CollisionHandl er Queue
i f myHandl er. get NunEntries > O:

myHandl er. sortEntries() #this is so we get the cl osest object

pi ckedObj =myHandl er . get Entry(0) . get | nt oNodePat h()

Now, the node pi ckedObj returned by the collision system may not be the object itself, but

might be just a tiny piece of the object--a wheel, or a nose, or whatever. In particular, it will
be one of the GeomNodes that make up the object (the GeomNode class contains the visible

geometry primitives that are used to define renderable objects in Panda). Since your object
might consist of more than one GeomNode, what you probably would prefer to get is the
NodePath that represents the parent of all of these GeomNodes--that is, the NodePath that
you set the 'myObjectTag' tag on, above. You can use nodePat h. fi ndNet Tag() to return the

parent NodePath that contains a specified tag.

(There are also other, similar methods on NodePath that can be used to query the tag
specified on a parent node, such as get Net Tag() and hasNet Tag() . For simplicity we will

restrict this example to fi ndNet Tag() .)

Now you can edit nyFuncti on to look like:

file:///E/manual/Clicking_on_3D_Objects.1.html (2 of 3)2006/11/21 aUsE 06:02:30

Panda3D Manual

def myFunction():
npos=base. nouseWat cher Node. get Mouse()
pi cker Ray. set FromlLens(base. camNode, npos. get X(), npos.getY())

myTraver ser.traverse(render)
#assunme for sinplicity's sake that myHandl er is a CollisionHandl er Queue
i f myHandl er. get NunEntries() > O:

myHandl er. sortEntries() #this is so we get the cl osest object

pi ckedObj =nyHandl er. get Ent ry(0). get | nt oNodePat h()
pi ckedObj =pi ckedObj . fi ndNet Tag(' myQhj ect Tag')
i f not pickedObj.isEmpty():

handl ePi ckedObj ect (pi ckedObj)

<<prev top next>>
-

file:///E|/manual/Clicking_on_3D_Objects.1.html (3 of 3)2006/11/21 aUaE 06:02:30

Panda3D Manual

Panda3D Manual: Example for Clicking on 3D Objects

<<prev top next=>>

This is a small example program for clicking on 3D objects. A panda, a teapot, and a cube will be on screen.
When you click on the screen the console will tell you the nodePath of what you have clicked on. Its basically a
watered down version the tutorial included with Panda 3D 1.0.4. However, all the functionality for picking 3D
objects is encapsulated into the Picker class which you may feel free to use in your own code.

import direct.directbase.DirectStart
#for the events

fromdirect.showbase i mport Direct Qbject
#for collision stuff

from pandac. PandaMbdul es i nport *

cl ass Picker(DirectObject.Directject):
def __init_ (self):
#setup col lision stuff

sel f. pi cker= Col |l isionTraverser()
sel f. queue=Col | i si onHandl er Queue()

sel f. pi cker Node=Col | i si onNode("' nouseRay")
sel f. pi cker NP=caner a. at t achNewNode(sel f. pi cker Node)

sel f. pi cker Node. set Fr ontCol | i deMask(GeonNode. get Def aul t Col | i deMask())
sel f. pi cker Ray=Col | i si onRay()

sel f. pi cker Node. addSol i d(sel f. pi cker Ray)

sel f. pi cker.addCol | i der (sel f. pi cker Node, sel f. queue)

#this holds the object that has been picked
sel f. pi ckedObj =None

sel f.accept (' nousel', self.printM)

#this function is neant to flag an object as being sonthing we can pick
def makePi ckabl e(sel f, newhj) :
newCbj . set Tag(' pi ckabl e',"true')

#this function finds the closest object to the canera that has been hit by our ray
def getojectH t(self, npos): #npos is the position of the nmobuse on the screen
sel f. pi ckedObj =None #be sure to reset this
sel f. pi cker Ray. set FronLens(base. canNode, npos. get X(), npos. get Y())
sel f. pi cker.traverse(render)
if self.queue.getNunkEntries() > O:
sel f. queue. sortEntries()
sel f. pi ckedObj =sel f. queue. get Entry(0) . get | nt oNodePat h()

par ent =sel f. pi ckedQbj . get Par ent ()
sel f. pi ckedCbj =None

whil e parent != render:
i f parent.getTag(' pickable')=="true":
sel f. pi ckedObj =par ent
return parent
el se:
par ent =par ent . get Par ent ()
return None

def get Pi ckedObj (sel f):
return sel f. pi ckedQbj

file:///E)/manual/Example_for_Clicking_on_3D_Objects.1.html (1 of 2)2006/11/21 aUcE 06:02:31

Panda3D Manual

def printMe(self):
sel f.get Obj ect Hit (base. nouseWat cher Node. get Mouse())
print self.pickedObj

nmousePi cker =Pi cker ()

#l oad t hest nodel s

panda=| oader. | oadMbdel (' panda')

t eapot =l oader . | oadMbdel ('t eapot')
box=l oader . | oadMbdel (' box")

#put themin the world
panda. r epar ent To(r ender)
panda. set Pos(canera, 0, 100, 0)

t eapot . repar ent To(r ender)
t eapot . set Pos(panda, -30, 0, 0)

box. repar ent To(render)
box. set Pos(panda, 30, 0, 0)

nousePi cker . makePi ckabl e(panda)
nousePi cker. makePi ckabl e(t eapot)
nousePi cker . makePi ckabl e(box)

run()

If you are running this example on Panda 1.1, replace line 24 with

sel f. pi cker.addCol | i der (sel f. pi cker NP, sel f.queue)

Note: If you switch to another window, the mouse picker may not work when you are back to the panda window.
If that happens, just select the perform some window action.If it still doesn't work still, replace printMe method
with this:

def printMe(self):
i f base. mouseWat cher Node. hasMouse() :
sel f.get Obj ectHi t (base. nbuseWat cher Node. get Mouse())
print self.pickedObj

<<prev next=>=>

file:///E)/manual/Example_for_Clicking_on_3D_Objects.1.html (2 of 2)2006/11/21 sUsE 06:02:31

Panda3D Manual

Panda3D Manual: Hardware support

<<prev top next>> Search

Here is some advuice on interating with hardware using Panda3D's build in keyboard and
mouse support, as well as some suggestions for getting joystick information into Panda3D.

<<prev top next>> Search

filel///E/manual/Hardware_support.1.html2006/11/21 sUcE 06:02:31

Panda3D Manual

Panda3D Manual: Keyboard Support

<<prev top next=>>=> Search

Panda3D has keyboard support built in. Keyboard presses send Events. Each keyboard key will
send an event when it is first pressed down, when it is released, and one repeatedly while its
pressed.

The events can be accepted with the following code:

sel f.accept (<event nane> , <Function>)
sel f.accept (<event nane> , <Function> , <paraneters
list>)

<event name> is a string that labels the event.
<Function> is a python function to be called when the event is sent.
<parameters list> is a python list of parameters to use to call <Function>.

The <event name=> that a key sends is fairly predictable base on these rules:

1. Keys that type a character are named that character. It is always lowercase even with shift
or caps lock (Shift and other modifiers are explained below.)

a“, "b", "c", "[", and "]"

not

"A', "B", "C', "{", and "}"

2. The key down event is named for the key.

3. As of 1.3.0 The keyboard autorepeat is named for the key + "-repeat” e.g.

"a-repeat", "b-repeat", "[-
repeat"

4. The key up event is named for the key + "-up" e.g.

! a- up") " b_ up") " [B
up"

file:///E|/manual /K eyboard_Support.1.html (1 of 3)2006/11/21 aUsE 06:02:32

Panda3D Manual

5. All key events (including "-up") have a corresponding time event labeled

"time-" + <key
nanme>

that send a time argument corresponding to the time that event was fired

6. Keys that don't type a character are labeled as follows:

"escape", "f"+"1-12" (e.g. "f1","f2",..."f12"), "print_screen-up" (no down.)
"scrol |l | ock"

"backspace", "insert", "honme", "page_up", "num.l ock"

"tab", "delete", "end", "page_ down"

"caps_| ock", "enter", "arrow left", "arrow up", "arrow down", "arrow right"
"shift", "lIshift", "rshift",

"conrol", "alt", "lcontrol", "w ndow event"(no up?), "lalt", "space", "ralt",
"rcontrol"

7. Some physical keys are distinguishable from the events that they fire, and some are not.
The modifier keys distinguish between left and right, but send a neutral event as well. (e.g.
the left shift key sends both "Ishift" and "shift" events when pressed) Save for "num_lock",
"* and "+" the numpad keys are indistinguishable from the main keyboard counterparts. (e.
g. when Num Lock is on the both the numpad and keyboard 1 keys send "1")

8. Keys pressed in combination with modifiers send an additional event. The name is the
modifier appended before the key and separated with a dash in the order shift conrol alt e.g.:

"shift-a" "shift-control-alt-a" "shift-alt-
aII

These compound events don't send a "time-" event. If you need one, use the "time-" event
sent by one of the keys in the combination.

9. You can see these results for yourself using nessenger . t oggl eVer bose()

Here are some examples in code:

filel///E|/manual/K eyboard_Support.1.html (2 of 3)2006/11/21 aUsE 06:02:32

Panda3D Manual

self.accept('k' , self._ spam)#calls the function _ spanm() on the k key
event .

sel f.accept (' k-up', self.__spam [eggs, sausage, bacon,])#calls __ span(eggs,
sausage, bacon)

sel f.accept (' escape’ , sys.exit)#exit on esc

sel f.accept (' arrow up' , self.spamAndEggs)#call spamAndEggs when up is

pressed
sel f.accept (' arrow_up-repeat, self.spamAndEggs)#and at autorepeat if held
sel f.accept (' arrow_up-up' self.spamAndEggs)#calls when the up arrow key is
rel eased

<<prev top next>>

file:///E|/manual/K eyboard_Support.1.html (3 of 3)2006/11/21 aUsE 06:02:32

Panda3D Manual

Panda3D Manual: Mouse Support

<<prev top next=>>=> Search

Panda3D has mouse support built in. The default action of the mouse is to control the camera.
If you want to disable this functionality you can use the command:

base. di sabl eMouse

0

This function's name is slightly misleading. It only disables the task that drives the camera
around, it doesn't disable the mouse itself. You can still get the position of the mouse, as well
as the mouse clicks.

To get the position:

i f base. nbuseWat cher Node. hasMouse() :
x=base. nobuseWat cher Node. get MouseX

0
y=base. nobuseWat cher Node. get MouseY

0

The mouse clicks generate "events.” To understand what events are, and how to process
them, you will need to read the Event Handling section. The names of the events generated

are:

mousel Mouse Button 1 Pressed
mouse2 Mouse Button 2 Pressed
mouse3 Mouse Button 3 Pressed
mousel-up Mouse Button 1 Released
mouse2-up Mouse Button 2 Released
mouse3-up Mouse Button 3 Released

If you want to hide the mouse cursor, you want the line: "cursor hidden #t" in your Config.prc
or this section of code:

props = W ndowPr operties()
props. set Cur sor Hi dden(1)
base. wi n. request Properties

(props)

file:///E|/manual/Mouse_Support.1.html (1 of 2)2006/11/21 aUrE 06:02:32

Panda3D Manual

<<prev top next>> - |

| -

file:///E|/manual/Mouse_Support.1.html (2 of 2)2006/11/21 aUrE 06:02:32

Panda3D Manual

Panda3D Manual: Joystick Support

<<prev top next>> Search

Note: | have been told that these instructions are inaccurate. - Josh

While Panda3D has mouse and keyboard support, it is best to look to the open source
community for joystick support. Pygame is an open-source module that contains joystick
support that may be easily included into a Panda3D application. Pygame may be found at
http://www.pygame.org.

After downloading pygame, simply import the modules as you would any Panda3D module.

i nport pygamne

Once pygame is imported, it needs to be initialized. Also, when the program is through with
using pygame, it should be exited cleanly.

pygane.init()
pygane. qui t
0

Also, the joystick should be initialized. It too has a quit function.

joystick.init()
j oystick. quit
()

From here, it is possible to get the axis information of the joystick as well as the state of the
buttons.

j oystick. get _axi s(<Axi s>)
j oystick.get button
(<But t on>)

These are the primary functions for the joystick, but there are a number of other functions
available for joystick support. This can be found at the pygame website.

<<prev top next=> N

file:///E|/manual/Joystick_Support.1.htm|2006/11/21 aUsE 06:02:33

http://www.pygame.org/

Panda3D Manual

Panda3D Manual: VR Helmets and Trackers

<<prev top next=>>=> Search

This section is especially geared towards Carnegie Mellon University's virtual reality
equipment. The tracking setup used consists of a magnetic tracker base that receives signals,
a virtual reality headmount, and four small trackers, one of which is attached to the
headmount. These magnetic trackers may be held in the hand or implanted in non-metallic
objects, and they will relay their position and orientation to the tracker base, which then
supplies it to the program.

First, make sure that the VRHandler is in the same folder as your python files. Then, import it
as you would any Panda3D module.

from VRHandl er i nport

*

Once imported, the VRHandler functions are now available. Make a constant in your code that
controls whether or not the tracker is used.

USE TRACKER
True

or

USE_TRACKER
Fal se

Then, activate the tracker if required:

i f USE_TRACKER:
sel f.tracker = Tracker()
camer a. reparent To(sel f.tracker. get HVDHel per ())
el se:
print "Using Muse and Keyboard Control s"
self.control s = MouseAndKeyboar dCont r ol s()
self.controls.start()

If the tracker is not being used, the above code enables first-person-shooter style controls,
using WASD to move, R and F for height, and the mouse to look around. You can add the
following lines to your code if you want to customize the feel of the controls:

file:///Ej/manual/VR_Helmets and_Trackers.1.html (1 of 2)2006/11/21 aUcE 06:02:33

Panda3D Manual

Keyboard control constants
sel f.control s. accel eration = 15
sel f.control s. maxSpeed = 5

sel f.controls.friction = 6

Change those three numbers to whatever feels right for your world.

Typically, the tracker base is 6.5 feet off the ground, and the range of the trackers is from
three or so inches from the tracker base to around the knees of an average person. The
tracker base is treated as a NodePath, so it may be moved around. If you want the guest to
move around the world while his real-life feet stay put, get the tracker base helper and move
that around:

sel f.tracker BaseHel per = self.tracker. get Tr acker BaseHel per ()
sel f.tracker BaseHel per. set Pos(0, 3, 0)

Finally, objects within the Panda3D application may be reparented to the trackers. The four
trackers are HMDHelper, YellowHelper, GreenHelper, and BlueHelper. Also, remember that
reparenting may create some strange inheritance issues.

NodePat h. reparent To(sel f. tracker. get HVDHel per ())
NodePat h. repar ent To(sel f. tracker. get Yel | onHel per ())
NodePat h. reparent To(sel f. tracker. get G eenHel per())
NodePat h. reparent To(sel f. tracker. get Bl ueHel per ())

top next>>

file:///E)/manual/VR_Helmets and_Trackers.1.html (2 of 2)2006/11/21 aUcE 06:02:33

Panda3D Manual

Panda3D Manual: Math Engine

top next>>

<<prev

Panda3D has a number of vector, matrix, and quaternion operations built-in. The relevant
classes are:

WRITE ME

<<prev top next>>

-

file:///EJ/manual/Math_Engine.1.ntml2006/11/21 aUcE 06:02:34

Panda3D Manual

Panda3D Manual: Matrix Representation

<<prev top next=>>=> Search

Periodically, the question arises: does Panda store matrices in column-major or row-major
format? Unfortunately, people who ask that question often fail to realize that there are four
ways to represent matrices, two of which are called "column major,"” and two of which are
called "row major."” So the answer to the question is not very useful. This section explains the
four possible ways to represent matrices, and then explains which one panda uses.

The Problem

In graphics, matrices are mainly used to transform vertices. So one way to write a matrix is to
write the four transform equations that it represents. Assuming that the purpose of a matrix is
to transform an input-vector (Xi,Yi,Zi,Wi) into an output vector (Xo,Yo0,Zo,Wo), the four
equations are:

Xo = A*Xi + B*Yi + CZ +
D W
Yo = EEXi + FFYi + GZ +
H* W
Zo = J*Xi + KYi + L*Zi +
MW
W = N*Xi + OYi + P*Zi +
QW

There are two different orders that you can store these coefficients in RAM:

Storage Option 1: AB,CDEFGHJ, KL MN QO P,
Q
Storage Option 2: AE,J,NB F,KOCGL,P,D HM
Q

Also, when you're typesetting these coefficients in a manual (or printing them on the screen),
there are two possible ways to typeset them:

ABCD AEJN
EFGH BFKO
JKL M CGLP
NOPQ DHMQ
Typesetting Typesetting
Option 1 Option 2

file:///E|/manual/Matrix_Representation.1.html (1 of 5)2006/11/21 aUsE 06:02:35

Panda3D Manual

These are independent choices! There is no reliable relationship between the order that people
choose to store the numbers, and the order in which they choose to typeset them. That means
that any given system could use one of four different notations.

So clearly, the two terms "row major" and "column major" are not enough to distinguish the
four possibilities. Worse yet, to my knowledge, there is no established terminology to name

the four possibilities. So the next part of this section is dedicated to coming up with a usable
terminology.

The Coefficients are Derivatives

The equations above contain sixteen coefficients. Those coefficients are derivatives. For
example, the coefficient "G" could also be called "the derivative of Yo with respect to Zi."

This gives us a handy way to refer to groups of coefficients. Collectively, the coefficients "A,B,
C,D" could also be called "the derivatives of Xo with respect to Xi,Yi,Zi,Wi" or just "the
derivatives of Xo" for short. The coefficients "A,E,J,N" could also be called "the derivatives of
Xo,Yo0,Zo,Wo with respect to Xi" or just "the derivatives with respect to Xi" for short.

This is a good way to refer to groups of four coefficients because it unambiguously names four
of them without reference to which storage option or which typesetting option you choose.

What to Call the Two Ways of Storing a Matrix.

So here, again, are the two ways of storing a matrix. But using this newfound realization that
the coefficients are derivatives, | have a meaningful way to name the two different ways of
storing a matrix:

A B CDEF GHJI KLMMNOPRP G

Derivatives of Xo First

A B J N B F K OOCGLPDHMIQ

Derivatives wrt X1 First

In the first storage scheme, the derivatives of Xo are stored first. In the second storage
scheme, the derivatives with respect to Xi are stored first.

What to Call the Two Ways of Printing a Matrix.

One way to write the four equations above is to write them out using proper mathematical
notation. There are two ways to do this, shown below:

filel///E/manual/Matrix_Representation.1.html (2 of 5)2006/11/21 aUoE 06:02:35

Panda3D Manual

#0 A B C D iy
Yo | = E F = H ¥ Y
il J oKL M il
Wio M O F 0 W
Column Vectors
A E 4 N
I SV E F K O
[}{n Yo EDWD]—[}{I Wi L W|]H cC G L P
O H M Q
Row Vectors

Notice that the two matrices shown above are laid out differently. The first layout is the
appropriate layout for use with column vectors. The second layout is the appropriate layout for
use with row vectors. So that gives me a possible terminology for the two different ways of
typesetting a matrix: the "row-vector-compatible"” notation, and the "column-vector-
compatible"” notation.

The Four Possibilities
So now, the four possible representations that an engine could use are:

Store derivatives of Xo first, typeset in row-vector-compatible notation.
Store derivatives of Xo first, typeset in column-vector-compatible notation.
Store derivatives wrt Xi first, typeset in row-vector-compatible notation.
Store derivatives wrt Xi first, typeset in column-vector-compatible notation.

5 (U S

The Terms "Column Major" and ""Row Major"

The term "row-major” means "the first four coefficients that you store, are also the first row
when you typeset.” So the four possibilities break down like this:

1. Store derivatives of Xo first, typeset in row-vector-compatible notation (COLUMN

MAJOR)
2. Store derivatives of Xo first, typeset in column-vector-compatible notation (ROW

MAJOR)
3. Store derivatives wrt Xi first, typeset in row-vector-compatible notation (ROW MAJOR)
4. Store derivatives wrt Xi first, typeset in column-vector-compatible notation (COLUMN
MAJOR)

filel///E/manual/Matrix_Representation.1.html (3 of 5)2006/11/21 aUoE 06:02:35

Panda3D Manual

That makes the terms "row major" and "column major" singularly useless, in my opinion. They
tell you nothing about the actual storage or typesetting order.

Panda Notation

Now that I've established my terminology, | can tell you what panda uses. If you examine the
panda source code, in the method "LMatrix4f: :xform," you will find the four transform
equations. | have simplified them somewhat (ie, removed some of the C++ quirks) in order to
put them here:

define VECTORA_NMATRI X4 PRODUCT(out put, input, M \

output. O = input. 0*M 00 + input. 1*M 10 + input. _2*M 20 + input._3*M _30;
:)ut put. 1
z)ut put. 2 =input. 0*M _02 + input. 1*M _12 + input. 2*M _22
z)ut put. 3 =input. 0*M 03 + input. 1*M 13 + input. 2*M 23 + input._ 3*M _33;

input. 0O*M 01 + input._1*M _11 + input._2*M _21 + input._3*M _31;

+

i nput. _3*M _32;

Then, if you look in the corresponding header file for matrices, you will see the matrix class
definition:

struct {

FLOATTYPE _00, 01, _02,
_03;

FLOATTYPE _10, _11, _12,
_13;

FLOATTYPE 20, 21, _22,
_23;

FLOATTYPE _30, 31, _32,
_33;

}om

So this class definition shows not only how the coefficients of the four equations are stored,
but also the layout in which they were intended to be typeset. So from this, you can see that
panda stores derivatives wrt Xi first, and it typesets in row-vector-compatible notation.

Interoperability with OpenGL and DirectX

Panda is code-compatible with both OpenGL and DirectX. All three use the same storage
format: derivatives wrt Xi first. You can pass a panda matrix directly to OpenGL's
"glLoadMatrixf" or DirectX's "SetTransform".

However, remember that typesetting format and data storage format are independent choices.
Even though two engines are interoperable at the code level (because their data storage
formats match), their manuals might disagree with each other (because their typesetting

filel///E/manual/Matrix_Representation.1.html (4 of 5)2006/11/21 aUoE 06:02:35

Panda3D Manual

formats do not match).
The panda typesetting conventions and the OpenGL typesetting conventions are opposite from

each other. The OpenGL manuals use a column-vector-compatible notation. The Panda
manuals use a row-vector-compatible notation.

I do not know what typesetting conventions the DirectX manual uses.

top next>=>

file:///E|/manual/Matrix_Representation.1.html (5 of 5)2006/11/21 asUsE 06:02:35

Panda3D Manual

Panda3D Manual: Physics Engine

<<prev top next=>>

Panda3D has a very basic physics engine that may apply forces to classes. The physics engine
can handle angular or linear forces, as well as viscosity.

To make use of the collision engine, first enable the particle system. The particle system relies
upon the physics engine to move and update particles, so enabling the particle system adds
the tasks in the engine that monitor and update the interactions of physics-enabled objects in
the scene.

base. enabl eParti cl es()

The rest of this section will address how to prepare a model for physical interactions and apply
forces to the model.

<<prev top next=>>

|-

file:///E|/manual/Physics_Engine.1.html2006/11/21 aUsE 06:02:36

Panda3D Manual

Panda3D Manual: Enabling physics on a node

<<prev top next=>=>

Search

The ActorNode is the component of the physics system that tracks interactions and applies
them to a model. The calculations factor in the amount of time elapsed between frames, so
the physics will be robust against changes in framerate.

To enable a node for physics, attach an ActorNode to it. The ActorNode keeps track of which

NodePath it is attached to, and will change the position and orientation of that NodePath as
physics is applied to the ActorNode.

When an ActorNode is created, it must also be attached to a PhysicsManager. The
PhysicsManager will handle the physics calculations every frame and notify the ActorNode of
any changes it needs to apply to its parent NodePath. Panda provides a default physics
manager, base.physicsMgr, which will often be suitable for most applications.

j et packCGuy=l oader . | oadModel (" nodel s/ et pack_guy")
j et packCQuy. r epar ent To(r ender)

an=Act or Node(" | et pack- guy- physi cs")

anp=j et packQuy. at t achNewNode(an)

base. physi csMyr. att achPhysi cal Node(an)

Now, the "jetpack guy" model will be updated every frame with the physics applied to it.

The ActorNode also serves as a repository for the PhysicsObject that describes the physical
properties (i.e. mass) of the object. To modify these properties, use the getPhysicsObject call.

an. get Physi csCbj ect (). set Mass(136. 077) #about 300
| bs

<<prev top next>> Search

file:///E|/manual/Enabling_physics on_a_node.1.html2006/11/21 aUxE 06:02:36

Panda3D Manual

Panda3D Manual: Applying physics to a node

<<prev top next>> Search

To apply forces to a physical object, collect them into a ForceNode and then apply them to the
object. The ForceNode is a node that specifies the "context" of the force; i.e. the local
coordinate transform that determines the direction of the force. Because ForceNodes are
separate from ActorNodes, a ForceNode can be placed in a different portion of the model tree
from the ActorNode to which the forces applies. This allows for forces to be applied indirectly
to a model (such as wind sweeping across the scene, or a mechanical impulse from an
appendage of the model) without having to do the calculations necessary to transform from
the ActorNode's coordinates to the coordinates of the force's source.

To add a force to a physical object, add the force using either the addLinearForce method (for
translational forces) or the addAngularForce method (for rotational forces):

act or Node. addLi near For ce(pusher For ce)
act or Node. addAngul ar For ce
('spi nner For ce)

Conversely, forces can be removed using the corresponding remove calls:

act or Node. r enovelLi near For ce(pusher For ce)
act or Node. r enoveAngul ar For ce
('spi nner For ce)

By default, linear forces don't factor in the mass of the object upon which they act (meaning
they are more like accelerations). To factor in the mass of the object when applying the linear
force, use the following call to enable mass-dependent calculations:

pusher For ce. set MassDependent

(1)

Example 1: Gravity

To apply a gravitational pull to the "jetpack guy" from the previous example:

file:///E|/manual/Applying_physics to_a node.1.html (1 of 3)2006/11/21 aUcE 06:02:37

Panda3D Manual

gravi t yFN=For ceNode(' wor | d-f orces')

gravi t yFNP=r ender . at t achNewNode(gr avi t yFN)

gravi t yFor ce=Li near Vect or Force(0,0,-9.8) #gravity accel eration
gravi t yFN. addFor ce(gravityForce)

base. physi csManager . addLi near For ce(gravi t yFor ce)

Since the gravitational force is relative to the entire world (and shouldn't change if, for
example, the jetpack guy tumbles head-over-heels), the gravityForce vector was added to a
ForceNode attached to render. So regardless of the orienation of the NodePath controlled by
an, the force will always pull towards the bottom of the scene.

Since all objects in the scene should be affected by gravity, the force was added to the set of
forces managed by the PhysicsManager itself. Since forces ignore the mass of the objects they
act upon by default, this force will pull all objects towards the ground at standard gravitational
acceleration. The next example shows how to apply a force to a single object.

Example 2: Rotary Thruster

Here is another example of applying forces to objects and the way in which the ForceNode
alters the effect:

t hrust er =NodePat h("thruster”) # nake a thruster for the jetpack
thruster. reparent To(] et packGuy)
t hruster. set Pos(O, -2, 3)

t hrust er FN=For ceNode(' j et packGuy-thruster') # Attach a thruster force
t hrust er FNP=t hr ust er . at t achNewNode(t hr ust er FN)

t hr ust er For ce=Li near Vect or For ce(0, 0, 4000)

t hr ust er For ce. set MassDependent (1)

t hrust er FN. addFor ce(t hr ust er For ce)

an. get Physi cal (0) . addLi near For ce(t hrust er For ce)

thruster.setP(-45) # bend the thruster nozzle out at 45 degrees

When this force is applied to the jetpack guy, it will push upwards and forwards. If the
thruster's pitch and roll were controlled (say, by a joystick), then the jetpack could be moved
around merely by changing the pitch and roll values; the ForceNode would inherit the
orientation of the thruster and automatcially change the direction it pushes.

The effect that this thruster force has upon the jetpack guy should be dependent upon the
mass of the system, so the setMassDependent call is used to factor mass into the acceleration
analysis.

file///E/manual/Applying_physics to_a node.1.html (2 of 3)2006/11/21 aUoE 06:02:37

Panda3D Manual

<<prev top next>> - |

| -

file:///E|/manual/Applying_physics to_a node.1.html (3 of 3)2006/11/21 sUcE 06:02:37

Panda3D Manual

Panda3D Manual: Types of forces

<<prev top next=>>=> Search

Panda3D provides several types of forces that you can apply to an object.
LinearVectorForce

A LinearVectorForce accelerates the center of mass of an object along a straight line. The
direction of the line is determined by the relative orientations of the NodePath controlled by
the ActorNodea and the ForceNode to which the LinearVectorForce is assighed.

| vf =Li near Vect or Force(1,0,0) # push 1 newton in the positive-x direction
f orceNode. addForce(l vf) # determi ne coordi nate space of this force node
act or Node. get Physi cal (0). addLi near For ce(| vf)

AngularVectorForce

The AngularVectorForce changes the angular momentum of the object to which it is applied.
Note that angular forces are applied to an object using the addAngularForce method, not the
addLinearForce method used above.

avf =Angul ar Vect or Force(1,0,0) # spin around the positive-x axis
f or ceNode. addFor ce(avf) #determ ne which positive-x axis we use for cal cul ation
act or Node. get Physi cal (0) . addAngul ar For ce(avf)

Editorial note: The linear vector force is the only one | have worked with as of right now. If
anyone could flesh out this section with more detail or more forces, it would be greatly
appreciated!

file:///E/manual/Types _of_forces.1.html2006/11/21 sUsE 06:02:37

Panda3D Manual

Panda3D Manual: Notes and caveats

<<prev top next>> Search

Here are some caveats, quirks, and behaviors to be aware of when working with the physics
engine:

1. You can add the same force to an object multiple times with repeated calls to
addLinearForce or addAngularForce. The result will be that the total effect will be the
effect of the force applied once times the number of times it is applied. Note, however,
that to remove the force's effect on the object, you must call remove*Force the same
number of times add*Force was called; each call to remove only removes one instance
of the force. Of course, it is more efficient to use a single force with magnitude (n X #
of copies) than to use the same force multiple times.

2. If a NodePath that is controlled by an ActorNode also needs collision calculations done
upon it, be sure to use the PhysicsCollisionHandler instead of CollisionHandlerPusher.
More info can be found in the section on Collision Handlers. If you intend to use a
PhysicsCollisionHandler to prevent a model from falling through a floor (for example, if
the scene has gravity applied), be sure to look at the friction coefficient options on the
PhyicsCollisionHandler.

<<prev top next=>=> -

file///E/manual/Notes_and_caveats.1.html2006/11/21 cUcE 06:02:38

http://panda3d.org/apiref.php?page=PhysicsCollisionHandler

Panda3D Manual

Panda3D Manual: Motion Paths

<<prev top next>> Search

Motion paths in Panda3D are splines created by a modeler that are then exported to egg files.
These egg files are then imported into a program, and various nodes can then use the motion
path for complex movement. A viable egg file for a motion path has the &€ cecurvea€ « tag.

First, the Mopath and Mopathinterval modules must be loaded. While motion paths come with
their own play functions, a motion path interval allows for more functionality.

fromdirect.directutil inport Mpath
fromdirect.interval . Mpathlnterval inport

*

With the modules loaded, the motion path is loaded much like an actor is loaded. A NodePath
is created with the knowledge that it will be used for a motion path, and then the file is loaded.

ny Mot i onPat hNanme = Mopat h. Mopat h()
ny Mot i onPat hNane. | oadFi l e(' Fil e
Pat h')

Finally, the motion path interval may be created, and played like any interval can. The interval
requires not only the name of the motion path, but also the NodePath that will be affected by
it.

nyl nt erval = Mopat hl nt erval (myMot i onPat hNanme, myNodePat h,
nane=' Nane')

T e B =2

file:///E|/manual/Motion_Paths.1.htm|2006/11/21 aUsE 06:02:38

Panda3D Manual

Panda3D Manual: Timing

<<prev top next>> Search

While the python time module can do a decent job of timing, panda has a built in timing
system that allows for lag and cpu stutter.

<<prev top next>> Search

file///Ef/manual/Timing.1.html 2006/11/21 aUcE 06:02:39

Panda3D Manual

Panda3D Manual: The Global Clock

<<prev top next=>>

The global clock is import into the global namespace when you start up panda

to get the time(in seconds) since the last frame was drawn:

gl obal C ock. get Dt ()

another useful function is the time (in seconds since the program started

gl obal C ock. get FraneTi me()

top next>>

file:///EJ/manual/The_Global_Clock.1.html2006/11/21 aUaE 06:02:39

Panda3D Manual

Panda3D Manual: Networking

<<prev top next>> Search

Panda3D contains support for networked games. This includes both a low-level stream based
API, and a higher level distributed object API. The documentation in this section assumes
some familiarity with the basic concepts of networking in geneal, and the IP protocol in
particular.

The documentation on these features is still in development. Read the forums for the most up-
to-date information.

<<prev top next>> Search

filel///E|/manual/Networking.1.html 2006/11/21 sUcE 06:02:40

Panda3D Manual

Panda3D Manual: Datagram Protocol

<<prev top next>> Search

Underpinning Panda's networking capabilities are the classes that compose the datagram
protocol. These classes allow for developer-defined packets to be transmitted using either the
UDP or TCP protocols. Panda's datagram layer can serve as a solid foundation for developing
higher-level networking abstractions.

This section describes the classes used to establish a connection (QueuedConnectionManager,
QueuedConnectionListener, QueuedConnectionReader, and ConnectionWriter), as well as the
classes that transmit information (NetDatagram, PyDatagram, and PyDatagramlterator).

<<prev top next>> Search

filel///E|/manual/Datagram_Protocol.1.html 2006/11/21 sUcE 06:02:40

Panda3D Manual

Panda3D Manual: Client-Server Connection

<<prev top next>> Search

The first step in network communication is to establish the client-server connection. This
entails two sets of operations: one for the server side (which listens for incoming connections),
and one for the client side (which establishes a connection to the server). Both of these
processes are described below.

Preparing the server for connection
An average Panda program acting as a server will need to create four classes:

1. A QueuedConnectionManager, which handles the low-level connection processes,
establishes connections, and handles unexpected network termination

. A QueuedConnectionListener, which waits for clients to request connection

A QueuedConnectionReader, which buffers incoming data from an active connection

. A ConnectionWriter, which allows PyDatagrams to be transmitted out along an active
connection

AwN

The first step is to instantiate these four classes.

cManager = QueuedConnecti onManager ()

cLi stener = QueuedConnecti onLi st ener (sel f.cManager, 0)
cReader = QueuedConnecti onReader (sel f.cManager, 0)
cWiter = ConnectionWiter(self.cManager, 0)

activeConnections=[] # We'll want to keep track of these
| at er

This method of instantiation prepares the classes in single-thread mode, which that realtime
communication requires them to be polled periodically.

To accept client connections, the server opens a special "rendezvous" socket at a specific port
address. This port address must be known by both the client and the server. Additionally, a
backlog is speicified; this is the number of incoming connection requests that the connection
will track before it starts rejecting connection attempts. The responsibility for managing the
rendezvous socket is passed to the QueuedConnectionListener, and a task is spawned to
periodically poll the listener.

port address=9099 #No-other TCP/IP services are using this port
backl 0g=1000 #If we ignore 1,000 connection attenpts, sonething is w ong!
tcpSocket = cManager. openTCPSer ver Rendezvous(port address, backl og)

cLi st ener. addConnecti on(tcpSocket)

file:///E|/manual/Client-Server_Connection.1.ntml (1 of 4)2006/11/21 aUcE 06:02:41

Panda3D Manual

Sicne the network handlers we instantiated are polled, we'll create some tasks to do the
polling.

taskMgr . add(t skLi stenerPol I ing,"Poll the connection |listener",-39)
taskMyr . add(t skReader Pol | i ng, "Pol | the connection reader", -40)

When a connection comes in, the tskListenerPolling function below handles the incoming
connection and hands it to the QueuedConnectionReader. The connection is now established.

def tskListenerPolling(taskdata):
i f cLi stener. newConnecti onAvai |l abl e() :

rendezvous = Poi nt er ToConnecti on()
net Addr ess = Net Addr ess()
newConnecti on = Poi nt er ToConnecti on()

i f cListener.get NewConnecti on(rendezvous, net Addr ess, newConnect i on) :
newConnecti on = newConnecti on. p()
acti veConnecti ons. append(newConnecti on) # Renenber connecti on
cReader . addConnect i on(newConnecti on) # Begi n readi ng connecti on
return Task. cont

Once a connection has been opened, the QueuedConnectionReader may begin processing
incoming packets. This is similar to the flow of the listener's task, but it is up to the server
code to handle the incoming data.

def tskReaderPol |l ing(taskdata):

i f cReader . dat aAvai l abl e():
dat agr an=Net Dat agran() # catch the incoming data in this instance
Check the return value; if we were threaded, soneone el se coul d have
snagged this data before we did
i f cReader. get Dat a(dat agram :

nmyPr ocessDat aFunct i on(dat agr am
return Task. cont

Note that the QueuedConnectionReader retrieves data from all clients connected to the server.
The NetDatagram can be queried using NetDatagram.getConnection to determine which client
sent the message.

If the server wishes to send data to the client, it can use the ConnectionWriter to transmit
back along the connection.

file:///E|/manual/Client-Server_Connection.1.html (2 of 4)2006/11/21 aUcE 06:02:41

Panda3D Manual

broadcast a nmessage to all clients
my Py Dat agr am=nyNewPyDat agram() # build a datagramto send
for aClient in activeConnections:

cWiter.send(nmyPyDat agram aCl i ent)

Finally, the server may terminate a connection by removing it from the
QueuedConnectionReader's responsibility. It may also deactivate its listener so that no more
connections are received

term nate connection to all clients

for aClient in activeConnections:
cReader . renmoveConnecti on(ad i ent)
acti veConnecti ons=[]

cl ose down our |istener
cManager . cl oseConnecti on(t cpSocket)

Connecting with a client

The process the client undertakes to connect to a server is extremely similar to the process
the server undertakes to receive connections. Like the server, a client instantiates a
QueuedConnectionManager, QueuedConnectionReader, and ConnectionWriter. However, there
are some differences in the process. In general, a client has no need to open a rendezvous
socket or create a QueuedConnectionListener, since it will be doing the connecting itself.
Instead, the client connects to a specific server by specifying the server's IP address and the
correct socket ID.

port address=9099 # sane for client and server

a valid server URL. You can al so use a DNS nane
if the server has one, such as "l ocal host" or "panda3d.org"
i p_address="192. 168. 0. 50"

how long until we give up trying to reach the server?
timeout _in_mliseconds=3000 # 3 seconds

nmyConnect i on=cManager . openTCPC i ent Connecti on(i p_addr ess, port _address,
timeout _in_mliseconds)

i f nyConnecti on:
cReader . addConnecti on(nyConnecti on) # receive nessages from server

When the client has finished communicating with the server, it can close the connection.

file:///E|/manual/Client-Server_Connection.1.html (3 of 4)2006/11/21 aUcE 06:02:41

Panda3D Manual

cManager . cl oseConnecti on
(myConnecti on)

<<prev top next>>

-

file:///E|/manual/Client-Server_Connection.1.html (4 of 4)2006/11/21 aUcE 06:02:41

Panda3D Manual

Panda3D Manual: Transmitting Data

<<prev top next>> Search

Once a connection has been established, data can be transmitted from one Panda program to
another using the classes described in this section. Communication can happen in both
directions (i.e. client-to-server or server-to-client); once the connection has been established,
either side may send messages along the connection to the other side.

This section describes message passing in detail, first transmission, then receipt of a message.
Sending a message

To send a message along an established connection, the sender must first construct a
PyDatagram containing the message. This involves instantiating a PyDatagram object and then
populating its contents with the desired data. The type of the data is determined by the
functions used to pack it; see the full documentation of the PyDatagram class for more details.

#Devel oper-defined constants, telling the server what to do.
#Your style of howto store this information nmay differ; this
is

#only one way to tackle the problem

PRI NT_MESSAGE=1

def myNewPyDat agr an{ sel f):
send a test nessage
nmy PyDat agr am=PyDat agr an()
nmy PyDat agr am addUl nt 8(PRI NT_MESSAGE)
nmyPyDat agr am addStri ng("Hell o, world!")
return nyPyDat agram

As shown in the previous section, once the datagram is constructed you may then send it
using a ConnectionWriter.

cWiter.send(mPyDat agram
aConnecti on)

Receiving a message

As shown in the previous section, when a message is received via a QueuedConnectionReader,
it can be retrieved into a NetDatagram:

file:///E|/manual/Transmitting_Data.1.html (1 of 2)2006/11/21 aUaE 06:02:42

Panda3D Manual

dat agr am=Net Dat agr am

i f cReader. get Dat a(dat agran) :
myPr ocessDat aFunct i on

(dat agr am

A NetDatagram contains the original information that was stored in the transmitted
PyDatagram. It also contains knowledge of the connection over which it was received and the
address of the connection. To retrieve the connection, use the getConnection method:

sour ceOf Message=dat agr am get Connecti on

0

To retrieve the contents of the message, use the PyDatagramlterator. The iterator class acts
as the complement of the PyDatagram class; its methods can be used to retrieve the content
that was encoded using PyDatagram.

def myProcessDat aFuncti on(net Dat agr am :
nyl t er at or =PyDat agr am t er at or (net Dat agr an)
nmsgl D=nyl t er at or. get Ul nt 8()
i f msgl D==PRI NT_MESSACE:
nmessageToPrint=nylterator.getString()
print nessageToPri nt

Note: It is assumed that the message recipient will retrieve the same type of content in the
same order that the message sender packed the content. No mechanism exists in the
PyDatagramlterator to ensure that the data being unpacked matches the requested type.
Unpacking the data using a different type function will probably result in unexpected behavior.

<<prev top next=>=>

filel///E|/manual/Transmitting_Data.1.html (2 of 2)2006/11/21 aUaE 06:02:42

Panda3D Manual

Panda3D Manual: The Python Debugger

<<prev top next>> Search

Python is a very powerful interactive and interpreted language. Python's development cycle is
very fast. Often the most effective way to to debug is to output relevant information. Having
said that, there are many ways to enhance productivity with knowledge of good debugging
techniques.

Using python -i mode

Python programs may be developed and tested with the help of the interactive mode of the
Python interpreter, which, allows program components to be debugged, traced, profiled, and
tested interactively. When invoking python with -i, this ensures that an interactive session of
python is invoked. With regards to Panda3D this requires a little explanation. Panda3D
programs typically have a command called run() to start rendering, so here's one way to start
an interactive session. On the command prompt type:

ppython -i nyPandaFil e.
py

After Panda3D has loaded, make sure the command window has focus and type Ctrl-C. This
will show a python prompt like so:

>>>

Now on the command prompt you can execute any python commands, related or unrelated to
your Panda3D program. This is useful for looking at information at that specific point in time.
You could even change that information for that running instance of the program.

pdb

Python offers hooks enabling interactive debugging. Module pdb supplies a simple text-mode
interactive debugger. It supports setting (conditional) breakpoints and single stepping at the
source line level, inspection of stack frames, source code listing, and evaluation of arbitrary
Python code in the context of any stack frame. It also supports post-mortem debugging and
can be called under program control.

The debugger's prompt is "(Pdb) ". There are many ways to enter the debugger. Typical usage
to run a program under control of the debugger is:

file///E/manual/The_Python_Debugger.1.html (1 of 2)2006/11/21 aUoE 06:02:42

Panda3D Manual

>>> jnport pdb

>>> jnport <mynodul e>
>>> pdb. run(' nynodul e. t est
0O")

> <string>(0)?()

(Pdb) continue

> <string>(1)?()

(Pdb) continue
NameError: 'spani
<string>(1)?()

(Pdb)

Detailed information about pdb can be found here. In addition to pdb, python also has two
modules called i nspect and traceback. i nspect supplies functions to extract information
from all kinds of objects, including the Python call stack and source files. The t r aceback

module lets you extract, format and output information about tracebacks as normally
produced by uncaught exceptions.

<<prev top next>>

=

file:///E/manual/The_Python Debugger.1.html (2 of 2)2006/11/21 aUsE 06:02:42

http://www.python.org/doc/current/lib/module-pdb.html

Panda3D Manual

Panda3D Manual: Running Panda under the CXX Debugger

<<prev top next=>=>

These instructions show how to compile and run panda from inside the Microsoft Visual Studio debugger.

Before you Begin

The first step is to download the panda source code and compile it. The instructions can be found in the section Building
Panda from Source. Be sure to compile with the Optimize setting of 1, otherwise, Visual Studio will not be able to debug
properly. Once you have compiled panda, start up visual studio, and ask it to create a new project:

a!Mich’ft'[)eirelnpmén't Envirﬁnmen’t'[ﬂesigh]
File | Edit Migw Tools ‘Window Help
| Mew *||i@ Project,.. ChrlShift+M - w LUMIMAMCE
| Open ¥ |'5] FEie... Chrl+N
'i':a Blank. Solution. ..

Add Project k

Cpen Solukion, .,

@ K 5.8,

Save Al Ctrl+Shift+3

Source Conkrol 3

i

There are four pieces of information you need to enter into the new project dialog:

. Tell it to make a "C++ project”

. Tell it to use a "Makefile"

. Tell it the name of the project, "debugpanda”

. Tell it where the panda source tree is (ie, "c:\panda3d-b")

file:///E|/manual/Running_Panda_under_the CXX_Debugger.1.html (1 of 7)2006/11/21 aUsE 06:02:45

Panda3D Manual

Hew Project E

Project Types: Templates;

- visual Basic Projects

{27 wisual C# Projects

[wisual J# Projects
+-3 Wisual C++ Praojects Cuskam Empty Project Extended

|2 setup and Deployment Projects wizard {.NET) Stored Pra. .
+-[_] Other Projects =

- visual Studio Solutions rraﬁ

Makefile MFC Ackives MFC d
Praoject Zantral Application M

|F‘r|:|ject with a user-sperified build command (2.0, nmake).

Marme: I debugpanda

Location: | Z:\panda3d-b ;I Browse, ..

Praoject will be created at Ciipanda3d-bidebugpanda.

FMare | Zancel

Click ok, and confirm. You have now created the project, and the project is open for editing. You now need to access the
"solution explorer:"

o debugpanda - Microsoft Visual C++ [design]
File Edit | Wiew i Projectk Buld Debug Tools Window Help

@ = >|{:| ||a Solution Explorer Ckrl+alk+L i e p Debug -) LUMINANCE
% % Class View Ctrl+Shift+C
Lo Ex| Server Explorer Chrl+AlE+3
% Resource Yisw Ctrl+Shift+E
'é_n Properties Window F4
T =4 Object Browser Chrl+Alk+3
2% Toolbaox Chrl+AIE+Y,
B3

E]

Pending Checkins

Weh Browser 3
Other Windows 3
Show Tasks 3

Normally, you can see the solution explorer in the upper-right corner of visual studio. It should show your project name
(debugpanda). The word "debugpanda™ needs to be highlighted - if it is not, click on it:

file:///E|/manual/Running_Panda_under_the CXX_Debugger.1.html (2 of 7)2006/11/21 aUsE 06:02:45

Panda3D Manual

LUMINARCE - BE 2R

Solution Explorer - debugpanda 3 X
E Solution 'debugpanda’ (1 project)

=h

[+3] References
[source Files
s (L] Header Files
(L] Resource Files

e readme, bxk

Now that your project is selected, you can edit its project properties:

~debugpanda - Microsoft Visual C++ [design

File Edit Miew

- - @

Project | Buld Debug Tools Window
ﬂ‘g Add Class. ..

";‘g Add Resource, .,

Help

:

p Debug - B LUMINANCE

7 AddMewItem... Chrl+Shift+a
Add Existing Item... Shift+alk+a

Mew Folder

NE=F (] g Y = =T ﬂﬁ| T
@-

Urload Project

fdd Beference. .,

E]

Set as Startlp Project

| Properties

The project property dialog initially looks like this. It contains three subpanels, the "General™ panel, the "Debugging”
panel, and the "NMake" subpanel. You can see these three subheadings in the left pane:

file:///E|/manual/Running_Panda_under_the CXX_Debugger.1.html (3 of 7)2006/11/21 aUsE 06:02:45

Panda3D Manual

There is nothing to fill in on the general panel, so switch to the debugging panel. You need to fill in the command name,

Specifies the tyvpe of output this configuration generates,

debugpanda Property Pages X
Configuration: I-ﬁ-ttive{Debug} ;I Platfarm: Iﬁ.ctive{WinSE} ;I Configuration Managet. ..
=51 Configuration Properties Configuration Type Makefile
g General
Debugaging
Mt ake
Configuration Type

ak. Cancel

Apply Help

the command arguments, and the working directory. For now, we will ask it to debug the Actors/Robots sample
program. Since visual studio puts the project file in a subdirectory, the paths need to be preceded by ".." to get to the

root of the panda source tree:

WARNING: these instructions are for panda 1.2.2 and beyond. In panda 1.2.1 and before, you need to debug "built
\python\python.exe", NOT "built\bin\ppython.exe."

file:///E|/manual/Running_Panda_under_the CXX_Debugger.1.html (4 of 7)2006/11/21 aUsE 06:02:45

Panda3D Manual

debugpanda Property Pages

Configuration: Iﬂ.ctive{Debug} ;I PlatForm: I.ﬁ.ctive(WiHSE) ;I Configuration Manager. ..

=3 Configuration Properties B Action
General Command CAbuiltbintppython, exe
g Debugging Comrnand Argurments -i Tuk-Roboks, py
MMake ‘Warking Directorsy .\samplesiFeature-Tutorials--Actors
Attach Mo
Symbol Path
B pebuggers
Debugger Tvpe
L Debugging
B Remote Settings
Canneckion
Femote Machine
Femote Command
HTTF URL

Working Directory
The application's working directory, Bw defadlt, the directory containing the project File,

Apply Help

Finally, switch to the "NMake" panel. Here, you can tell it what the command is to recompile panda. | use a bat file "mkp.
bat" to compile panda. Since the project file is in a subdirectory, the command needs to be preceded by "cd .." in order
to get back to the root of the panda source tree:

file:///E|/manual/Running_Panda_under_the CXX_Debugger.1.html (5 of 7)2006/11/21 aUsE 06:02:45

Panda3D Manual

debugpanda Property Pages E

Configuration; I.ﬁ.ctive(Dehugj ;I Platform: Iﬁ.ctive{WinSZ} ;I Configuration Manager, ..

5 Configuration Properties Build Command Line cd .. & mkp.bat
General Rebuild all Command Line
De_!;:!__l_gging Clean Command Line
ke Oubput

Build Cormmand Line
specifies the command line ko run For the "Build” command,

Canicel

Visual studio now knows how to run panda, and how to compile it. You can run your program (in this case, the "Actors/
Robots" tutorial) by clicking on the Debug menu:

o debugpanda - Microsoft Visual C++ [design]

File Edit \Mjew Projectk Build | Debug I Tools Window Help

@ = h =l ﬁ . Windows b = & LUMINANCE
= b Start F5
'E-é" ! Start Without Debugging Chrl4+FS
=

T Eé Processes. ..

m

& :

5 E Excepkions. ., Ckrl+Al+HE
& 5= Step Into F11
% [Step Over F10
o 1@ Mew Breakpoint. .. Crl+E

You can rebuild panda at any time by clicking on the "Build" menu:

file:///E|/manual/Running_Panda_under_the CXX_Debugger.1.html (6 of 7)2006/11/21 aUsE 06:02:45

Panda3D Manual

o debugpanda - Microsoft Visual C++ [design]

File Edit Mew Project | Build | Debug Tools Window Help

@ -in e = g Build Solution Ctrl+Shift+8 y Debug [k LUMINANCE
Rebuild Solution

Clean Solution

Build debugpanda

Rebuild debugpanda

Aaun g saades 1|‘3"-_I|

Clean debugpanda
Project Cnly

%

Batch Build. ..

Configuration Managet. ..

Now that you are running in the debugger, you can open any panda source file and set a breakpoint, or examine data. Of
course, it may be advantageous to learn how to use the python debugger as well as the C++ debugger.

next>> - Search

file:///E|/manual/Running_Panda_under_the CXX_Debugger.1.html (7 of 7)2006/11/21 aUsE 06:02:45

Panda3D Manual

Panda3D Manual: Log Messages

<<prev top next>> Search

Panda periodically outputs log messages for debugging purposes. A typical log message might
look like this:

cutil (warning): Adjusting global clock's real tinme by -3.3
seconds.

The first part of the message, uti |, is the name of the module that generated the message.
The second part, war ni ng, indicates the severity. The severity levels are, in decreasing order:

fatal, error, warning, info, debug, and spam. The panda configuration file (Config.prc) contains
these directives:

notify-1evel warning
default-directnotify-Ievel
war ni ng

Directives like these tell panda which messages to show, and which to suppress. In the default
configuration (shown above), all messages whose severity is war ni ng or above are shown, all

messages whose severity is less are suppressed.
It is interesting and educational to change the configuration to this:

notify-1evel spam
default-directnotify-Ievel
spam

If you do this, panda will print out vast amounts of information while it runs. These
informational messages can be useful for debugging. However, there are so many print-
statements that it slows panda down to a crawl. So it may be desirable to tell panda to narrow
it down a little. The way to do that is to name a particular module in the panda config file. For
example, you might do this:

notify-1evel warning
notify-Ievel -gl gsg spam
default-directnotify-I|evel
war ni ng

This tells panda that module "glgsg" should print out everything it can, but that every other

file:///E|/manual/Log_Messages.1.html (1 of 2)2006/11/21 aUsE 06:02:46

Panda3D Manual

module should only print warnings and errors. By the way, module gl gsg is a particularly

interesting module to investigate. This is the module that invokes OpenGL. If you tell it to
spam you, it will tell you what it's setting the MODELVIEW and PROJECTION matrices to, and
lots of other interesting information.

Generating your own Log Messages

You can use the Noti fy class to output your own log messages.

FINISH THIS SECTION.
Redirecting Log Messages to a File

If you wish, you can redirect all of panda's log messages into a file. The following snippet will
do the trick:

nout = Miltipl exStreamn()
Notify.ptr().setQstreanPtr(nout,
0)

nout . addFi | e(Fi | enane("out.txt"))

top next>>

file:///E|/manual/Log_Messages.1.html (2 of 2)2006/11/21 aUsE 06:02:46

Panda3D Manual

Panda3D Manual: Measuring Performance with PStats

<<prev top next>> Search

QUICK INTRODUCTION

PStats is Panda’'s built-in performance analysis tool. It can graph frame rate over time, and
can further graph the work spent within each frame into user-defined subdivisions of the frame
(for instance, app, cull and draw), and thus can be an invaluable tool in identifying
performance bottlenecks. It can also show frame-based data that reflects any arbitrary
quantity other than time intervals, for instance, texture memory in use or number of vertices
drawn.

The performance graphs may be drawn on the same computer that is running the Panda
client, or they may be drawn on another computer on the same LAN, which is useful for
analyzing fullscreen applications. The remote computer need not be running the same
operating system as the client computer.

To use PStats, you first need to build the PStats server program, which is part of the Pandatool
tree (it's called pstats.exe on Windows, and pstats on a Unix platform). Start by running the
PStats server program (it runs in the background), and then start your Direct/Panda client
with the following in your Config.prc file:

want - pstats 1

Or, at runtime, issue the Python command:

PStat Cl i ent. connect ()

Or if you're running pview, press shift-S.

Any of the above will contact your running PStats server program, which will proceed to open
a window and start a running graph of your client's performance.

If you have multiple computers available for development, it can be advantageous to run the
pstats server on a separate computer so that the processing time needed to maintain and
update the pstats user interface isn't taken from the program you are profiling. If you wish to
run the server on a different machine than the client, start the server on the profiling machine
and add the following variable to your client's Config.prc file, naming the hostname or IP
address of the profiling machine:

pst at s- host profiling-machine-ip-or-hostnane

If you are developing Python code, you may be interested in reporting the relative time spent
within each Python task (by subdividing the total time spent in Python, as reported under
"Show Code™). To do this, add the following lines to your Config.prc file before you start
ShowBase:

filel///E/manual/Measuring_Performance with_PStats.1.html (1 of 7)2006/11/21 aUcE 06:02:47

Panda3D Manual

task-tiner-verbose 1
pstats-tasks 1

THE PSTATS SERVER (The user interface)

The GUI for managing the graphs and drilling down to view more detail is entirely controlled
by the PStats server program. At the time of this writing, there are two different versions of
the PStats server, one for Unix and one for Windows, both called simply pstats. The interfaces
are similar but not identical; the following paragraphs describe the Windows version.

When you run pstats.exe, it adds a program to the taskbar but does not immediately open a
window. The program name is typically "PStats 5185", showing the default PStats TCP port
number of 5185; see "HOW IT WORKS" below for more details about the TCP communication
system. For the most part you don't need to worry about the port number, as long as server
and client agree (and the port is not already being used by another application).

Each time a client connects to the PStats server, a new monitor window is created. This
monitor window owns all of the graphs that you create to view the performance data from that
particular connection. Initially, a strip chart showing the frame time of the main thread is
created by default; you can create additional graphs by selecting from the Graphs pulldown
menu.

Time-based Strip Charts

This is the graph type you will use most frequently to examine performance data. The
horizontal axis represents the passage of time; each frame is represented as a vertical slice on
the graph. The overall height of the colored bands represents the total amount of time spent
on each frame; within the frame, the time is further divided into the primary subdivisions
represented by different color bands (and labeled on the left). These subdivisions are called
"collectors" in the PStats terminology, since they represent time collected by different tasks.

Normally, the three primary collectors are App, Cull, and Draw, the three stages of the
graphics pipeline. Atop these three colored collectors is the label "Frame", which represents
any remaining time spent in the frame that was not specifically allocated to one of the three
child collectors (normally, there should not be significant time reported here).

The frame time in milliseconds, averaged over the past three seconds, is drawn above the
upper right corner of the graph. The labels on the guide bars on the right are also shown in
milliseconds; if you prefer to think about a target frame rate rather than an elapsed time in
milliseconds, you may find it useful to select "Hz" from the Units pulldown menu, which
changes the time units accordingly.

The running Panda client suggests its target frame rate, as well as the initial vertical scale of
the graph (that is, the height of the colored bars). You can change the scale freely by clicking
within the graph itself and dragging the mouse up or down as necessary. One of the horizontal
guide bars is drawn in a lighter shade of gray; this one represents the actual target frame rate
suggested by the client. The other, darker, guide bars are drawn automatically at harmonic
subdvisions of the target frame rate. You can change the target frame rate with the Config.prc
variable pstats-target-frame-rate on the client.

filel///E|/manual/Measuring_Performance with_PStats.1.html (2 of 7)2006/11/21 aUcE 06:02:47

Panda3D Manual

You can also create any number of user-defined guide bars by dragging them into the graph
from the gray space immediately above or below the graph. These are drawn in a dashed blue
line. It is sometimes useful to place one of these to mark a performance level so it may be
compared to future values (or to alternate configurations).

The primary collectors labeled on the left might themselves be further subdivided, if the data
is provided by the client. For instance, App is often divided into Show Code, Animation, and
Collisions, where Show Code is the time spent executing any Python code, Animation is the
time used to compute any animated characters, and Collisions is the time spent in the collision
traverser(s).

To see any of these further breakdowns, double-click on the corresponding colored label (or on
the colored band within the graph itself). This narrows the focus of the strip chart from the
overall frame to just the selected collector, which has two advantages. Firstly, it may be easier
to observe the behavior of one particular collector when it is drawn alone (as opposed to being
stacked on top of some other color bars), and the time in the upper-right corner will now
reflect just the total time spent within just this collector. Secondly, if there are further
breakdowns to this collector, they will now be shown as further colored bars. As in the Frame
chart, the topmost label is the name of the parent collector, and any time shown in this color
represents time allocated to the parent collector that is not accounted for by any of the child
collectors.

You can further drill down by double-clicking on any of the new labels; or double-click on the
top label, or the white part of the graph, to return back up to the previous level.

Value-based Strip Charts

There are other strip charts you may create, which show arbitrary kinds of data per frame
other than elapsed time. These can only be accessed from the Graphs pulldown menu, and
include things such as texture memory in use and vertices drawn. They behave similarly to the
time-based strip charts described above.

Piano Roll Charts

This graph is used less frequently, but when it is needed it is a valuable tool to reveal exactly
how the time is spent within a frame. The PStats server automatically collects together all the
time spent within each collector and shows it as a single total, but in reality it may not all have
been spent in one continuous block of time.

For instance, when Panda draws each display region in single-threaded mode, it performs a
cull traversal followed by a draw traversal for each display region. Thus, if your Panda client
includes multiple display regions, it will alternate its time spent culling and drawing as it
processes each of them. The strip chart, however, reports only the total cull time and draw
time spent.

Sometimes you really need to know the sequence of events in the frame, not just the total
time spent in each collector. The piano roll chart shows this kind of data. It is so named
because it is similar to the paper music roll for an old-style player piano, with holes punched
down the roll for each note that is to be played. The longer the hole, the longer the piano key
is held down. (Think of the chart as rotated 90 degrees from an actual piano roll. A player
piano roll plays from bottom to top; the piano roll chart reads from left to right.)

file:///E)/manual/M easuring_Performance with_PStats.1.html (3 of 7)2006/11/21 aUcE 06:02:47

Panda3D Manual

Unlike a strip chart, a piano roll chart does not show trends; the chart shows only the current
frame's data. The horizontal axis shows time within the frame, and the individual collectors are
stacked up in an arbitrary ordering along the vertical axis.

The time spent within the frame is drawn from left to right; at any given time, the collector(s)
that are active will be drawn with a horizontal bar. You can observe the CPU behavior within a
frame by reading the graph from left to right. You may find it useful to select "pause™ from the
Speed pulldown menu to freeze the graph on just one frame while you read it.

Note that the piano roll chart shows time spent within the frame on the horizontal axis, instead
of the vertical axis, as it is on the strip charts. Thus, the guide bars on the piano roll chart are
vertical lines instead of horizontal lines, and they may be dragged in from the left or the right
sides (instead of from the top or bottom, as on the strip charts). Apart from this detail, these
are the same guide bars that appear on the strip charts.

The piano roll chart may be created from the Graphs pulldown menu.

Additional threads

If the panda client has multiple threads that generate PStats data, the PStats server can open
up graphs for these threads as well. Each separate thread is considered unrelated to the main
thread, and may have the same or an independent frame rate. Each separate thread will be
given its own pulldown menu to create graphs associated with that thread; these auxiliary
thread menus will appear on the menu bar following the Graphs menu. At the time of this
writing, support for multiple threads within the PStats graph is largely theoretical and
untested.

HOW TO DEFINE YOUR OWN COLLECTORS

The PStats client code is designed to be generic enough to allow users to define their own
collectors to time any arbitrary blocks of code (or record additional non-time-based data),
from either the C++ or the Python level.

The general idea is to create a PStatCollector for each separate block of code you wish to time.
The name which is passed to the PStatCollector constructor is a unique identifier: all collectors
that share the same name are deemed to be the same collector.

Furthermore, the collector's name can be used to define the hierarchical relationship of each
collector with other existing collectors. To do this, prefix the collector's name with the name of
its parent(s), followed by a colon separator. For instance, PStatCollector("Draw:Flip™) defines a
collector named "Flip", which is a child of the "Draw" collector, defined elsewhere.

You can also define a collector as a child of another collector by giving the parent collector
explicitly followed by the name of the child collector alone, which is handy for dynamically-
defined collectors. For instance, PStatCollector(draw, "Flip") defines the same collector named
above, assuming that draw is the result of the PStatCollector(*Draw") constructor.

Once you have a collector, simply bracket the region of code you wish to time with collector.

filel///E|/manual/Measuring_Performance with_PStats.1.html (4 of 7)2006/11/21 aUcE 06:02:47

Panda3D Manual

start() and collector.stop(). It is important to ensure that each call to start() is matched by
exactly one call to stop(). If you are programming in C++, it is highly recommended that you
use the PStatTimer class to make these calls automatically, which guarantees the correct
pairing; the PStatTimer's constructor calls start() and its destructor calls stop(), so you may
simply define a PStatTimer object at the beginning of the block of code you wish to time. If
you are programming in Python, you must call start() and stop() explicitly.

When you call start() and there was another collector already started, that previous collector is
paused until you call the matching stop() (at which time the previous collector is resumed).
That is, time is accumulated only towards the collector indicated by the innermost start() ..

stop() pair.

Time accumulated towards any collector is also counted towards that collector's parent, as
defined in the collector's constructor (described above).

It is important to understand the difference between collectors nested implicitly by runtime
start/stop invocations, and the static hierarchy implicit in the collector definition. Time is
accumulated in parent collectors according to the statically-defined parents of the innermost
active collector only, without regard to the runtime stack of paused collectors.

For example, suppose you are in the middle of processing the "Draw" task and have therefore
called start() on the "Draw" collector. While in the middle of processing this block of code, you
call a function that has its own collector called "Cull:Sort". As soon as you start the new
collector, you have paused the "Draw" collector and are now accumulating time in the "Cull:
Sort" collector. Once this new collector stops, you will automatically return to accumulating
time in the "Draw" collector. The time spent within the nested "Cull:Sort" collector will be
counted towards the "Cull” total time, not the "Draw" total time.

Color and Other Optional Collector Properties

If you do not specify a color for a particular collector, it will be assigned a random color at
runtime. At present, the only way to specify a color is to modify panda/src/pstatclient/
pStatProperties.cxx, and add a line to the table for your new collector(s). You can also define
additional properties here such as a suggested initial scale for the graph and, for non-time-
based collectors, a unit name and/or scale factor. The order in which these collectors are listed
in this table is also relevant; they will appear in the same order on the graphs. The first
column should be set to 1 for your new collectors unless you wish them to be disabled by
default. You must recompile the client (but not the server) to reflect changes to this table.

HOW IT WORKS (What's actually happening)

The PStats code is divided into two main parts: the client code and the server code.

The PStats Client

The client code is in panda/src/pstatclient, and is available to run in every Panda client unless
it is compiled out. (It will be compiled out if OPTIMIZE is set to level 4, unless DO_PSTATS is
also explicitly set to non-empty. It will also be compiled out if NSPR is not available, since both
client and server depend on the NSPR library to exchange data, even when running the server
on the same machine as the client.)

filel///E|/manual/Measuring_Performance with_PStats.1.html (5 of 7)2006/11/21 aUcE 06:02:47

Panda3D Manual

The client code is designed for minimal runtime overhead when it is compiled in but not
enabled (that is, when the client is not in contact with a PStats server), as well as when it is
enabled (when the client is in contact with a PStats server). It is also designed for zero
runtime overhead when it is compiled out.

There is one global PStatClient class object, which manages all of the communications on the
client side. Each PStatCollector is simply an index into an array stored within the PStatClient
object, although the interface is intended to hide this detail from the programmer.

Initially, before the PStatClient has established a connection, calls to start() and stop() simply
return immediately.

When you call PStatClient.connect(), the client attempts to contact the PStatServer via a TCP
connection to the hostname and port named in the pstats-host and pstats-port Config.prc
variables, respectively. (The default hostname and port are localhost and 5185.) You can also
pass in a specific hostname and/or port to the connect() call. Upon successful connection and
handshake with the server, the PStatClient sends a list of the available collectors, along with
their names, colors, and hierarchical relationships, on the TCP channel.

Once connected, each call to start() and stop() adds a collector number and timestamp to an
array maintained by the PStatClient. At the end of each frame, the PStatClient boils this array
into a datagram for shipping to the server. Each start() and stop() event requires 6 bytes; if
the resulting datagram will fit within a UDP packet (1K bytes, or about 84 start/stop pairs), it
is sent via UDP; otherwise, it is sent on the TCP channel. (Some fraction of the packets that
are eligible for UDP, from 0% to 100%, may be sent via TCP instead; you can specify this with
the pstats-tcp-ratio Config.prc variable.)

Also, to prevent flooding the network and/or overwhelming the PStats server, only so many
frames of data will be sent per second. This parameter is controlled by the pstats-max-rate
Config.prc variable and is set to 30 by default. (If the packets are larger than 1K, the max
transmission rate is also automatically reduced further in proportion.) If the frame rate is
higher than this limit, some frames will simply not be transmitted. The server is designed to
cope with missing frames and will assume missing frames are similar to their neighbors.

The server does all the work of analyzing the data after that. The client's next job is simply to
clear its array and prepare itself for the next frame.

The PStats Server

The generic server code is in pandatool/src/pstatserver, and the GUI-specific server code is in
pandatool/src/gtk-stats and pandatool/src/win-stats, for Unix and Windows, respectively.
(There is also an OS-independent text-stats subdirectory, which builds a trivial PStats server
that presents a scrolling-text interface. This is mainly useful as a proof of technology rather
than as a usable tool.)

The GUI-specific code is the part that manages the interaction with the user via the creation of
windows and the handling of mouse input, etc.; most of the real work of interpreting the data
is done in the generic code in the pstatserver directory.

filel///E|/manual/Measuring_Performance with_PStats.1.html (6 of 7)2006/11/21 aUcE 06:02:47

Panda3D Manual

The PStatServer owns all of the connections, and interfaces with the NSPR library to
communicate with the clients. It listens on the specified port for new connections, using the
pstats-port Config.prc variable to determine the port number (this is the same variable that
specifies the port to the client). Usually you can leave this at its default value of 5185, but
there may be some cases in which that port is already in use on a particular machine (for
instance, maybe someone else is running another PStats server on another display of the
same machine).

Once a connection is received, it creates a PStatMonitor class (this class is specialized for each
of the different GUI variants) that handles all the data for this particular connection. In the
case of the windows pstats.exe program, each new monitor instance is represented by a new
toplevel window. Multiple monitors can be active at once.

The work of digesting the data from the client is performed by the PStatView class, which
analyzes the pattern of start and stop timestamps, along with the relationship data of the
various collectors, and boils it down into a list of the amount of time spent in each collector per
frame.

Finally, a PStatStripChart or PStatPianoRoll class object defines the actual graph output of
colored lines and bars; the generic versions of these include virtual functions to do the actual
drawing (the GUI specializations of these redefine these methods to make the appropriate
calls).

| | Search

file:///E|/manual /M easuring_Performance with_PStats.1.html (7 of 7)2006/11/21 aUcE 06:02:47

Panda3D Manual

Panda3D Manual: Graphics Card Performance

<<prev top next>> Search

If a scene needs be rendered and has multiple nodes, Panda has to send each node to the
graphics hardware as a separate batch of polygons (because the nodes might move
independently, or have different state changes on them). Modern graphics hardware hasn't
made any improvements recently in handling large numbers of batches, just in handling large
numbers of polygons per batch. So if a scene is composed of a large nhumber of nodes with a
small number of polygons per node, the frame rate will suffer. This problem is not specific to
Panda; any graphics engine will have the same problem. The problem due to the nature of the
PC and the AGP bus.

For example, though your graphics card may claim it can easily handle 100,000 polygons, this
may be true in practice only if all of those polygons are sent in one batch--that is, just a single
Geom. If, however, your scene consists of 1,000 nodes with 100 polygons each, it may not

have nearly as good a frame rate.
To inspect performance the nodePath.analyze() method is extremely useful. For example:

render. anal yze

0

The response is printed to the command window. It may look something like this:

371 total nodes (including 43 instances).
21 transforns; 16% of nodes have some render attribute.
205 Geons, with 94 GeonVertexDatas, appear on 133 GeomNodes.
21665 vertices, 21573 normals, 21557 texture coordi nates.
35183 tri angl es:

3316 of these are on 662 tristrips (5.00906 average tris per
strip).

0 of these are on O trifans.

31867 of these are independent triangles.
0 lines, 0 points.
99 textures, estimated nmi ni num 326929K texture nmenory required.

For a scene with many static nodes there exists a workaround.

If a scene is composed of many static objects, for example boxes, and the intent of all of these
boxes to just sit around and be part of the background, or to move as a single unit, they can
flattened together into a handful of nodes (or even one node). To do this, parent them all to
the same node, and use:

filel///E|/manual/Graphics_Card_Performance.1.html (1 of 2)2006/11/21 sUcE 06:02:48

Panda3D Manual

node. fl attenSt rong

0

One thing that flattenStrong() won't touch is geometry under a ModelRoot or ModelNode node.
Since each egg or bam file loads itself up under a ModelRoot node, the proper way to handle
this is to get rid of that node first to make the geometry from multiple different egg files to be
flattened together. This can be done with the following:

nodel Root = | oader .| oadvodel (' myModel . egg')
newibdel = NodePat h(' nodel ")

nodel Root . get Chi l dren() . reparent To
(newibdel)

<<prev top next=>>

| =

file:///E|/manual/Graphics_Card_Performance.1.ntml (2 of 2)2006/11/21 aUcE 06:02:48

Panda3D Manual

Panda3D Manual: Panda Tools

<<prev top next=>>=> Search

This section lists a number of tools to support programming in Panda.

Many of the tools provided are invoked by pressing a hot-key inside of the panda main
window. These hot-key driven tools are called the "direct tools.” The direct tools are initially
disabled, because the hot-keys used to invoke them might interfere with the program's own
keys and events.

To enable the hot-keys for the direct tools, you need to set the 'want-directtools’ variable in
config.prc, the main panda configuration file. More information about this configuration file is
available in the Configuring Panda section.

After enabling direct tools and starting panda, the Direct Session window should appear:

[‘?‘JE Direct Session Panel Q’ﬁ[ﬁ

File DIAECT Help DIRECT Seleck |wadget k]
PandaMode render - Ernticenimers I Lightz] Gid | Drervices] Tk] Seene
|"‘&F‘-=1du‘r4-:|d= Camala
=L g Camerd Background
& Collsicntode calizionNP] :
@ Pandeblade DIRECT Bachgiound Color| 10455] 10455] 10455 25500
— i Pardaliode coaakeRel = -
—f» Parvialicde camMaripRet - BUp R
— &, Perdeblode manpRel Display Regiare | Desplay Aegion 0 hd|
- ModelRaot chiectHandes Near Flane [100 4
=g PandaNode DIRECT Lights |
E—& ModelRact DueclC s al080 ke Far Flane | 1[0]['.0'31”
Horizontal FOY | 500 ¥| # Locked
Vertical FOY | 352 ¥| Reset
Toggle Render Style
Aciiva Repaient Tanper Backlace | Lugkits | Tasture | "winaliama |

<<prev top next>> -

file:///E|/manual/Panda_Tools.1.html2006/11/21 aUcE 06:02:49

Panda3D Manual

Panda3D Manual: The Scene Graph Browser

<<prev top next>> Search

The Scene Graph Browser is only available when 'Direct Tools' are enabled. Information on
enabling 'Direct Tools' is available in the Panda Tools section.

In the main Direct Session window, there are several scene placement tools available through
the tabs at the right side of the screen. Clicking on these tabs will bring up a dialog box with
the various properties for these aspects. On the left side of the panel is a collapsible scene
graph for the render parent node. Right click any of the objects to bring up a list of possible

commands.
T8 Mrect Session Panel E
Fi= DIRECT Helk DIRECT Seleck |-3 ¥| Unda |
PardaMods render - Envticrmerd | Ll:gh‘.r] Erld] [revices | Tasks l Soens |
- Pandshlode DIRECT
i ' Background
Lt Pandahleds cames - pcsbe Explorer :
&P ' . jound Cobe | 10455 10455 10485 25500
Desekect = =
i Display Region

Delete Region: | Display Region D ¥
":*Eh Near Plare | 1.00 4
Flai
tsclabe Far Plane | 11]!:010]!!]
Toggls Vis }
Sh Al rizontal FOW | 4500 ¥ | W Locked
Sek Reperert Target fortical FOY |) ﬂ Fresel
Reparant
WIRT Rreparerk: Toggle Render Style

STt T e Flace ckface Lights Texbure Wiieframe

Sed Mlarme
Sed ooy
E=piore

Of particular interest is the placer panel, selected by the place command for an object. This
brings up a separate window that may alter the position, orientation, and scale for the selected
object. A dialog box at the top of the window allows these movements to be relative to
another object in the program.

file///E/manual/The_Scene Graph_Browser.1.html (1 of 2)2006/11/21 nUsE 06:02:51

Panda3D Manual

Fositon —— Orientation —— Scale Uniform ——

Relative 3 | om0 4p| RelativeH [om :| xScale [Tuo 4p]
Relative v | 000 4p| Relative P | u.ml{_:E Y Scale [100 4
RelativaZ [000 4}

<<prev top next=>>

-

file:///EJ/manual/The_Scene Graph Browser.1.html (2 of 2)2006/11/21 aUsE 06:02:51

Panda3D Manual

Panda3D Manual: Enhanced Mouse Navigation

<<prev top next>> Search

Enhanced mouse navigation is only available when 'Direct Tools' are enabled. Information on
enabling 'Direct Tools' is available in the Panda Tools section.

Direct Tools gives more functionality to the middle mouse button. First, clicking the middle
mouse button changes the pivot point it uses to rotate around the environment. The middle
mouse button will also move the camera depending on where the cursor is on the screen.

Rall
Camara

Rotabe Camera

Rotate
Camera

Mowve Camera Parallel to Ground Plane

Roll

Camera

Rotate Camera

Middle Mouse Click Sets pivot point for rotating around the world
Middle Mouse + Middle Region Move camera parallel to ground

Shift + Middle Mouse + Middle Region Move camera vertically

Middle Mouse + Edge Region Rotate camera around pivot point

Middle Mouse + Corner Region Roll camera around pivot point

Shift + Middle Mouse + Edge Region Changes pitch of the camera

The left mouse button is now used to select and manipulate objects in the environment. Once
an object is selected, it may be moved and rotated.

Left Mouse Click Select an object
Left Mouse + Middle Region Move object vertically

file:///E|/manual/Enhanced_Mouse Navigation.1.html (1 of 3)2006/11/21 aUcE 06:02:52

Panda3D Manual

Shift + Left Mouse + Middle Region Move object parallel to ground

Left Mouse + Edge Region

Left Mouse + Corner Region

Control + Left Mouse

Rotate object around its pivot point
Roll object around its pivot point
Rescale the model

Direct Tools uses a large number of hot keys for camera control, rendering styles, and object
control. The full list is in the table below.

Camera Control
+

H

Shift + L

U

Shift + U

~

Undo/Redo

Zoom in
Zoom out

Front view (relative to
render)

Back view (relative to
render)

Right view (relative to
render)

Render Style

Shift + A

Control + F

B

T

Left view (relative to render) W

Top view (relative to render)

Bottom view (relative to
render)

A%, view (relative to render)

Roll view about axis relative
to cameraa€ ™s axis

Rotate around hot point

Rotate around hot point
Center on hot point

Fit on hot point

Move to (0,0,0)

Toggle camera pivot point
lock

Select next possible camera
COA (along last intersection

ray)

Orbit upright camera about
hot point

Upright camera

Kill camera move task

Direct Controls

Delete

Escape

Page Down

Page Up
Tab

Shift + F

R

Shift + R

S
\Y
Shift + Vv

file:///E|/manual/Enhanced_Mouse Navigation.1.html (2 of 3)2006/11/21 aUcE 06:02:52

Show all
Flash selected

Toggle backface
Toggle lights

Toggle texture

Toggle wireframe

Delete selected object
Delete all

Move down selected objecta
€ ™s hierarchy

Move up selected objecta
€ ™s hierarchy

Toggle widget mode

Grow widget to fit current
window

Plant selected object at
cursor intersection point

Move widget in front of
camera

Set active parent to selected
object

WRT reparent selected to
active parent

Reparent selected to active
parent

Reselect last selected object
Toggle widget visibility
Toggle COA marker visibility

Panda3D Manual

Shrink widget
Expand widget

<<prev top next>>

| -

file:///E|/manual/Enhanced_Mouse Navigation.1.html (3 of 3)2006/11/21 aUcE 06:02:52

Panda3D Manual

Panda3D Manual: The Scene Editor

<<prev top next=>>=> Search

At the Entertainment Technology Center (Carnegie Mellon University) we have developed a

Scene Editor to enable layout of objects in a 3D environment. This tool also allows you to do
lighting, animation blending, creation of mopaths etc. This is just a first version of the tool and
will be updated to encompass new features and improvements in the future.

To run the scene editor, run "sceneEditor.py" in the SceneEditor directory.

The scene editor's primary functions are:

. Object loading and manipulation
. Animation loading and blending
. Lighting

. Motion path generation

. Particle system generation

. Setting up collision detection

The scene editor will set up your scene for you and then output the layout at a normal python
file. This file can then be used, edited as you desire. This tool is meant to give a visual
interface for many functions that typically would have to be done manually in code. The best
way to learn about the scene editor is to watch the Scene Editor Lectures:

. Introduction (48 mb)

. Camera Control and Object Manipulation (18mb)
. Animation Loading (8 mb)

. Lighting (11 mb)

. Animation Blending (26 mb)

. Motion Paths (24 mb)

. Particles (38 mb)

. Collision (34 mb)

. Miscellaneous Part I (20 mb)

. Miscellaneous Part 11 (16 mb)

top next=>> Search

file:///E|/manual/The_Scene Editor.1.html2006/11/21 aUcE 06:02:52

http://www.etc.cmu.edu/
http://www.cmu.edu/
http://panda3d.org/videolectures/Scene_Editor/1_Introduction.avi
http://panda3d.org/videolectures/Scene_Editor/2_Camera_Control_And_Object_Manipulation.avi
http://panda3d.org/videolectures/Scene_Editor/3_Animation_Loading.avi
http://panda3d.org/videolectures/Scene_Editor/4_Lighting.avi
http://panda3d.org/videolectures/Scene_Editor/5_Animation_Blending.avi
http://panda3d.org/videolectures/Scene_Editor/6_Motion_Paths.avi
http://panda3d.org/videolectures/Scene_Editor/7_Particles.avi
http://panda3d.org/videolectures/Scene_Editor/8_Collision.avi
http://panda3d.org/videolectures/Scene_Editor/9_Misc1.avi
http://panda3d.org/videolectures/Scene_Editor/10_Misc2.avi

Panda3D Manual

Panda3D Manual: Python Editors

<<prev top next=>>=> Search

Using a well featured python editor or editor with python support will greatly ease the process
of writing python scripts. Here are some of the features that you could look for when choosing
an editor. Free editors don't usually have them all. There are quite a few capable editors out
there though. In addition to all the features listed below, it should in general be a good and
easy to use text editor.

. Syntax highlighting

. Smart indentation

. Auto-completion of text

. Call tips

. Tree view function/class selection
. Integrated shell windows

. Inbuilt debugger support

. Code folding support

. Customibility and extensibility
. Multi-platform support

. Unicode support

The python install itself comes with a very capable editor called IDLE, short for Integrated
Development Environment. One of the features it has that the ones listed above do not is that
it has an enhanced integrated shell. More information about IDLE can be found here.

Below is a list of a few free text editors. There is a comprehensive list of editors at http://www.
python.org/moin/PythonEditors. Some of the information about the editors doesn't seem to be
upto date at this listing. Try them yourself to find your favourite one.

Syntax highlighting, auto-completion, smart indentation, calltips, tree view function/
PyPE class selection, integrated shell, drag&drop, macros, customizable keyboard
shortcuts, and more. Works on Windows and X. Written in python!

Very powerful text editor, multiplatform, python support. Smart indentation, auto-

E
macs completion, syntax highlighting, extensible.
Vi Very powerful text editor, multiplatform, python support. Smart indentation, syntax
im S ; -
highlighting, Scriptable in python.
ConText Windows based free text editor with python syntax highlighting, and indentation

support.

Syntax highlighting, smart indentation, auto-completion, call tips, class explorer,
integrated shell, debugger, code folding, syntax coloring, UML viewer, syntax

SPE highlighting, source index, sticky notes, drag&drop, context help, and much more.
Runs on Windows, Linux and Mac OS X. Also links to Blender. GUI is extensible with
wxGlade. GPL'ed and written in Python.

<<prev top next>> Search

file:///E|/manual/Python_Editors.1.html2006/11/21 aUaE 06:02:53

http://www.python.org/idle/doc/idlemain.html
http://www.python.org/moin/PythonEditors
http://www.python.org/moin/PythonEditors
http://pype.sourceforge.net/
http://www.gnu.org/software/emacs/emacs.html
http://www.vim.org/
http://www.python.org/moin/ConText
http://www.stani.be/python/spe/blog/

Panda3D Manual

Panda3D Manual: SPE

<<prev top next>> Search

Installing SPE for use with Panda3D

Since Panda 1.3.0 the windows installer has the option to add panda's python to the registry.
If you don't register or if you use an earlier version of panda, SPE cannot detect panda
modules. Without them, features like autocomplete, the built-in console, debugger etc. do not
work for Panda3D scripts. To correct this, SPE must first be integrated properly with panda’s
python (ppython-Panda3D's built-in python interpreter)

Integrate it manualy in this order:

1. download and install Panda3D

This installs ppython also. There should now be a directory "\Panda3D-x.x.x" where the x's are
the version number.

2. download and install python

This installs the standard python interpreter required by the other installers. There should now
be a directory "\Pythonxx" (again, x's are the version number)

This directory can be deleted after step 5 if you wish. (not beforel!)

3. download and install wxpython

SPE requires wxpython. This installs in "\Pythonxx\Lib\site-packages"

4. download and install SPE

This autodetects the standart python install, and also installs in "\Pythonxx\Lib\site-packages"

5. Manually copy the new files and folders in ""\Pythonxx\Lib\site-packages" to
"\Panda3D-x.x.x\bin\lib\site-packages"

When SPE is run from the new location using ppython it should have access to all the panda3D
modules.

6. Write a script for convenience

e.g. in Windows create a new shortcut with target:

file:///E|/manual/SPE.1.html (1 of 2)2006/11/21 cUcE 06:02:54

http://www.panda3d.org/download.php
http://www.python.org/
http://www.wxpython.org/
http://www.stani.be/python/spe/blog/

Panda3D Manual

" C. \ Panda3D- x. x. x\ bi n\ ppyt hon. exe" " C:\ Panda3D- x. x. x\ bi n\ I i b\ si t e- packages\ _spe
\ SPE. py"

This is just as easy in Linux using a shell script.
Importing DirectStart

SPE may need to or require you to import DirectStart for its PyDoc generation and calltips. By
default this also pops up the main window. This can get annoying, but fortunately opening the
window can be easily deferred by either adding the line

wi ndow-t ype
none

to your Config.prc file or by adding the line

| oadPrcFil eData("", "w ndowtype
none")

to your script before you i nport direct. directbase.DirectStart. You may open the
window later with the line

base. openMai nW ndow(t ype =
‘onscreen')

<<prev top next>>

file:///E|/manual/SPE.1.html (2 of 2)2006/11/21 UcE 06:02:54

Panda3D Manual

Panda3D Manual: Pipeline Tips

<<prev top next>> Search

This section isn't totally related to Panda3D. However, these are a few good pointers on how
to keep the 'art to programmer’ pipeline running smoothly.

How artists can help programmers with the pipeline:

"Keep renaming to a minimum, preferably with good names to start with, and
especially for parts or joints that the programmer will have to manipulate.”
Programmers generally deal with objects by their names, not with a graphical tool like artists.
Every time a name changes, a programmer has to make the change in his or her code, and
often has to hunt through the egg to try and figure out what the name has changed to. In a
large model, this can be very time-consuming. If you do have to change a nhame, make sure to
let the programmer know when you give him or her the new model.

"Check your model in pview before handing it off."

The biggest delays in the pipeline come from the back and forth iterations between artist and
programmer. A quick check with pview will often find missing textures, backward facing
polygons, incorrect normals, mis-tagged collision solids, and a host of other problems.

"Build models with good hierarchy, and don't change the hierarchy unnecessarily."
A well organized hierarchy can make a model much easier for a programmer to work with, and
can also have a significant effect on rendering performance. For rendering purposes, good
hierarchies group objects that are close to each other together, and don't have more than a
few hundred to a few thousand triangles (depending on the target hardware) in each node.
(Low-end hardware performs better with only a few hundred triangles per node; high-end
hardware performs better with several thousand triangles per node.)

"Put groups of objects that the programmer will have to deal with in a special way
under a single node."

For instance, if there's a section of an environment that will be hidden during some point in
the game, put that entire section under a single node. The programmer might also like certain
classes of collision solids to be under a single node.

"Don't use lossy compression (i.e. jpeg) for textures.”

Although jpegs save space on disk, they also degrade your beautiful textures! If textures have
to be manipulated later (i.e. downgraded), this degradation will only be compounded. Every
time you edit and resave a jpeg, the image quality gets worse. Jpegs may need to be used in
the finished product, but it's always best to make this conversion the last step in the process,
not the first one. | recommend using the png format, which provides lossless compression and
full support for all color depths as well as alpha.

"1f there's any chance that an object will be broken apart and used as separate
pieces, give each piece a separate texture map."

Nothing hurts worse than having to remap an object after its been painted, or wasting huge
swaths of texture space.

"1f parts of an object are semi-transparent, make sure those pieces are separate

file//IE|/manual/Pipeline_Tips.1.html (1 of 2)2006/11/21 sUcE 06:02:55

Panda3D Manual

parts in the hierarchy.”

Rendering semi-transparent objects is a little tricky. Each object with transparency needs to be
sorted back-to-front each frame by the rendering engine. If things aren't going quite as
planned, a programmer might need to get a handle on a transparent part in order to
manipulate its render order.

"1f a semi-transparent object is very large, or you can see through multiple layers
(like a glass sphere), break it up into separate pieces."

Objects with multiple layers of transparency won't render correctly depending on which angle
they're being view from, because some of the polygons will be drawn before others, and if it's
all one object, the rendering engine can't sort them back-to-front.

"Use quads, and higher-order polygons, for collision solids when possible, rather
than triangles. But make sure your quads are planar.”

In general, dividing a quad into two triangles doubles the time it takes to test a collision with
it, so it is better to model collision polygons with quads when possible. The same goes for five-
sided and higher-order polygons as well. However, there are two important requirements: (1)
the collision polygons must be convex, not concave, and (2) they must be perfectly flat (all of
the vertices must lie exactly in the same plane). If either of these is not met, Panda will
triangulate the polygon anyway.

Things that don't matter as much, but will give programmers warm-
fuzzies:

"Use a consistent naming scheme."

Programmers live in a world where names and naming conventions are incredibly important.
Nothing makes them happier than when the names of art assets fit in well with their code.
Common naming conventions are: mixedCaseNames, CapitalizedMixedCaseNames,
names_with_underscores, names-with-hyphens. Pick one and stick with it.

"Don't misspell things."

"Add one little bit on the end... Think of ~potatoe’, how's it spelled? You're right
phonetically, but what else...? There ya go... all right!"

-- Vice President Dan Quayle correcting a student's correct spelling of the word ~potato' during
a spelling bee at an elementary school in Trenton.

"1 should have caught the mistake on that spelling bee card. But as Mark Twain once
said, ~You should never trust a man who has only one way to spell a word".""
-- Vice President Dan Quayle, actually quoting from President Andrew Jackson.

"1 should have remembered that was Andrew Jackson who said that, since he got his
nickname ~Stonewall’ by vetoing bills passed by Congress." -- Vice President Dan
Quayle, confusing Andrew Jackson with Confederate General Thomas J. ~Stonewall' Jackson,
who actually got his nickname at the first Battle of Bull Run.

<<prev top next=>> Search

file//IE|/manual/Pipeline_Tips.1.html (2 of 2)2006/11/21 sUcE 06:02:55

Panda3D Manual

Panda3D Manual: Model Export

<<prev top next>> Search

Panda3D uses a custom file format for its models, called egg. To create an egg file, you will
need to use a modeling program (like 3D Studio Max or Maya) combined with either an export
plugin or a file format converter. You can read more about this process in the following
sections. Panda3D also provides a binary file format bam, which is quicker to load.

Both file formats contain:

. Vertices

. Triangles and larger polygons

. Joints (aka Bones)

. Vertex weights

. Texture pathnames (textures are not stored)
. Bone-based animation keyframes

. Morph targets (aka Blend targets)

. Morph animation keyframes

. Many control flags

Texture pathnames in an egg file are first assumed to be relative to the egg file itself. If the
texture is not found at that location, panda will search its model-path, which is specified in the
panda config file. When doing this, panda concatenates the directory which is part of the
model-path to the entire string in the egg-file. So if the model-path names the directory "/d/
stuff”, and the texture-path in the egg file is "mytextures/tex.png", then panda looks in "/d/
stuff/mytextures/tex.png."

filel///Efmanual/Model_Export.1.ntml2006/11/21 aUoE 06:02:55

Panda3D Manual

Panda3D Manual: Converting from 3D Studio Max

<<prev top next>> Search

To install the exporter, look in the panda3d "plugins" directory. There, you will find the files maxegg5. dl o,
maxegg6. dl o, and maxegg7. dl 0. These are for 3D Studio Max versions 5, 6, and 7 respectively. Copy the correct
file from the Panda3D plugins directory into the 3D Studio Max plugins directory, then, restart 3D Studio Max.

As of Panda3D 1.0.4, the old MAX exporter has been replaced with a brand new exporter. The new exporter is
somewhat unconventional in its design. Max has a menu item "File/Export"”. Panda's egg format does not show up
in this menu. Instead, Panda's exporter is a helper object. This enables the exporter to save your export settings
from one session to the next.

To export a scene, your first step is to create the necessary helper object. Go to the creation panel, select "helper
objects," choose "exporters," and then click on the button to create a Panda3D export helper:

=18 x|

TN @ 1=
#|5@ R T

Maxacript Help

® &S ¢ ol |0

W

Object Type |
AutoGnd [

Fanda3l |

Drop an egg exporter into the scene:

file:///E|/manual/Converting_from_3D_Studio_Max.1.html (1 of 4)2006/11/21 aUsE 06:02:57

Panda3D Manual

[Euntitled - 3ds max 6 - Stand-alone License

File Edit Tools Group Views Create Maodifiers Character reackor Anima

[1%, % &P L B e

S B

3
-

T
E:F
v

&S0 B |=

Switch to the modify panel. You will now be able to see the configuration settings that are stored in the export
helper.

= Pararneters |

| Fanda 30 EGG E xporter
Eogs
Filename | Tvpe |

Add..| Edi. | Removel

™ Ovenwite Existing Files
v Puigw Output
[~ Log Output

Ex=port Maow ‘

file:///E|/manual/Converting_from_3D_Studio_Max.1.html (2 of 4)2006/11/21 aUsE 06:02:57

Panda3D Manual

The exporter can generate several egg files from a single scene. The exporter therefore contains a list of egg files
to generate. To export this particular scene (the one with the blocky humanoid and the biped skeleton), we will
create an egg containing the model and one containing the animation. Click the "add..." button on the exporter's
modify panel. You will be prompted:

Export Settings)

Export Type: @ Model ¢ Animation © Both ¢ Pose

— Optionz

Filename

d:stemphmymodel. egg Browse... |

" Export Entire Scene & Erport &l Frames
#® Export Meshes: £ sz Fange:

Character01 start Frame I 0

End Frame (100

Remove... | [Double-sided Polygons

Ok Cancel

I have filled in the file name, and | have selected the mesh | want to export. When | click "OK," an egg file will be
added to the list of eggs to generate. | then click the "add..." button again, and add another egg to the list:

Export Settings

Export Type: € Model & Animation ¢ Both § Pose

— Optionz

Filename

d:Ytemphmyanimation. egg Browsze. . |

" Export Entire Scene " Export &l Frames
Export Bones: & |Jse Range:

Bip01 ﬂ Skart Frame I 0

Bip01 Head
BipO1l L Calf End Frame |100
Eipi1 L Clavicle |

add... Femove... | [Double-sided Polygans

ak. Cancel

This time, I'm generating an animation egg. | have listed the bones to export, and the range of animation frames.

file:///E|/manual/Converting_from_3D_Studio_Max.1.html (3 of 4)2006/11/21 aUsE 06:02:57

Panda3D Manual

Once | click OK, the modify panel for the egg exporter looks like this:

ryrmadel kModel
myanimation Anim...

When I click the "export now" button, the two egg files are generated, and | am asked whether or not |1 would like
to pview them.

When you save your MAX file, the export helper will also be saved. The next time you load it up, it will still
remember which meshes go in which egg files.

<<prev next>=> - |

file:///E)/manual/Converting_from_3D_Studio_Max.1.html (4 of 4)2006/11/21 aUsE 06:02:57

Panda3D Manual

Panda3D Manual: Converting from Maya

I || Search |

Maya's exporter can be run from the command prompt or via a graphical panel. The command line utility is called
maya2egg. There are multiple versions of it corresponding to different versions of maya. For instance, the version to
use for Maya 5.0 is maya2egg5, for 6.0 its maya2egg6 and for 6.5 its maya2egg65.

The following is an example of how to convert a file(maya binary .mb) if using Maya 6.0 through the command line.

maya2egg6 -o eggFi | eNane. egg mayaFi | eNane.
nb

" WINDDWS, system 32 cnd.exe

C:*Models mavaZegghs —a model —o eggFileMame.eqgq mayaFileMame .mh =

Initializing Maya.
Writing sc-ModelsseggFileMame.eqgqg

C:Model=sl>_

The egg file will contain the filenames of the textures. These texture pathnames will be stored as relative paths,
relative to the location of the egg file. For example, let's say that the files are laid out like this:

c:\My Model s\ Maya Fi |l es\ Char acter.
nmb

c:\My Model s\ Egg Fil es\ Character.
€egg
c:\ My Model s\ Text ur es\ Char act er. png

In that case, the command to export the model is:

€:)
cd c:\My Model s\

maya2egg -0 "Egg Fil es/Character.egg" "Mya Fil es/ Character.
nb"

Note that Panda Filename Syntax uses forward slashes, even under Windows, and this applies to the exporter as
well. After doing this export, the character egg will contain the following texture reference:

". ./ Textures/ Character.
png"

Again, notice that this pathname is relative to the egg file itself. Many artists find it convenient to keep everything in

file:///E}/manual/Converting_from_Maya.1.html (1 of 5)2006/11/21 aUcE 06:02:59

Panda3D Manual

the same directory, to avoid having to think about this. This approach works fine.

The above conversion process will turn the character into a static model. Models which are rigged (they have bones
to help them animate), skinned (polygons attached to the bones/skeleton), and are animated need to use one of the
following options:

maya2egg -a nodel -o eggFil eNanme. egg nmayaFi | eNane.
nmb

maya2egg -a chan -o eggFil eNane. egg mayaFi | eNane. nmb
maya2egg -a pose -0 eggFil eNane. egg mayaFi | eNane. nb
maya2egg -a both -o eggFil eNane. egg mayaFi | eNane. nb

The meanings of these options are:

Save only the skinned and boned model, ready for animation but with no animation attached. This is

-a model
ideal for models with several event- or interaction-based animations.

Save only the animation data on the current model, but not the model itself. This is ideal applying
-a chan animations to an already-existing model egg file that is ready to receive animation. A model may
have several animation channels applied to it.

Save the model in the current key position of the animation applied to it. This position must be

-a pose selected before choosing to export the file. This format does not save the animation.

-a both This will export the model and animation out as one file.

-uo ft This converts the units of the model to feet, which is used by Panda3D.

-bface Exports the model as double sided. Of course, this may very well cut the rendering speed in half.
a€ “help to see all the parameters that may be taken by the converter.

There are many options to maya2egg. For a complete list, run maya2egg with the -h argument.

mayazegqg -
h

Using the Graphical Front-End

As of Panda3D 1.0.4, there is a graphical front-end to maya2egg. To run the graphical Maya exporter, drag
MayaPandaTool.mel from the panda plugins directory into the Maya workspace.

file:///E}/manual/Converting_from_Maya.1.html (2 of 5)2006/11/21 aUcE 06:02:59

Panda3D Manual

T
JriMaya 6.5 & Maya Exporter 1Ol x|

File Edit Modify Create Display Window Edit O

- .) File Edit ‘ew Favoribes Tools Help ﬂ'
[Moceing [} [0 6 @ P} BR[| B >
Z @ Back - e - @ p Search r-Ej Folders ['$
Generall Euwesl Surfaces Folvgans |Sul:u:|iv 2

—I . @ fddress IIE; C:\Panda3b-1.0.2\Mava Exporter j G0

Marne = | Size | Twpe
e i) MavaPandaTool_1.2.mel 31KB Maya Scripk File

DRAG FILE
INTO WORKSPACE

L] | 10
o

|1 objects |3EI.3 kE | i My Compuker

l'ﬂ I1m] Iznu |3m] Idl]l] Iﬁl]l] Fuu 000 .“| H‘ |...‘ 4| p.| ...” H‘,...|

The Ul window(below) will appear.

file:///E|/manual/Converting_from_Maya.1.html (3 of 5)2006/11/21 aUgE 06:02:59

Panda3D Manual

il Panda Exporter x|

tdapa Panda Exporter v.1.0 CMU/ETC Panda3D Team

Esport Options: Anirmation O phions;
[y Mesh ™ Animation * Full Range
" Both " Poze ™ Custom Range
Selection Options:
{* Export entire scene Start Frame:
" Export selected objects I
[Double sided faces End Frame:
W Ovenwrite if file exists I

[~ Run Pview after export

Output File O ptionz:

¢ EGG [&SCI] ¢ BAM [binary] ¢ Both
Texrture Path Option

¥ Reference testures relative ta maya file [default]

" Reference testures relative to custam path
Specify alternate directony;

I Ernwse“

Output directory Options:

{* Export to root directory of source file [default]

" Export to other directon:
Specify alternate directany:

I Eruwse“

Output filename Optiomns:
% Lze ariginal filename

Extra Toalz

Select a file to Pyiew |

™ Usze altemate filename
| Select a file to EGG |

Select a file to BAM |

Export wiaa panda3d.ong |

You can alternatively load the .mel file from the script editor. To save space, the graphical tool does not have access
to all of the features of the exporter. It is designed for rapid verification of assests. The features you can execute
with the graphical tool are identical to the respective ones of the command line exporter listed below.

Or, you can integrate the Ul interface to Maya. There is a very convenient way to launch the MayaPandaTool, using
Maya shelf to store the MEL script :

[1] open the Script Editor :

Window > General Editors > Script Editor

[2] In Script Editor, load the MayaPandaTool MEL script :

File = Open Script

[3] select the MEL text (press Ctrl+A)

[4] using middle mouse button, drag the selected text onto the shelf

[5] (optional) using Shelf Editor, you can change the image of Panda exporter icon to distinguish it from the others.

file:///E}/manual/Converting_from_Maya.1.html (4 of 5)2006/11/21 aUcE 06:02:59

Panda3D Manual

i

File Edit Madify <Create Display Window Edit Curves Surfaces Edit HURBS Paolug

W*.ﬂﬂ}”{?@?“‘-%0|ﬂl}éﬁf|ﬁ

General | Curves | Surfaces | FPolpgons | Subdivs | D eformation | Animation | Diyrnamics |

Y VTR

E SI'IEH'-T-EI:'E |
h Shelf Editar,.. 1g_Show Panels | Panda exparter
Backfaces:
— Mew Shelf
[) Delere shel ST oy
g . | =
Load Shelf., Instance:
'\“ Save All Shelues Display Layer:
vs: bDistance From Came
-

[e

T ﬁl I2l]l] Iell]l] Iﬁl]l] II]I]I] I1I]l]l] I14l]I] I1I]I]l] IEEI]I] IEﬁl]I] I3I]I]l]

:1.00 |1.00

°f :

o | Type: Maya Script File 1
= Date Modified: 04/07/2006 8:09f
i Size! 33,1 KB

= L;;i' - 'U {} . ' ﬂ) shadow mapping (52) 25T MARS - Ling..

Anytime you need to open the Panda Exporter, just click the icon on the shelf.

For Windows users :

If you want a faster launch, you can put the MEL file on the QuickLaunch. Press Ctrl while dragging the MEL file onto
QuickLaunch bar. If you don't press Ctrl, the actual file dropped to QuickLaunch is only the shortcut to the MEL file.

Anytime you need to open the Panda exporter, just drag it from QuickLaunch bar to the 3D window of Maya.

| Search |

file:///E}/manual/Converting_from_Maya.1.html (5 of 5)2006/11/21 aUcE 06:02:59

Panda3D Manual

Panda3D Manual: Converting from Blender

<<prev top next>> Search

Currently, there are two ways to get data from Blender into Panda3D.
Option 1: The "X" File format

There exists a free plugin for Blender that can export "X" (DirectX native) file format. Save the
file from blender as an X file, then load it directly into Panda3D, which can read X file format.
Alternately, if you're concerned about long load times (panda has to translate the file at load
time), then pre-convert the model from X to Egg to Bam using the conversion programs
supplied with Panda3D (x2egg, egg2bam).

Whenever you save a model in a non-native file format, you need to ask yourself: "does this
file format support everything | need?" For example, when you save out a model in 3DS file
format, you automatically lose all bone and animation data, because the 3DS file format
doesn't contain bone and animation data. In the case of the X file format, you're in good
shape: it's a fairly powerful file format, supporting vertices and triangles, bones and
animation.

Note however, when an animated X file is converted to egg, the resulting egg file only plays
the keyframes, but not whats supposed to be in between. For example, an animation could
exist that should spawn 200 frames, gets sized down to about 40, and playback looks shakey.
This shakeyness happens because the X file format supports the concept of keyframes, with
implicit frames interpolated between them. The egg file format is explicit. An egg file must
give all of the frames of an animation, even the frames that appear between "keyframes".

Therefore, a run of x2egg with an X file that omits a lot of frames between keyframes, will
product a shakey animation. The only solution is to ensure your X files are generated with all
frames. Testing of different X file exporters may be required.

Further, panda's native egg file format supports some esoteric things. For example, it supports
blend targets (morph animations) and motion path curves, which are not supported by the X
file format.

Caution: it has recently been discovered that there are two bugs in panda's X-file parser. One,
it is case-sensitive and it should not be. Two, it does not handle hyphens in identifiers
correctly. These two bugs will be fixed in an upcoming version of Panda3D. For information on
temporary workarounds, search the forums.

Option 2: The Egg export Plugin for Blender
There are several Blender plugins contributed by Panda3D users.

Chicken is the most recently updated, documented and feature complete. It supports static
meshes and armature animation, materials, vertex colors, alpha textures, tags, object types,
etc. It also has advanced features such as automatic invocation of Panda tools (egg2bam, egg-
optchar and pview) and Motion Extraction. You can find it at http://damthauer.byethost32.

file:///E|/manual/Converting_from_Blender.1.html (1 of 2)2006/11/21 aUoE 06:02:59

http://damthauer.byethost32.com/panda/

Panda3D Manual

com/panda/

EggX is another exporter that does materials, non-procedural textures, armature animation,
static meshes. It can be found at http://www.wickwack.com/panda

Another exporter that only supports static meshes can be found at http://xoomer.virgilio.it/
glabrol/panda.html

<<prev top next>>

file:///E|/manual/Converting_from_Blender.1.html (2 of 2)2006/11/21 aUxE 06:02:59

http://damthauer.byethost32.com/panda/
http://www.wickwack.com/panda
http://xoomer.virgilio.it/glabro1/panda.html
http://xoomer.virgilio.it/glabro1/panda.html

Panda3D Manual

Panda3D Manual: Converting from Softlmage

<<prev top next>> Search

WRITE ME: Add information about X file format.

top next>> Search

filel///E|/manual/Converting_from_Softimage.1.htm| 2006/11/21 aUsE 06:03:00

Panda3D Manual

Panda3D Manual: Converting from Milkshape 3D

<<prev top next>> Search

Currently, the best way to get data from Milkshape into Panda is to use X (DirectX native) file
format. Save the model as X from Milkshape, then load it directly into Panda, which can read X
file format. Alternately, if you're concerned about long load times (panda has to translate the
file at load time), then pre-convert the model from X to Egg to Bam using the conversion
programs supplied with Panda3D (x2egg, egg2bam).

Note that Milkshape 3D contains two X export plugins. | have heard that one of them does not
work correctly. This may require some experimentation.

Whenever you save a model in a non-native file format, you need to ask yourself: "does this
file format support everything | need?" For example, when you save out a model in 3DS file
format, you automatically lose all bone and animation data, because the 3DS file format
doesn't contain bone and animation data. In the case of the X file format, you're in good
shape: it's a fairly powerful file format, supporting vertices and triangles, bones and
animation.

However, egg file format supports some esoteric things. For example, it supports blend targets
(morph animations), which are not supported by the X file format.

More Detailled explanations for MS3D users

You can use MS3D to create X Files (both static or animated) to be converted by Panda3d
x2eggconverter. </br>

In MS3D there is two Direct X .X exporter: Direct 8.0 and DirectX(JT). So far i've managed to
use only DirectX 8.0 File. (DirectX JT got a lot more parameters and only a few combination of
it seemed to work but not on a predictable basis). I'll talk only for animation with bones (not
tested other ones).But this exporter work also for static meshes.

A) Before Exporting to .X you must ensure: - no null material or null name in texture in your
model (MS3D won't block you but will crashes during the export) - no hyphen in your bones
names (underscore is ok) (No issue in MS3D but issue with panda converter). - animation
mode is NOT enabled

B) To export , use Direct 8.0 file export. Select the required boxes. (Meshes, Materials ,
Animations) if you selected less than all checboxes (material animations...) you will have to
edit manually the x files to remove the last 1 or 2 "}" of the file . before using X2egg to
convert . It's ok to leave defaut settings (Lock Root Bone and 1 as Frame offset). Warning:
Export can be very long in case of big models/animations.

C) Convert using X2egg converter

Warning:if you run X2egg without special args, you will need to have your textures also in the

filel///E/manual/Converting_from_Milkshape_3D.1.html (1 of 2)2006/11/21 sUxsE 06:03:00

Panda3D Manual

same directory than the x files. Don't be surprised if .egg file size is 6 times your .X file size,
it's pretty normal due to more explicit information in the .egg file format. In case size is an
issue, bamming the .egg file will reduce the size and optimize loading time.

Also , before converting to .egg , you can load your .x in pview to check everything is fine.

D)TIPS: depending if you make your models fully in MS3D or import it from Poser, you may
find an issue : all animations applied to root bone instead of correct bone. You can solve it in
MS3D by regrouping all materials, export to HL SMD (1 or 2) then import again and export to .
X.

NB: this have been written by a coder not an artist :-)
Bugs in the Process

Caution: at one time, it was discovered that there were two bugs in panda's X-file importer.
One, it was case-sensitive and it should not be. Two, it did not handle hyphens in identifiers
correctly. It is unknown whether or not these bugs have been fixed.

<<prev top next=>>

[=

file:///E|/manual/Converting_from_Milkshape 3D.1.html (2 of 2)2006/11/21 sUsE 06:03:00

Panda3D Manual

Panda3D Manual: Converting from GMax

<<prev top next>> Search

To convert models to Panda from GMax, you must first convert models to .X format, and then
load them into Panda as .X files, or convert them further using x2egg and/or egg2bam.

There is a fair amount of work involved in setting up the GMax-to-X converter, but once it is
set up the conversion process is reportedly very easy.

Installation
There are several plug-ins required to export .X files from gmax:

1. First download the &€ “"Gmax gamepack SDKa€ ™ found at this link: FlightSimulator
exporter plugin. Size is about 15Mb. Although only 3 files are actually needed, they are not

available as separate downloads, so unfortunately youa€ ™Il need to download the whole
thing.

2. Next, download programs 'MDLCommander' and '"Middleman’.

3. After download, youa€ ™|l see that the 'fs2004_sdk-gmax-setup' is an exe. If you install it in
the default gmax directory, youa€ ™Il end up with a lot of extra stuff that you don&€ ™t need.
So create a new folder somewhere on your hard drive and install it there.

4. When done, open the folder, go to gamepacks > fs2004 > plugins. And copy all 3 files:
'FSModelExp.dle', 'makemdl.exe’ and ‘'makemdl.parts.xml" to your main ../gmax/plugins folder.

5. You need to rename two of the files. Right click on 'makemdl|.exe' and rename it to to
'mkmdl.exe’. Then right click on 'makemdl.parts.xml* and rename it to ‘'mkmdl.parts.
xml' (without the quotes).

6. Next, unzip '"MDLCommander.zip'. Then copy 'mdicommander.exe’ to your main ../gmax/
plugins folder. This file also needs to be renamed. Right click on 'mdicommander.exe' and
rename it to ‘'makem.exe’.

7. Finally, unzip 'Middlemanl3beta3.zip'. Then copy 'makemdl.exe' to your main ../gmax/
plugins folder. Thata€ ™s it, youa€ ™re done!

Using

To convert your gmax model to .X format. Go to &€ " File > Exporta€ ™ and select &€ ~Flightsim
Aircraft Object (.MDL) from the file type dropdown. Type in a filename and click Save. The
Middleman dialog window should now appear. Click the &€ ~Optionsa€ ™ tab and check a

€ SaveXFilea€ ™ (this saves the x file) and a€ “"nocompiled€ ™ (this tells mdicommander to
only create an .X file not mdl/bgl). Then click the GO button.

filel///E|/manual/Converting_from_GMax.1.html (1 of 2)2006/11/21 aUsE 06:03:01

http://www.microsoft.com/games/flightsimulator/fs2004_downloads_sdk.asp#gmax
http://www.microsoft.com/games/flightsimulator/fs2004_downloads_sdk.asp#gmax
http://hometown.aol.de/_ht_a/docmoriarty3/fs2002/en/mdlcommander_dl.html
http://thegreatptmd.tripod.com/

Panda3D Manual

After a few seconds the dialog will close and your newly exported .X model should be in the
directory where you saved it to.

Bugs in the Process

The GMax converter writes slightly nonstandard .X files; it writes the name "TextureFileName"
instead of "TextureFilename" for each texture reference. It may also generate hyphens in
identifiers. Both of these can confuse the X file parser in Panda3D version 1.0.4 and earlier
(this will be fixed in a future release of Panda). In the meantime, the temporary workaround is
to edit the .X file by hand to rename these strings to the correct case and remove hyphens.

<<prev top next=>=

-

file:///E|/manual/Converting_from_GMax.1.html (2 of 2)2006/11/21 aUsE 06:03:01

Panda3D Manual

Panda3D Manual: Converting from other Formats

<<prev top next=>>

There are several tools included with panda that can convert various file formats into egg file
format:

| wo2egg
dxf 2egg
flt2egg
vrm 2egg
x2egg

Note that panda can load any of these file formats without conversion, doing so causes the
conversion to occur at runtime.

Also, be aware: many of these file formats are limited. Most do not include bone or animation
data. Some do not store normals. Currently the .x format is the only one of these that stores
bones, joints and animations.

<<prev top next=>>

|-

file:///E|/manual/Converting_from_other_Formats.1.htm|2006/11/21 aUsE 06:03:03

Panda3D Manual

Panda3D Manual: Converting Egg to Bam

<<prev top next>> Search

Panda's native egg file format is human-readable. This is convenient, but the files can get very
large, and they can a little bit slow to load. To accelerate loading, Panda supports a second
native format, bam. These files are smaller and are loaded very rapidly, but they cannot be
viewed or edited in a text editor. Also, bam files are specific to the version of Panda they are
created with, so they are not a good choice for long-term storage of your models.

Texture pathnames in an egg file are first assumed to be relative to the egg file itself. If the
texture is not found at that location, panda will search its model-path, which is specified in the
panda config file. When doing this, panda concatenates the directory which is part of the
model-path to the entire string in the egg-file. So if the model-path names the directory "/d/
stuff’, and the texture-path in the egg file is "mytextures/tex.png"”, then panda looks in "/d/
stuff/mytextures/tex.png."

Texture pathnames in a bam file may be stored relative to the bam file itself, relative to a
directory on the model-path, or with a full pathname to the file, depending on the parameters
given to the egg2bam program.

The program egg2bam is used to convert egg files to bam files. Egg2bam will complain if the
textures aren't present. You must install the textures (into your model path) before you
convert the bam file. You can run the egg2bam program as follows:

egg2bam -ps rel -o banFil eNane. bam eggFi | eNane.
€gg

Here, "-ps rel” means to record the textures in the bam filename relative to the filename itself;
if you use this option, you should ensure that you do not move the bam file later without also
moving the textures. (The default option is to assume the textures have already been installed
along the model path, and record them relative to the model path. If you use the default
option, you should ensure the textures are already installed in their appropriate place, and the
model-path is defined, before you run egg2bam.)

The egg2bam program accepts a number of other parameters that may be seen by running
egg2bam a€*“h.

<<prev top next=>> Search

file:///E/manual/Converting_Egg_to_Bam.1.html2006/11/21 aUcE 06:03:03

Panda3D Manual

Panda3D Manual: Parsing and Generating Egg Files

<<prev top next>> Search

Transforms and Vertices

The egg syntax defines all transforms, including joint transforms, relative to the parent node
only. When the animation is played, Panda accumulates the transforms for each joint.

Although joints are defined using a local transform, vertices are defined in an egg file using
global coordinates, which is irrespective of transforms appearing within the egg file. This
means when Panda loads the egg file is loaded, the vertex coordinates given in the egg file
must be pre-transformed by the appropriate inverse matrix to compensate.

Custom .egg Readers/Writers
When writing an importer or exporter for panda, you have two choices.

One option is to use the panda runtime library, which includes code for reading, parsing,
storing, and emitting Egg files. This approach can save you a great deal of effort. However, it
does require that you link with the panda runtime system, which may be inconvenient if you
wish to distribute a small, standalone file translator.

If you decide to use the panda runtime system, the classes you will need to use are the ones
whose names start with "Egg," ie, pandac. EggDat a, pandac. EggVert ex, pandac. EggPol ygon,

pandac. EQgG oup, and so forth. Like all panda classes, these are documented in the API
reference manual.

The other alternative is to parse/generate the Egg file entirely by yourself. In this case, you
will need to read the syntax documentation for egg files. This documentation is part of the

source code on sourceforge. The file format is human-readable, and fairly straightforward.

If you are writing a program to generate Egg files, either approach is equally good. However, if
you are writing a program to parse Egg files, we do recommend using the panda runtime
library, rather than writing your own parser, for the simple reason that it is difficult to write a
parser that accepts all valid Egg files. Also, the Egg syntax might be extended from time to
time, and relying on the runtime library to parse the Egg syntax will ensure that your program
continues to parse future Egg files.

<<prev top next>> -

file:///E|/manual/Parsing_and_Generating_Egg_Files.1.htm|2006/11/21 sUsE 06:03:04

http://panda3d.org/manual/epydoc/
http://panda3d.org/manual/epydoc/
http://panda3d.cvs.sourceforge.net/panda3d/panda/src/doc/eggSyntax.txt?view=markup
http://sourceforge.net/projects/panda3d

Panda3D Manual

Panda3D Manual: Previewing 3D Models in Pview

<<prev top next>> Search

Pview or Panda Viewer is a model and animation viewer for egg and bam files. This allows
users to see if their files have converted correctly without having to create a Panda3D
program. Pview is accessed through a command prompt.

To view a model that has been converted to an egg or bam file, type the following:

pvi ew nodel Fi |l e.
€gg

To view a character model with animations, simply add the name of the file with the

animation.

pvi ew nodel Fi | e. egg ani mati onFi | e.
€99

Here's an example based on the panda model distributed with panda source.

pvi ew
panda

A new window should pop-up and here's what you should see -

file:///E|/manual/Previewing_3D_Models in_Pview.1.html (1 of 3)2006/11/21 sUsE 06:03:05

Panda3D Manual

. B Fandn Virwer

There are some controls and hotkeys available while using pview. To see the whole list press
shift-question mark in the pview window. To turn this list off press shift-question mark again.
For convenience here is the full list of as the time of writing:

Left-click and drag Mouse

Moves the model up, down, left, and right relative to the camera

Middle-click and drag Mouse Rotates the model around its pivot
Right-click and drag Mouse Moves the model away and towards the camera

f

o ~ =

C
shift-c
shift-b
shift-I

Report framerate. The current framerate is output on the
console window.

Toggle wireframe mode

Toggle texturing

Toggle back face (double-sided) rendering
Invert (reverse) single-sided faces

Toggle lighting

Recenter view on object

Toggle collision surfaces

Report bounding volume

List hierarchy

file///E/manual/Previewing_3D_Models in_Pview.1.html (2 of 3)2006/11/21 sUxE 06:03:05

Panda3D Manual

h Highight node

arrow-up Move highlight to parent
arrown-down Move highlight to child
arrow-left Move highlight to sibling
arrow-right Move highlight to sibling
shift-s Activate PStats

o Take screenshot

, Cycle through background colors

shift-w Open new window

alt-enter Toggle between full-screen and windowed mode
2 Split the window

w Toggle wireframe

escape Close Window

q Close Window

As of this writing there is a small caveat in loading textures for models into pview. Textures
are searched for relative to the directory that pview is called from, not the directory that the
model is in. Either make sure that the texture path is set correctly in the Config.prc file or
ensure the bam or egg file look for the textures correctly (relative to where you are calling
pview). The easiest way to get around this is to call pview from the directory that the model is
placed.

<<prev top next=>= - I

file:///E/manual/Previewing_3D_Models_in_Pview.1.html (3 of 3)2006/11/21 aUsE 06:03:05

Panda3D Manual

Panda3D Manual: Building a Self-Extracting EXE using packpanda

<<prev top next>> Search

Update: release 1.2.2 of panda contains a nonfunctioning copy of packpanda. To repair it, install panda,
then move "packpanda.nsi" from the subdirectory "direct" to the subdirectory "direct\src\directscripts.” This
will be permanently fixed in the next release.

Packpanda is a utility that lets you create a windows installer for a panda game. The result looks like any
other windows installer:

.7 Air Blade Setup M [=

Welcome to the Air Blade Setup
Wizard

=

This wizard will guide wou through the installation of &ir
Blade.

It is recommended that wou cose all other applications
before starking Setup, This will make it possible o update
relevant syskem files without having ko reboat yaur
compuker,

Click. Mext ba continue,

Mexk = l [Zancel

When the installation is done, the end-user will find your game in his start menu:

B winkar
A wordPad

Air Blade ¥ & Flay Air Blade
(% Uninstall Air Blade

W W Y

The end-user doesn't need to have a copy of panda. He doesn't even need to know that he is using panda.
He just installs the game and plays it.

filel///E)/manual/Building_a_Self-Extracting_ EXE_using_packpanda.1.html (1 of 4)2006/11/21 aUcE 06:03:07

Panda3D Manual

Files that your Game should Contain

Before you pack up your game, you need to put all of your game files into a single directory (which may
have as many subdirectories as you desire). This directory will be packed up and shipped to the user, along
with the panda runtime system. Your game directory needs to contain several files:

main.py. This is your main program. When the user clicks on the start-menu entry for the game, this is the
file that will get executed.

installer.omp. This image will appear on the installer screen. If present, it must be a 164x314 windows BMP
file. This file is not required.

license.txt. This is your game's software license. The file, if present, must be plain ascii. The game's license
will appear inside the installer, and will also be copied to the game's installation directory. Of course, your
license only covers the code that you wrote, not panda itself, which is covered by the panda license. The
license file is not required.

icon.ico. This is your game's icon, which will appear in the start menu. If you don't supply an icon, the
panda icon will be used instead. This file is not required.

Packing up your Game

The command to pack up your game is "packpanda", and you must specify the "--dir" command line option
to tell it the name of the directory containing your game. Packpanda will immediately analyze your game
and print out a status report:

B3 Command Prompt - packpanda --dir Airblade o |I:I|ﬂ

C:wpandald-bXpackpanda —dir Airhlade

PANDA located at C:-spandadd-b~built

Dip : Cispandadd-b<Airhlade

Mame Airblade

Start Menu Airhlade

i Cowpandadd-bsAirhladesmain.py
C:spandadd-bsAirblade~icon.ico (HISSING>
C:wpandadd-b~Airblade~inztaller.bmp
C:spandadd-bsAirblade~license.txt C(MISSIMG>
C:spandadd-b~Airblade_exe

C:xAirblade

Install Dir

Copying the game to C:ospandadd-bspackpanda-THP...

In this example, packpanda has inferred that the name of the game is "Airblade,” based on the directory
name. It plans to install the game into "C:\Airblade", and to add the start menu folder "Airblade”. It plans to
call the installer "Airblade.exe". Later, we will tell you how to override some of these defaults.

As you can see, packpanda is looking inside the game directory for the files mentioned above: main.py,
installer.omp, icon.ico, and license.txt. It notes that some of those files are "missing", which is not a
problem. The only file that is required is main.py.

filel///E)/manual/Building_a_Self-Extracting_ EXE_using_packpanda.1.html (2 of 4)2006/11/21 aUcE 06:03:07

Panda3D Manual

Packpanda can clean up your source tree before shipping it. When doing so, packpanda never modifies your
original copy of the game. Instead, it copies the game to a temporary directory, as seen above.

EGG Verification and PY Verification

Packpanda will check all of your EGG and PY files to make sure that they compile correctly. It checks EGG
files by running them through egg2bam. It checks PY files by running the python compiler on them. If any
file fails, the game will not be packed.

Packpanda can optionally ship the BAM and PYC files it creates to the end-user. To ask it to do so, use the
following command-line options;

packpanda --bam # Ship BAM

files
packpanda --pyc # Ship PYC
files

These command line options do not remove the corresponding EGG and PY files from the distribution. If you
wish to remove EGG and PY files, you need to use the --rmext option, documented below.

When packpanda generates a BAM or PYC file, it puts it in the same directory as the corresponding EGG or
PY file. If an EGG file contains a texture path, then the generated BAM will contain a relative texture path
that is relative to the game's root directory. Packpanda makes sure that your game's root directory ends up
on the model path.

If you do not supply the --bam or --pyc options, packpanda will still generate BAM and PYC files for
verification purposes, but it will not ship the files it generates to the end-user.

Stripping Files from the Distribution

Often, your master copy of a game contains files that should not be shipped to the end-user. For situations
like this, packpanda contains command-line options to strip out unnecessary files:

packpanda --rndir dir # Strip all directories with given
nane
packpanda --rmext ext # Strip all files with given extension

These options are particularly useful in several common situations:
To remove CVS directories: packpanda --rmdir CVS

To ship BAM instead of EGG: packpanda --bam --rmext egg

To ship PYC instead of PY: packpanda --pyc --rmext py

Changing the Game's Name

Normally, packpanda infers the game's name to be the same as the directory name. That isn't always
convenient, especially when the game has a long name. The following command line option allows you to
tell packpanda the name of the game:

filel///E)/manual/Building_a_Self-Extracting_EXE_using_packpanda.1.html (3 of 4)2006/11/21 aUcE 06:03:07

Panda3D Manual

packpanda --nane "Evil Space Monkeys of The Pl anet
Zort"

This string will show up in a number of places: in particular, throughout the installation dialogs, and in the
start menu.

Version Numbers
If you wish, you can assign your game a version number using this command line option:

packpanda --version X Y.Z # Assign a version
nunber

The only thing this does is to add "X.Y.Z" to the install directory and to the start menu item. That, in turn,
makes it possible for two versions of the same game to coexist on a machine without conflict.

Compression Speed

Normally, packpanda uses a very good compression algorithm, but it's excruciatingly slow to compress. You
can specify this command line option to make it go faster, at the cost of compression effectiveness:

packpanda --fast # Quick but not so great
conpr essi on

Moving Beyond Packpanda

Packpanda has a lot of limitations. However, packpanda is actually a front end to NSIS, the "Nullsoft
Scriptable Install System.” NSIS is incredibly powerful, and very flexible, but unfortunately rather
complicated to use. Packpanda hides all that complexity from you, but unfortunately, in so doing, it limits
your options.

If you find yourself outgrowing packpanda, one sensible thing to do would be to learn how to use NSIS
directly. This is an easy transition to make. The first step is to simply watch packpanda in action. It will
show you all of the commands it is executing. You can then copy those commands into a batch file. If you
run that batch file, you're executing NSIS directly.

Once you have direct control over NSIS, you can begin editing the NSIS command-line options and the
NSIS configuration file (packpanda.nsi). Of course, to do so, you'll need to first read the NSIS manual
(available on the web). From that point forward, you have unlimited flexibility.

top next>> Search

filel///E)/manual/Building_a_Self-Extracting_ EXE_using_packpanda.1.html (4 of 4)2006/11/21 aUcE 06:03:07

Panda3D Manual

Panda3D Manual: Building Panda from Source

<<prev top next>> Search

Note that in the past, it was very difficult to build panda. Things have improved. It is now
fairly straightforward to download and compile panda. In particular, this is a sensible thing to
do if you wish to add some functionality to panda.

To avoid possible consistency problems, the documentation for building the source is included
with the source, not in the manual. Download a source package from the panda website, then
look in the directory "doc,"” where you will find two files: INSTALL-MK and INSTALL-PP. These
contain the instructions on the two different build-systems, "makepanda"” and "ppremake".

Having built from source, Python can be configured to let you import Panda3D modules as if
they were installed in site-packages. Create a file called panda3d.pth inside your site-packages
directory containing something similar to the following (this example is for Linux):

/opt/panda3d/built /opt/panda3d/built/lib

The two entries should be on separate lines. Note that this assumes the built version of
Panda3D has been moved or copied to /opt/panda3d.

In addition to this path file, create a file __init__.py and save it into the "built" directory, or /
opt/panda3d/built as in this example for Linux. This file can be empty. Without, Python will not
be able to locate the Panda3D modules.

Note that | only tested this under Linux.

<<prev top next>> Search

filel///E/manual/Building_Panda_from_Source.1.htm|2006/11/21 aUsE 06:03:07

Panda3D Manual

Panda3D Manual: Troubleshooting ppremake on Windows

<<prev top next>=>

This page describes potential build issues that may arise when building Panda3D using the PPremake build
system on the Windows platform, and possible solutions.

ppremake doesnt run (access violation O0xcO000005)
The April/May 2005 version of Cygwin may have had an issue with getopt.

Simply open config.h in the ppremake directory, replace "#define HAVE_GETOPT 1" with "#undef
HAVE_GETOPT", then rerun "make" and "make install".

invalid link option /7DEBUG, when running make

This error (or something similar) is caused by the make running Cygwin's link rather than your msvc link.exe.
Simply rename /usr/bin/link to /usr/bin/_link, and rerun make.

Building using Microsoft Visual C++ Toolkit 2003

Basically follow the official build instructions, using Cygwin as configuration platform and Microsoft Visual C++
Toolkit 2003 as compiler (you have to pretty much, this is very close to the primary configuration they support).

Pre-requisites:

. Microsoft Visual C++ Toolkit 2003

. msvcrt.lib and msvcprt.lib (see See Notes on Microsoft Visual CPP Toolkit 2003)
. DirectX (even though we're not using it, you need the headers

. Cygwin

. Panda source-code

The Panda source-code zip contains Python.

. First, you'll need to set up your variables for MSVC, within Cygwin. What you can do is to personalize the
following file for yourself, and save it to /usr/local/panda/bin/setvars:

PATH=$PATH:. "/ cygdri ve/ f/ Program Fi |l es/ M crosoft Vi sual C++ Tool kit 2003/ bi n"
PATH=$PATH: / usr /1 ocal / panda/ bi n

PATH=$PATH: / usr/ 1 ocal / panda/lib

PATH=$PATH: / cygdri ve/ f / dev/ panda3d- 1. 0. 2- cyg/ t hi rdparty/w n- pyt hon

export CL=" /I\"F:\Program Fil es\M crosoft Visual C++ Tool kit 2003\i nclude\" "
export CL="$CL /I\"F:\Program Files\M crosoft Visual C++ Tool kit 2003\include\" "
export CL="$CL /I\"F:\program Files\M crosoft SDK\incl ude\"

export CL="$CL /I\"F:\Program Files\M crosoft DirectX 9.0 SDK\incl ude\"

export CL="$CL /I1\"F:\dev\panda3d-1.0.2-cyg\thirdparty\w n-python\include\" "

export LINK=" /LIBPATH:\"F:\Program Fil es\M crosoft Visual C++ Tool kit 2003\Iib\"
export LI NK="$LINK /LI BPATH:\"F:\Program Files\M crosoft Visual C++ Tool kit 2003\1ib\"
export LINK="$LINK /LI BPATH:\"F:\Program Files\M crosoft SDK\Ilib\" "

export LINK="$LINK /LI BPATH:\"F:\ Program Fil es\M crosoft DirectX 9.0 SDK\lib\" "
export LINK="$LI NK /LI BPATH:\"F:\dev\ panda3d- 1. 0. 2-cyg\thirdparty\w n-python\libs\" "

export PANDA ROOT='F:\ Cygw n'

file:///E)/manual/Troubleshooting_ppremake_on_Windows.1.html (1 of 2)2006/11/21 asUsE 06:03:08

http://panda3d.org/wiki/index.php?title=Notes_on_Microsoft_Visual_CPP_Toolkit_2003&action=edit

Panda3D Manual

export PYTHONPATH="f:\ dev\ panda3d- 1. 0. 2-cyg\t hi rdparty\w n-python; f:\cygw n\usr\l ocal \ panda\lib"
. then run this file from Cygwin
/usr /| ocal / panda/ bi n/ setvars

(note that there's a . at the start, and a space between the . and the rest of the command)

. also, you will need to rename /usr/bin/link to /usr/bin/_link , in order that cygwin finds msvc link, and
not the gcc link

. Open cgywin/usr/local/panda/Config.pp (create the file, if you didnt already), and add the following lines:

#def i ne HAVE DX

. The HAVE_DX line means that you will not use DirectX (sic), which is a good thing, unless you happen to
have an old DirectX 8 SDK lieing around (current version at microsoft.com is 9)
. Note that linking dynamically is the default; and this the configuration which builds easiest

. The Visual C++ Toolkit doesnt contain lib, only link, which can do the same thing, so open, in the panda
source directory, dtool/pptempl/compilerSettings.pp, and replace

#define LIBBER |ib
with
#define LIBBER link /1ib
. Now, you're ready to run ppremake, make and so on in dtool, then panda, as per the instructions.

(These notes taken from: http://manageddreams.com/osmpwiki/index.php?title=Panda3D).

next=>>

file:///E)/manual/Troubleshooting_ppremake_on_Windows.1.html (2 of 2)2006/11/21 sUsE 06:03:08

http://manageddreams.com/osmpwiki/index.php?title=Panda3D

Panda3D Manual

Panda3D Manual: Troubleshooting ppremake on Linux

<<prev top next=>>

This page describes potential build issues that may arise when building Panda3D using the
PPremake build system on the Linux platform, and possible solutions.

(no known problems at this time)

<<prev top next>>

-

file:///E|/manual/Troubleshooting_ppremake_on_Linux.1.html2006/11/21 aUcE 06:03:08

Panda3D Manual

Panda3D Manual: Troubleshooting makepanda on Windows

<<prev top next=>>

This page describes potential build issues that may arise when building Panda3D using the
Makepanda build system on the Windows platform, and possible solutions.

(no known problems at this time)

<<prev top next>>

-

file:///E|/manual/Troubleshooting_makepanda_on_Windows.1.htm|2006/11/21 aUsE 06:03:09

Panda3D Manual

Panda3D Manual: Troubleshooting makepanda on Linux

<<prev top next=>>

This page describes potential build issues that may arise when building Panda3D using the
Makepanda build system on the Linux platform, and possible solutions.

(no known problems at this time)

<<prev top next>>

-

file:///E|/manual/Troubleshooting_makepanda_on_Linux.1.htm|2006/11/21 aUsE 06:03:09

Panda3D Manual

Panda3D Manual: Video Lectures

<<prev top next>> Search

The following sections contain links to video lectures about panda.

top next>> Search

file///E/manual/Video_L ectures.1.htm|2006/11/21 nUsE 06:03:10

Panda3D Manual

Panda3D Manual: Disney Video Lectures

top next>>

<<prev

David Rose, from Walt Disney Imagineering, periodically holds classes based on the
fundamentals and working of Panda3D. Below are a few of these lectures. As of now each
lecture is made to fit on a 700mb CD.

Characters Part | (683 mb). Recorded October 8, 2003. This includes information about

eggs, pandaNodes and actors.
Characters Part Il (669 mb). Recorded October 22, 2003. This is a recap of character

information in Panda3D.

top next>>

file:///E/manual/Disney_Video_L ectures.1.html2006/11/21 sUsE 06:03:10

http://panda3d.org/videolectures/disney1/10-08-03-Characters1.avi
http://panda3d.org/videolectures/disney2/10-22-03-Characters2.avi

Panda3D Manual

Panda3D Manual: Scene Editor Lectures

top next>>

<<prev

The Scene Editor was developed at the Entertainment Technology Center (Carnegie Mellon
University). It is meant to be a level editing or layout tool.

Below are some video tutorials which explain how to use the Scene Editor. All tutorials were
recorded by Shalin Shodhan in May of 2004.

Introduction (48 mb)

Camera Control and Object Manipulation (18mb)
Animation Loading (8 mb)

Lighting (11 mb)

Animation Blending (26 mb)

Motion Paths (24 mb)

Particles (38 mb)

Collision (34 mb)

Miscellaneous Part 1 (20 mb)

Miscellaneous Part 11 (16 mb)

top next>>

file:///E|/manual/Scene_Editor_L ectures.1.html2006/11/21 aUsE 06:03:11

http://panda3d.org/videolectures/scene/1_Introduction.avi
http://panda3d.org/videolectures/scene/2_Camera_Control_And_Object_Manipulation.avi
http://panda3d.org/videolectures/scene/3_Animation_Loading.avi
http://panda3d.org/videolectures/scene/4_Lighting.avi
http://panda3d.org/videolectures/scene/5_Animation_Blending.avi
http://panda3d.org/videolectures/scene/6_Motion_Paths.avi
http://panda3d.org/videolectures/scene/7_Particles.avi
http://panda3d.org/videolectures/scene/8_Collision.avi
http://panda3d.org/videolectures/scene/9_Misc1.avi
http://panda3d.org/videolectures/scene/10_Misc2.avi

Panda3D Manual

Panda3D Manual: Panda 3D Video Tutorial Series

<<prev top next=>>

This is a video tutorial series available on FanFilmEngine.com. They were originally going to
only be released to a certain game developement team, but the author has decided to share
them with the pubilic.

Part One: Downloading Panda 3D and Opening a Panda 3D Program
http://www.FanFilmEngine.com/panda_open.mov

Approximately 3.5 MB - Quicktime Format

Part Two: Downloading and Installing the Blender DirectX Exporter
http://www.FanFilmEngine.com/panda_to_x.mov

Approximately 2.5 MB - Quicktime Format

top next>>

file:///E|/manual/Panda_3D_Video_Tutorial_Series.1.html2006/11/21 aUcE 06:03:11

http://www.fanfilmengine.com/panda_open.mov
http://www.fanfilmengine.com/panda_to_x.mov

Panda3D Manual

Panda3D Manual: APl Reference Materials

<<prev top next>> Search

Quick Reference: Functions and Classes

The following PDF reference sheets contain the most important panda functions in a single-
page printable format.

Quick Reference Sheet
BVW Quick Reference Sheet

Comprehensive API Reference Manual

The following link will direct you to the APl Reference manual. Note that while the reference is
comprehensive, it is merely that: a reference. It does not make any attempt to explain
concepts.

AP| Reference

As a general rule, it is best to search for the information you need in the Programming with
Panda section, then, if you can't find what you need, dig down into the API reference manual.

Obtaining your own Copy of the Manual

It is now possible to download your own copy of the manual from our software downloads
page.

However, the manual is updated daily, whereas the downloads page contains a snapshot taken
on the day that the panda version was released. To obtain a more recent version of the
manual, you will need a web-spider program called "wget." This tool is included with most
versions of Linux, but you need to download it separately to use it under windows. To fetch
the manual, use this command:

wget --restrict-file-names=wi ndows -r -k -nd -E -Iw ki/index. php, w ki /i nmges,
ni mages, styl esheet s http://panda3d.org/wiki/index.php/

Once you have a copy of the manual, you may wish to rename the following file:

copy Main_Page.1.htm index.
ht m

file:///Ej/manual/API_Reference_Materials.1.html (1 of 2)2006/11/21 aUaE 06:03:12

http://panda3d.org/pdfs/QuickReference.pdf
http://panda3d.org/pdfs/BVWQuickReference.pdf
http://panda3d.org/apiref.php?page=index

Panda3D Manual

Regenerating the API reference Manual

If you have compiled your own copy of the panda source code, you can regenerate the API
reference manual. You can do so with the following commands:

makepanda\ makedocs.
bat

Or, under Linux:

makepanda/ makedocs.
py

The resulting manual will be found in the subdirectory "reference."

<<prev top next>>

| =

file:///EJ/manual/API_Reference_Materials.1.html (2 of 2)2006/11/21 aUaE 06:03:12

Panda3D Manual

Panda3D Manual: List of Panda Executables

<<prev top next>> Search

This is meant to be a list of the executables in the /bin/ folder of Panda 3D. You can get a
detailed synopsis of what the executables do by running them with -h as the arguement.

Filename Description

Scans one or more .bam files and outputs their contents. See

bam-info.exe) .
executable for more information.

Converts models in the .bam format to the .egg format. For more

AT information see Converting Egg to Bam.

Reads a file from disk and produces a table that when compiled by C

bin2c.exe compiler reproduces the same data. See executable for more
informatiion.
A compiler for NVidia's Cg language. For more information see Using
cgc.exe
Cg Shaders.
Outputs the MD5 hash for one or more files. See Executable for more
check_md5.exe . .
— information.

Reads in an AutoCad .dxf file and prints out the points contained in it.

dxi-points.exe See executable for more information.

Converts models from the Autocad format to the .egg format. For

dxi2egg.exe more information see Converting from other Formats

Strips an .egg file of all parts that fall outside the given bounding

egg-crop.exe . .
99 P volume. See executable for more information.

Creats an .egg file representing a "tube™ model. See executable for

egg-make-tube.exe o information.

Makes a .egg file from a FreeType (.ttf) font. For more information see
egg-mkfont.exe 99 ype (.tth)

Text Fonts.

Optimizes models by removing unused joints. Also allow you to label
egg-optchar.exe parts of the model. For more information see Manipulating a Piece of a

Model.

Tries to combine textures in an egg file. Also performs some texture

I ARG manipulation. See executable for more information.

Performs a tesselation on all of the NURBS surfaces in a .egg file. See

egg-qgtess.exe . .
99-9 executable for more information.

Creates an egg that automatically rotates through multiple textures.

egg-texture-cards.exe For more information see Automatic Texture Animation.

Unnaplies the animations from one of the top joints in a model. Useful
egg-topstrip.exe for character models that stack on top of each other. See executable
for more information

Produces out essentially the same .egg file. Useful for applying
egg-trans.exe rotational and positional tronsformations. See executable for more
information.

Converts files in the .egg format to the .bam format. For more

eggzbam.exe information see Converting Egg to Bam.

file///E/manual/List_of Panda_Executables.1.ntml (1 of 3)2006/11/21 aUcE 06:03:13

Panda3D Manual

egg2c.exe

egg2dxf.exe

egg2flt.exe

egg2x.exe

flt-info.exe
flt-trans.exe

flt2egg.exe

genpycode.exe

httpbackup.exe

image-info.exe
image-resize.exe

image-trans.exe
indexify,exe

interrogate.exe

lwo-scan.exe

Iwo2egg.exe

make-prc-key.exe

maya2egg5.exe

maya2eggb6.exe

maya2egg65.exe

multify.exe

pdecrypt.exe

Reads a .egg file and produce C/C++ code that will almost compile.
See executable for more information.

Converts files in the .egg format to the AutoCad format.For more
information see Converting from other Formats.

Converts files in the .egg format to the Open Flight format.For more
information see Converting from other Formats.

Converts files in the .egg format to the DirectX format. Especially
useful because it holds bone, joint and animation data. For more
information see Converting from other Formats.

Reads an OpenFlight file and prints out information about its contents.
See executable for more information.

Produces esentially the same .flt file. Useful for postional and
rotational transformations. See executable for more information.

Converts files in the OpenFlight format to the .egg format. For more
information see Converting from other Formats.

Genreates the Python wrappings necessary to inteface with the C++
libraries that are the backbone of Panda. Also generates the API
Reference Manual in <Panda Di r ect or y>/ pandac/ docs. For more

information see APl Reference Materials

Used to retreive a document from an HTTP server and save it on disk.
See executable for more information.

Reports the sizes of one or more images. See executable for more
information.

Resizes an image. See executable for more information.

Produces an identical picture. Can also be used for file format
conversion. See executable for more information.

Takes image directories and creates HTML pages with thumbnails of
these pictures. See executable for more information.

Parses C++ code and creates wrappers so that it can be called in a
Scrtipting language. See executable for more information.

Prints the contents of a .lwo file. See executable for more information.

Converts files in the LightWave 3D format to the .egg format. For
more information see Converting from other Formats.

Generates one or more new key to be used for signing a prc file. See
executable for more information.

Converts files in the Maya 5 format to the .egg format. For more
information see Converting from Maya.

Converts files in the Maya 6 format to the .egg format. For more
information see Converting from Maya.

Converts files in the Maya 6.5 format to the .egg format. For more
information see Converting from Maya.

Stores and extracts files from a Panda MultiFile. Can also extract file in
program using the Vi t rual Fi | eSyst em(see API for usage). For more
information see executable.

Decompress a file compressed by pencrypt. See executable for more
inforamtion.

file///E/manual/List_of Panda_Executables.1.ntml (2 of 3)2006/11/21 aUcE 06:03:13

Panda3D Manual

pencrypt.exe

ppython.exe

pstats.exe

pview.exe

stitch-command.exe

vrml2egg.exe

X2egg.exe

Runs an encryption algorithm on the specified file. The original file can
only be recovered by using pdecrypt. See executable for more
information.

Used to start Panda 3D. For more information see Starting Panda3D

Panda's built in performance tool. For more information see Measuring
Performance with PStats

Used to view models in the .egg or .bam format without having to
create a Panda program. For more information see Previewing 3D
Models in Pview.

Checks the synatx and preproecees and sticth command file. See
executable for more information.

Converts files in the Virtual Reality Modeling Language format to the .
egg format. For more information see Converting from other Formats.

Converts files in the Direct X format to the .egg format. Especially
useful because it holds bone, joint and animation data. For more
information see Converting from other Formats.

<<prev top next>>

-

file:///E)/manual/List_of Panda_Executables.1.html (3 of 3)2006/11/21 aUcE 06:03:13

Panda3D Manual

Panda3D Manual: More Panda Resources

<<prev top next=>>=> Search

Panda Specific Resources

The BVW Panda Tutorials. This site has the tutorials that are used in Carnegie Mellon's Building
Virtual Worlds class.

Alice Gallery. This site holds many of the models created for use with Alice but exported into
the .egg format. Be advised though, some of these models may not work properly.

Python Libraries

Pygame. GNU LGPL. Pygame is a set of Python modules designed for writing games. It

includes Python bindings for SDL. Recommended for joystick support. Sound support is a free
alternative to FMOD, though not a as capable (no 3D stereo sound for instance)

PyODE. GNU LGPL, or BSD-style license. Python bindings for The Open Dynamics Engine. ODE

is a Real-time rigid body dynamics/collision detection physics engine. ODE is much more
capable than Panda3D's built-in physics engine.

Psyco. MIT-style license. Python JIT optimizer. Can often make Python code run faster than

code written in C (on Intel compatible chips.) Panda3D is written in C, but programed in
Python. If Python function calls become a bottleneck, try using Psyco.

Twisted MIT-style license. An event-driven networking framework.

PyOpenAL GNU LGPL. PyOpenAL is a binding of OpenAL for Python. OpenAL is a cross-platform
3D audio API. This is another alternative to FMOD.

Useful Tools

Blender. 3D modeling and animation. Extensible in Python. Very fast user interface. Egg
exporters are in the works.

The GIMP. A very capable free software raster image editor. Useful for converting image
formats, creating and editing textures.

SWIG. A software development tool that connects programs written in C and C++ with a
variety of high-level programming languages including Python.

<<prev top next>=> -

file:///E/manual/More_Panda_Resources.1.html (1 of 2)2006/11/21 aUE 06:03:13

http://www.etc.cmu.edu/bvw/scripter.html
http://www.etc.cmu.edu/bvw/
http://www.etc.cmu.edu/bvw/
http://alice.org/pandagallery/
http://alice.org/
http://www.pygame.org/wiki/about
http://pyode.sourceforge.net/
http://psyco.sourceforge.net/
http://twistedmatrix.com/trac/
http://home.gna.org/oomadness/en/pyopenal/
http://www.blender3d.org/
http://www.gimp.org/index.html
http://www.swig.org/

Panda3D Manual

file:///E/manual/More_Panda_Resources.1.html (2 of 2)2006/11/21 aUcE 06:03:13

Panda3D Manual

Panda3D Manual: FAQ

<<prev top next>> []

Panda FAQ

Note: Many of these issues came up as a result of issues that popped up in the Building Virtual Worlds class. The class uses
Maya 6.0 for modelling.

Q: I have a bunch of Maya Animations of one model in different mb files. 1 used maya2egg6 to port
them into panda, but only one of the animations work.

A: The key is to use the -cn <character's name=> flag in maya2egg6 for every file. This ensures that
the files work together.

Lets say you are naking an ani mated dog.
You have the follow ng ani mations:

dog- wal k. mb

dog-sit.nb

dog-run. nb

To convert these into panda, you would call

maya2egg6 dog-wal k. mb -a nodel -cn dog -o dog-nodel . egg

Note, we can grab the nodel fromany of the animations, as long as they are all using the exact sanme rig

maya2egg6 dog-wal k. mb -a chan -cn dog -o dog-wal k. egg
maya2egg6 dog-sit.nb -a chan -cn dog -o dog-sit.egg
maya2egg6 dog-run.nmb -a chan -cn dog -o dog-run. egg

Q: I'm using the lookAt function on a nodepath to point it at another object. It works fine until 1 point
upwards, and then it starts to spin my object around randomly

A: lookAt works as long as you aren't telling it to look in the direction of its up vector. Luckily, you
can specify the up vector as the second argument.

| ookAt (obj ect, Vec3(0,0, 1))

Q: I'm building a 3d game, and | have a huge world. When my world starts up, the program hangs for
a few seconds the first time | look around. Is there any way to avoid this?

A: The problem is that panda can a while to prepare objects to be rendered. Ideally, you don't want
this to happen the first time you see an object. You can offload the wait time to the beginning by
calling:

#sel f.myWorld is a nodepath that contains a ton of objects
sel f.nyWorl d. prepar eScene(base. wi n. get Gsg())

#This will wal k through the scene graph, starting at

#sel f . myWorl d, and prepare each object for rendering.

Q: Is there a way to hide the mouse pointer so that it doesn't show up on my screen?
A: You can change to properties of the panda window so that it doesn't show the cursor:

props = W ndowProperties()
props. set Cur sor Hi dden(Tr ue)
base. w n. request Properti es(props)

file///Efmanual/FAQ.L.html (1 of 2)2006/11/21 aUsE 06:03:14

Panda3D Manual

<<prev top next>>

|-

file:///E}/manual/[FAQ.1.html (2 of 2)2006/11/21 aUcE 06:03:14

Panda3D Manual

Panda3D Manual: Examples Contributed by the Community

<<prev top next=>>

These are some of the examples contributed by the community:

IPKnightly:

. First Panda3D Tutorial

. Second Panda3D Tutorial
. Third Panda3D Tutorial

. Fourth Panda3D Tutorial
. Fifth Panda3D Example

TipToe::

. Edge Screen Tracking

Networking client server examples follow.

Yellow and bigfoot29:

. Panda3D network example

bigfoot29:

. small Chatserver/client

<<prev top next>>

file:///E|/manual/Examples_Contributed by the Community.1.html2006/11/21 sUsE 06:03:14

http://panda3d.org/phpbb2/viewtopic.php?t=791&highlight=tutorial
http://panda3d.org/phpbb2/viewtopic.php?t=824&highlight=tutorial
http://panda3d.org/phpbb2/viewtopic.php?t=846&highlight=tutorial
http://panda3d.org/phpbb2/viewtopic.php?t=887&highlight=tutorial
http://panda3d.org/phpbb2/viewtopic.php?t=1124&highlight=tutorial
http://panda3d.org/phpbb2/viewtopic.php?t=1276&highlight=
http://panda3d.org/phpbb2/viewtopic.php?t=940&highlight=
http://www.panda3d.org/phpbb2/viewtopic.php?t=1011&highlight=

Panda3D Manual

Panda3D Manual: Start Guide For The Absolute Beginner

<<prev top next>>=

Installing Panda3D and Creating A New Folder

1. First, go to the Downloads section and download the latest version of Panda3D (as of writing this is
version 1.2.2). For Windows users download panda3d-1.2.2.exe.

2. When the download has finished, double-click the Panda3D icon to begin the installation process.

3. When finished, make sure that Panda3D has been successfully installed by running the &€ “Panda
Greeting Carda€ ™ program (if it does not run automatically when the installation finishes, click Start > All

Programs > Panda3D 1.2.2 > Panda Greeting Card).

4. Now, a very important thing to note, Panda3D is a development tool; NOT an application. What does
this mean? It means, that unlike all the other programs on your computer, you wona€ ™t find any program
icons or shortcuts to start it. To run Panda3D you must write a python script which tells it what to do (this
is a great way to learn programming, because youa€ ™re basically starting from the ground up).

5. So, you now need to create a place where you can save all your scripts. Panda3D is very clever, it can
run a script from anywhere on your computer, but it looks for models and other assets in the folder that it

file///E)/manual/Start_Guide_For_The Absolute Beginner.1.html (1 of 10)2006/11/21 aUcE 06:03:16

Panda3D Manual

is run from. If those assets arena€ ™t present, then you&€ ™Il get an error message when you try to run it.
So, | believe that the easiest thing for the beginner to do, is to make a new folder in the main Panda3D
directory itself (which already contains all the models and other assets that youa€ ™Il need).

6. To do this, click your computers a€ ~Starta€ ™ button, then 4€ "My Computera€ ™.

Gigabyte User

" Internet '__) My Documents
' Mozilla Firefox

G .
My Pictures
E-mail ___j :

Cklook Express
H j My Music

W] st v

Module Docs B’ Control Panel

@. Set Program Access and
Defaults

% Connect To

J Help and Support

Sharkcuk o pype
RS (_ornmand Prompk

Motepad

RealPlaver

&ll Programs D

@] Log OFf rﬁ} | Turn OFF Computer

";.l'" start L-E. Documentl - Microsaf, ,

Then double-click &€ "Local Disk (C)a€ ™ (if the contents of this drive are hidden, just click &€ ~Show the
contents of this folder&a€ ™). Now find the Panda3D-1.2.2 folder and double-click on it to open it.

7. On the top menu bar click &€ “File > New > Folder&€ ™. This will create a new folder in the Panda3D

directory, backspace out the name and type a new name for it (I called mine mystuff). Good! You&€ ™re
almost ready to begin.

Missing image
PicO21ey.jpg
Image:pic021ey.jpg

Writing Your First Script

file///E)/manual/Start_Guide_For_The Absolute Beginner.1.html (2 of 10)2006/11/21 aUcE 06:03:16

Panda3D Manual
Download a Python Editor

One of python&€ ™s strong points, is that you dona€ ™t need a fancy or expensive compiler to write your
scripts. Python scripts can be written in a simple text editor such as &€ “Notepad&€ ™ (which is already
installed on all Windows computers). However, because Notepad isnd€ ™t really designed for writing
scripts, it will make learning to program much, much harder. So, | think the best thing you can do, is to

use a proper python editor. | use PyPE (which is completely free and makes writing python scripts a whole
lot easier) here's the link:

http://sourceforge.net/projects/pype/

If you're using Windows, download the PyPE 2.4-win-anzi.zip (as of writing this was the latest version).
You don't need to install this program, you just download and unzip it somewhere, then open the unzipped
folder and double-click on the PyPE icon to run it (or right-click on the icon and send it to the desktop as a
shortcut, then simply run it by double-clicking the icon on your desktop).

& PyPE-2.4-win-ansi

File Edit View Favorbes Tools Help
ek -) (¥ O seah [Fokden | [

- = hangelo

File and Fodder Tasks —"J [- -:rn.'!: 5_‘ i
! »

9 tMake a rew Foider sl

i Fubish this foider bo the = Il -
Wb = Test Caounent gghert

Bad Shate this Falder

. * readme
rf;l pythonzz).dl ‘ HTML Fil
Otheer Mlaces 4 1 KE

i FendssD = sample_alphabet = | sample_dctionary

_:_1 My Dacuments ——1 Text Dacur = | T._ b Cracretad

I3 Shared Doouments —— o=

of My Compiiter = tada
==| Text Dooument e
N My Natwork Places] [i o

Dhet ails *

Write the script
1. Open PyPE, then click 4€ "File > New&€ ™ on the top menu bar to open a new work environment.
2. Now type the following code (or just copy and paste it):

inmport direct.directbase.DirectStart run

0

(Notice that PyPE automatically highlights certain words and numbers the lines for you. This is a very nice
feature which makes finding errors much easier Very Happy).

file///E)/manual/Start_Guide_For_The Absolute Beginner.1.html (3 of 10)2006/11/21 aUcE 06:03:16

http://sourceforge.net/projects/pype/

Panda3D Manual

PP 1.4
Fle Edt Transhoms Wes Doosvent Opbons Help
'-.j'qu'ﬂ:hd]al

L] |I.I'- | tocrameres | Browse... |

impart difsck.dicsctbass . Disastitace
runl b

L1

Todo [iog | Swsrch | Sped e |
Gabegory | ine] i Teds

3. Well done! Youa€ ™ve just written your first Panda3D script Very Happy. Ita€ ™s not much, but those
few lines of code tell Panda3D to start. But before you can run this script, you must save it. So click &
€ File = Save Asad€ ™ on the top menu bar and a new window should open.

file:///E)/manual/Start_Guide_For_The Absolute Beginner.1.html (4 of 10)2006/11/21 aUcE 06:03:16

Panda3D Manual

Save file as...

I~ PyPE-2 4-wir-ansi
IChicons

Igj changelag
=] apl

=] Igpl
Elibraw

-

i_"'-"_r] pythonz 3, dll

& readme

I'.:=_WJ readme

Igj sample_alphabet
[‘.éj sample_dictionary
stc-skyles, ro.cfg
Igj kodo
Ew?xpupen

E,I cindos

by Documents

by Computer

b M etwark File: name: ||
Flaces

Save az type: |.-'-‘-.II files [*.7]

4. At the top of this new window there is a &€ ~Save in:4€ ™ text box, which is pointing to &€ ~PyPE-2.4-
win-ansia€ ™, you DON&E ™T want to save your script there, so click the little down arrow beside the text
box, then scroll down the list and click &€ ~Local Disk (C)a€ ™, then double-click on the 4€ “Panda3D-1.2.24
€ ™ folder to open it.

5. Find the &€ "mystuffa€ ™ folder that we created earlier and double-click on it to open it.

file///E)/manual/Start_Guide_For_The Absolute Beginner.1.html (5 of 10)2006/11/21 aUcE 06:03:16

Panda3D Manual

Save file as...

Savein: | PandadD-1.2.2

()bin ReleaseMotes
IChdirect {I‘! uninsk

ete Eﬂ Website
Iinclude

Ilib

Iimadels

ICaNSIS

I pandac

I plugins
3P
IC)samples
|-)SceneEditor
LICEMSE
@] Manual

by Metwork, File name: J Open
Flaces

Save as type: J,-'l'-.ll files [*.%] Cancel

6. Good! Now type a name for your script in the &€ “File name:4€ ™ text box. | called mine myscript.py
(make sure you put .py on the end of the name). Then click the 4€ “Save&€ ™ button.

file///E)/manual/Start_Guide_For_The Absolute Beginner.1.html (6 of 10)2006/11/21 aUcE 06:03:16

Panda3D Manual

Save file as...

Save in: | =79 bt

Py Mebwaork. File name: mesn:ript.p}' Sl
Places

Save as type: J,-'l'-.ll files [*.%] Cancel

7. Very good! You can now close PyPE.
Running Your Script and Starting Panda3D

1. You now run your script by using your computera€ ™s &€ "Command Prompta€ ™. You access this by
clicking &€ ~Start > All Programs > Accessories > Command Prompta€ ™. When it opens, it should look
something like this:

file///E)/manual/Start_Guide_For_The Absolute Beginner.1.html (7 of 10)2006/11/21 aUcE 06:03:16

Panda3D Manual

¢ Command Prompt

Microsoft Hindows XP [Uerzion L.1.26HH]
{C» Copyright 1985-2881 Microszoft Corp.

2w Documents and Settings™Gigahyte Useps_

2. At the moment itd€ ™s pointing to its default directory, which in my case is 4€ "Documents and Settingsa
€™ (it doesn&€ ™t matter if yours is different). We need to change the directory to the one where we

saved our script. To do this, we type cd. This stands for &€ “change directorya€ ™. So type the following
text behind the > symbol.

cd C\Panda3D- 1. 2. 2\ myst uf f\

Please note that ita€ ™s case sensitive and must match exactly. Then press the &€ “"Entera€ ™ key on your
keyboard. You should now have the following on the Command Prompt:

o+ Command Prompt

icrosoft Windows #F [Uersion 5.1.2684)
(L) Copyright 1YH5—ZHU1l Micrwoszoft LCopp.

:SnDocuments and Bettings“Gigabyte Usericd C:N\PandadD-1.2.2%umystuffs

esnPandaiD-1 .2 . 2xmystuff >

3. Good! This means that itd€ ™s now pointing to the right directory. To run your script, and start
Panda3D, type the following text behind the > symbol:
ppyt hon nyscri pt. py

file///E)/manual/Start_Guide_For_The Absolute Beginner.1.html (8 of 10)2006/11/21 sUxE 06:03:16

Panda3D Manual

Make sure you type ppython (the extra &€ ~pa€ ™ tells it to use the special Panda3D version of python and
not just the regular version of python).

¢ Command Prompt
i|::1'-r|-.-:-411-'1: Windows &P [Uersion 5.1.£26808]1

Copyright 1985-2881 Microzoft Corp.

iwDocuments and SettingssGigabyte Userlicd CinPandalD-1.2.2%my

Ce=wPandalb-1 .2 . 2'mystuff >ppython nmyzcript.py

4. Now press the &€ "Enter&€ ™ key on your keyboard. If all is well, Panda3D will start and you should see
the main rendering window appear.

file///E)/manual/Start_Guide_For_The Absolute Beginner.1.html (9 of 10)2006/11/21 aUcE 06:03:16

Panda3D Manual

M Panda

This is a empty program it won't do anything. Now you hopefully understand how to write a panda
programm

<<prev top next=>>=

file:///E)/manual/Start_Guide_For_The Absolute Beginner.1.html (10 of 10)2006/11/21 aUxE 06:03:16

Panda3D Manual

Panda3D Manual: Configuring Panda

top Search

In the etc subdirectory, you will find a configuration file Config.prc. This controls several of
Panda’'s configuration options - does it use OpenGL or DirectX, how much debugging output
does it print, and so forth. The following table lists several of the most commonly-used

variables.
Variable Values Default Details
andaal Specifies which graphics GSG
load-display P 9 pandagl to use for rendering (OpenGL
pandadx8 .
or DirectX 8)

. . . Specifies the width of the
win-width Number of pixels 640 Panda3b window
win-height Number of pixels 480 STPEELIES U SR @ s

Panda3D window

Specifies the x dimension of
win-origin-x Number of pixels 100 the upper left corner of
Panda3d window

Specifies the y dimension of
win-origin-y Number of pixels 100 the upper left corner of
Panda3d window

#Ht Enables full-screen mode (true
fullscreen #f
#f or false)
undecorated #t #f Removes border from window
#f (true or false)</\ td>
cursor-hidden #Ht £ Hides mouse cursor (true or
#f false)
#t Shows the fps in the upper
show-frame-rate-meter #f right corner of the screen (true
#Hf
or false)</\ td>
audio-cache-limit number 32 s 1) il oelr el Eellie:
you can load
fatal Sets notification levels for
error various Panda3D packages to
.) warning . control the amount of
OGRS [P, CEE] info [information printed during
debug execution (fatal being least,
spam spam being most)
Adds specified path to the list
model-path Path string 480 of paths searched when loading
a model

file:///E|/manual/Configuring_Panda.1.html (1 of 2)2006/11/21 aUxE 06:03:18

Panda3D Manual

texture-path Path string

sound-path Path string

load-file-type ptloader Enabled

fmod_audio
audio-library-name miles_audio fmod_audio
null

#Ht #Ht

want-directtools #i line commented out

#t #Ht

want-tk #f line commented out

top

Adds specified path to the list
of paths searched when loading
a texture

Adds specified path to the list
of paths searched when loading
a sound

Allows the loading of file types
for which converters have been
written for in pandatool

Loads the appropriate audio
drivers. Miles is a propriertary
audio, so only select that
option if you currently have it.

Enables directtools, a suite of
interactive object/camera
manipulation tools

Enables support for using
Tkinter/PMW (Pythona€ ™s
wrappers around Tk)

file:///E|/manual/Configuring_Panda.1.html (2 of 2)2006/11/21 aUcE 06:03:18

Panda3D Manual

Panda3D Manual: Woodgrain Example

top Search

The following program will generate and write out a 3-D texture to simulate woodgrain:

fromdirect.directbase.DirectStart inport *
from pandac. PandaMbdul es i nport *
i nport math

These constants define the RG colors of the |ight and dark bands in
t he woodgr ai n.

lightGain = (0.72, 0.72, 0.45)

darkGrain = (0.49, 0.33, 0.11)

def chooseGain(p, xi, yi, radius):
""" Applies the appropriate color to pixel (xi, yi), based on
radi us, the conputed di stance fromthe center of the trunk. """

Get the fractional part of radius.
t = radius - math. floor(radi us)

Now t ranges fromO to 1. Make it see-saw fromO to 1 and back.
t = abs(t - 0.5) * 2

Now i nterpol ate col ors.
p. set Xel (xi, yi,

lightGain[0] +t * (darkGrain[0] - lightGain[0]),
lightGain[l] +t * (darkGrain[1] - lightGain[1l]),
lightGain[2] +t * (darkGain[2] - lightGain[2]))

def cal cRadi us(xn, yn, X, Yy, z, noiseAnp):
""" Cal cul ates radius, the distance fromthe center of the trunk,
for the 3-d point (x, y, z). The point is perturbed with noise to
make the woodgrain seem nore organic. """

X + Xn.noise(x, y, z) * noi seAnp
y + yn.noise(x, y, z) * noiseAnp

Xp
yp

return math.sqrt(xp * xp + yp * yp)

def makeWbodgrai n(texSi ze, texZSi ze, noi seScal e, noi seZScal e,
noi seAnp, ringScal e):

""" CGenerate a 3-D texture of size texSize x texSize x texZSize
that suggests woodgrain, with the grain running along the Z (W
direction. Since there is not as nmuch detail parallel to the
grain as across it, the texture does not need to be as large in
the Z dinmension as in the other two di nmensions.

The woodgrai n shape is perturbed with Perlin noise to nake it nore
organi c. The paraneters noi seScal e and noi seZScal e control s the
frequency of the noise; |arger nunbers nake snoother rings. The

file:///E|/manual/Woodgrain_Example.1.ntml (1 of 4)2006/11/21 aUsE 06:03:21

Panda3D Manual

paranet er noi seAnp controls the effect of the noise; |arger
nunbers nmake nore dramatic distortions.

ringScal e controls the nunber of rings visible in the cross
section of the texture. A |larger nunber nmakes nore, denser rings.

nun

First, create the two PerlinNoise objects to perturb the rings
in two dinmensions. This class is defined in Panda3D.
Xn Per | i nNoi se3(noi seScal e, noi seScal e, noi seZScal e)
yn Per | i nNoi se3(noi seScal e, noi seScal e, noi seZScal e)

Start by creating a enpty 3-D texture.
tex = Texture(' woodgrain')
t ex. set up3dText ure()

for zi in range(texZSize):
z = float(zi) / float(texZSize - 1) - 0.5

Wal k through the Z slices of the texture one at a tine. For
each slice, we create a PNM nage, very nmuch as if we were

reading the texture from di sk.

print zi

p = PNM nage(t exSi ze, texSize)

But instead of reading the PNM mage, we fill it in with the
ring pattern.
for yi in range(texSi ze):
y = float(yi) / float(texSize - 1) - 0.5
for xi in range(texSi ze):
x = float(xi) / float(texSize - 1) - 0.5

radi us = cal cRadi us(xn, yn, X, Yy, z, noi seAnp)
chooseGrai n(p, xi, yi, radius * ringScal e)

Now | oad the current slice into the texture.
tex.load(p, zi)

return tex
Create a 3-D texture.
tex = makeWbodgrai n(texSi ze = 256, texZSize = 8, noiseScale = 0.4,
noi seZScale = 0.8, noiseAnp = 0.12, ringScale = 40)
Wite out the texture. This will generate woodgrain_0. png,

woodgrain_1.png, and so on, in the current directory.
tex. witePages(Fil ename(' woodgrai n_#. png'))

The resulting images look like this:

filel///E/manual/Woodgrain_Example.1.html (2 of 4)2006/11/21 aUcE 06:03:21

Panda3D Manual

file:///E|/manual/Woodgrain_Example.1.ntml (3 of 4)2006/11/21 aUsE 06:03:21

Panda3D Manual

s

file:///E|/manual/Woodgrain_Example.1.ntml (4 of 4)2006/11/21 aUcE 06:03:21

Panda3D Manual

Panda3D Manual: Sample Cube Map

top Search

The following sample code loads up an environment, puts the camera in the center of it, and
generates the six faces of a cube map from the point of view of the camera:

scene = | oader.| oadModel (' bvw f 2004- - street scene/ street - scene. egqg')
scene. r epar ent To(r ender)

scene. set Z(- 2)

base. saveCubeMap(' street scene_cube #.jpg', size = 256)

These are the six faces generated:

Right:

Left:

file:///E|/manual/Sample_Cube_Map.1.html (1 of 5)2006/11/21 aUcE 06:03:22

Panda3D Manual

Back:

file:///E|/manual/Sample_Cube_Map.1.html (2 of 5)2006/11/21 aUcE 06:03:22

Panda3D Manual

Top:

file///E/manual/Sample_Cube_Map.1.html (3 of 5)2006/11/21 nUcE 06:03:22

Panda3D Manual

And when they are assembled into a cube map, it looks like this:

Or, when we apply that cube map to a sphere, you can see there are absolutely no seams
between the edges:

file:///E|/manual/Sample_Cube_Map.1.html (4 of 5)2006/11/21 aUcE 06:03:22

Panda3D Manual

file///E/manual/Sample_Cube_Map.1.html (5 of 5)2006/11/21 nUcE 06:03:22

Panda3D Manual

Panda3D Manual: Jam-O-Drum

<<prev top next>> Search

There is currently no text in this page, you can search for this page title in other pages or edit
this page.

<<prev top next=>> Search

filel///E/manual/Jam-O-Drum.1.html 2006/11/21 sUxE 06:03:23

http://panda3d.org/wiki/index.php?title=Jam-O-Drum&action=edit
http://panda3d.org/wiki/index.php?title=Jam-O-Drum&action=edit

Panda3D Manual

Panda3D Manual: Debugging and Performance Tuning

<<prev top next>> Search

There is currently no text in this page, you can search for this page title in other pages or edit
this page.

<<prev top next=>> Search

filel///E/manual/Debugging_and_Performance_Tuning.1.html2006/11/21 sUxE 06:03:23

http://panda3d.org/wiki/index.php?title=Debugging_and_Performance_Tuning&action=edit
http://panda3d.org/wiki/index.php?title=Debugging_and_Performance_Tuning&action=edit

Panda3D Manual

Panda3D Manual: Search

There is no page titled "Jam-O-Drum®. You can create this page.
For more information about searching Panda3D Manual, see Searching Panda3D Manual.

Showing below 1 results starting with #1.

View (previous 20) (next 20) (20 | 50 | 100 | 250 | 500).
No page title matches

Page text matches

1. Main Page (7,605 bytes)
213: <li=[[Jam-O-Drum]]

View (previous 20) (next 20) (20 | 50 | 100 | 250 | 500).

Search in namespaces:

[B] (Mainy [taik [Juser [user talk [Panda3d mManual [panda3D Manual talk
] Image] Image talk [Mediawiki [Mediawiki talk [] Template] Template talk
] Help] Help talk] Category] Category talk

[J List redirects

Search for |Jam-O-Drum Search

Back to the Manual

file:///E}/manual/Jam-O-Drum.2.html2006/11/21 aUxE 06:03:24

http://panda3d.org/wiki/index.php?title=Jam-O-Drum&action=edit
http://panda3d.org/wiki/index.php?title=Panda3D_Manual:Searching&action=edit
http://panda3d.org/wiki/index.php?title=Special:Search&limit=20&offset=20&ns0=1&redirs=0&searchx=1&search=Jam-O-Drum
http://panda3d.org/wiki/index.php?title=Special:Search&ns0=1&redirs=0&searchx=1&search=Jam-O-Drum&limit=20&offset=0
http://panda3d.org/wiki/index.php?title=Special:Search&ns0=1&redirs=0&searchx=1&search=Jam-O-Drum&limit=50&offset=0
http://panda3d.org/wiki/index.php?title=Special:Search&ns0=1&redirs=0&searchx=1&search=Jam-O-Drum&limit=100&offset=0
http://panda3d.org/wiki/index.php?title=Special:Search&ns0=1&redirs=0&searchx=1&search=Jam-O-Drum&limit=250&offset=0
http://panda3d.org/wiki/index.php?title=Special:Search&ns0=1&redirs=0&searchx=1&search=Jam-O-Drum&limit=500&offset=0
http://panda3d.org/wiki/index.php?title=Special:Search&limit=20&offset=20&ns0=1&redirs=0&searchx=1&search=Jam-O-Drum
http://panda3d.org/wiki/index.php?title=Special:Search&ns0=1&redirs=0&searchx=1&search=Jam-O-Drum&limit=20&offset=0
http://panda3d.org/wiki/index.php?title=Special:Search&ns0=1&redirs=0&searchx=1&search=Jam-O-Drum&limit=50&offset=0
http://panda3d.org/wiki/index.php?title=Special:Search&ns0=1&redirs=0&searchx=1&search=Jam-O-Drum&limit=100&offset=0
http://panda3d.org/wiki/index.php?title=Special:Search&ns0=1&redirs=0&searchx=1&search=Jam-O-Drum&limit=250&offset=0
http://panda3d.org/wiki/index.php?title=Special:Search&ns0=1&redirs=0&searchx=1&search=Jam-O-Drum&limit=500&offset=0

Panda3D Manual

Panda3D Manual: Search
There is no page titled "Debugging_and_Performance_Tuning". You can create this
page.
For more information about searching Panda3D Manual, see Searching Panda3D Manual.
Showing below O results starting with #1.
No page title matches
No page text matches

Note: Unsuccessful searches are often caused by searching for common words like "have" and
"from", which are not indexed, or by specifying more than one search term (only pages
containing all of the search terms will appear in the result).

Search in namespaces:
[B] (Main) [Taik [duser [user talk [Panda3b mManual [Panda3D Manual talk

] Image] Image talk [mediawiki [1 Mediawiki taik [Template] Template talk
] Help] Help talk] Category] Category talk

[List redirects

Search for | Debugging_and_P¢ | Search

Back to the Manual

filel///E/manual/Debugging_and_Performance_Tuning.2.html2006/11/21 cUcE 06:03:24

http://panda3d.org/wiki/index.php?title=Debugging_and_Performance_Tuning&action=edit
http://panda3d.org/wiki/index.php?title=Debugging_and_Performance_Tuning&action=edit
http://panda3d.org/wiki/index.php?title=Panda3D_Manual:Searching&action=edit

	Local Disk
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual
	Panda3D Manual

	KCFGAFKFECDDACLLEFNMMEIFDCINIDKE:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	DHAFCGBFBNEKFIEGAOMPJPCJCPJHMICA:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	HFDOCICAJDOBCIONPKGMBLMOIKKFPDGO:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	GIFMFMCFEPCCFDIBGPMIBPEDMFPFINNODM:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	FILFJODPPDEJIMBBNPEGIIFBODNANCLD:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	CIPABMJBJNNHODMLEOJKMKMDHFPAMMON:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	IMDMDDJBLOKKEEKDMOOOJHFAMBACPICI:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	GHHLBNLOILBJPMCDIJHKNOKILEEKEFAN:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	CBKGOAGFOLHHLFCPEIGNOAFMFMNGIADDDP:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	CKEBEGABMJGJEGBFDHEKNEPIPIPBKEKO:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	MNIGAFMIIPACDHLNJNOGHINGNIHPJMKD:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	MLBDLDCMJHEJJGDLJHHLLNLEBJPAFMFMDE:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	CNIBIENIAOIMKENDFHAJANGBLLDCOAOP:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	NDOJPHBFOMJLGPENJCIOPIPGDHKCFMAHNK:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	LPPLMJGAGCGEENGJLLADFMDADBGFBPJKJI:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	KFGAFAPLOBJLACKGAPAMNKGLEPBAKICG:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	KJHCMLEDBHKLHFIDGJBOHMLCMGCMGMJI:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	DEHFMJACHCCBNFHCNOACFIGMBGLIFIFH:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	LMNOGNHIIABIBJAEMIJOIGCHECPEKFFP:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	IDCAHKKBNMFIKDEICHLFOCKEPNMKIJNE:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	LGDMONAFNPAHJAGKMGEKHMECEAODIKJJ:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	ABILNBPBADAFLOMNMIFHGHNLBJNNFFFG:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	CPJLDBGOLFEBBFFMDAGJNEGDMKDNJGAILA:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	BCOMCGLLIKJFLJAGEKMNGFOILOIPLLAH:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	CHAKLLIOPDEIEIJHEPBBHPLJKJEHECLI:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	FJIEEGDEKCFIPNNKFMFMECLGFKGJLFDMGL:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	PLEBDCFKLEBCIHJIBENEACOPFCENMJKO:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	LCMPHCBGAOMOIFDAOKDGBFLMBBPFOGHC:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	FHANNGPPBCCGBNGMDLPHBMBNJGNPGFOO:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	LGGKANKKKJIKIOCCNPOAKIKPBCDNLLKG:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	HHPKAOIIOIEJGCADNLKOAPAOLNJLGFLN:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	AEEJPJDDIKOCOMNNEIIJGKNDPPPFHBIM:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	DCGEJBEJLCKDDEIIGBHNJMCNKIJCDAHO:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	JAELLAAPEMIFBIDKPHINMLAHEMIHPBBJ:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	NDNPHMHLMLGBFLHAEKKGBNFHEAMAMBGE:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	JGAFBMNBONBIDCHADNFHKPHMACBKJABF:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	NKBDIEEDBCNIAEGDJOAHIPJPENOGHHMD:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	AMOGGFBIGECFIEAONINLBMPHKBNPOJDI:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	JNDNCCFMDACJGCHGEKBOMGJHKOGFKCAOPD:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	LCCJIGPPENPFDNMADFPNCCBJKEBHLOBJ:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	KPGDFMAHPBOGHPIBFIDMOGPEMEGHGMAENB:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	NDFHKFDALHAFFKEDNCOHHPAJGDFFEMJD:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	IFKJNJJJDIMHCBBEJHGOLBPDNOAFADEJ:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	JDHCPNPLMJPGBPAOLHILJOILDEFLKDJD:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	HGLKLAJDFDPECCCPDDBFBGKCGCNOPFAG:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	JJMENCEDCPLODPOLANHFEHPBMAFHJOLF:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	ABCNDMMLBIHPPFEKJHNEMOIFGDCKLGOJ:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	AMCLPENBPGHAPHCBFCLJCAMLGCFIFOLH:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	MJGNNDLCIKJAGCGJJKABLBEMDCJHIEGN:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	JDGINDCDOMOHGCFEOOAMCNEMDBOFBHIF:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	DKLMJNJJIDBNCILNEFLGECOMLOMPIBOA:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	DHADGLCFCHODDEACLJNHJBMHJIDFBIHO:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	FALJJKMDCCPBAOPIINBDEJFAMMFJFCLL:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	FPIFCHLGEOOODECLOKLGDPMCFAOGFIBC:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	OLDBHJEHCABAGILHMDNPKMJBDODBGGOC:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	KPDBNIMGEIPIKIDFLCPFIMFIIAIBHFFP:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	FOFOHPAJCNFKCPOBNGJKBKGJIEMCHLKI:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	BKDCPHBHMJCKIDHPADCMAEOGAPGFIBDB:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	PDOFBJBNIBBBJOJNDIBDEFPKFHCICKDP:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	MJLJMJCIHEMEPBFECKLJLFCPEJKLLHJA:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	KAHGJCFBHDPLFHCPKBDABMEPGIOAKHNJ:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	CJIHLDEEGPBOIDEHCGDBFDDJFKAECJOK:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	LOKHLHCDGGBIJDLCBKFBIENONLIDJBNF:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	AOKAJNBEAGOHCDOFCNENKEGGFMFMCLJMGF:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	BKNHGEOGOFHGGMACLCCIBHLLBNBIDDPB:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	IMIFDFPDEODKILHIEKFMAHOCFMDAKMNMAGCM:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	LMKPLMBIAPHMPHKENJEMHLALEEHAFOBA:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	GEDGLFICIKGKJJBKCNNGJKAIKPBGPPGJ:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	CNEFGOKCEDPHFNHONEGCHOMNOKLKFDBK:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	NAMGOHKNMHCDNJPCAGFAJLIPGGPPHKOJ:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	ADEALJFOJGPADMBKNHEOOPHGCCJHMJAG:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	DGIGPLNBLHKJMOIGGMPCDBAPGCCCOKHO:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	GDBPNFALGBEJPJPNIIEDEEOBAMIINEIC:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	AIPNGDLHCMJEFKPLCHHLEJPABNKPMOPF:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	BLGBKCLIMEBLFAILKBHBOGHLDFMDDDAJ:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	BDFACJINKHOALIDFKONHHMHAOKBCKPHL:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	LDACDPJAFAMOKAFLEENONIDDFEIEJNOL:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	OBAJGNENHHMCIPFMFMNHPMDHBMOEOHJONH:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	OIACMJFGMJBIHFOECICLAEELCBKDMLCI:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	MPPIFMDABGIBOFEDIBEKDLCLOAKAKNFNLJ:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	OAAGJEKGKHMLEAEEFMFMPNELOGFACHOOKK:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	PCJEIPEJNIFFHKANHPEMCHADAHJFHKOJ:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	EPBLLOLPJLMPJGNMAHKGFMFMFMDAAKHLFGHF:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	DAEKOCGFAHLPEBEFNLEMKIPACJLOJDAD:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	GJPMCCPEEHIPKPKNHJMPNCHPHHMMGKEL:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	ECANGILEOPBLCDILLDPFEDHMGAGNNDBD:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	CJGAGCPNOMGJACDDCCOGKFJOFMDANOKNCH:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	BOCHPBGMMECFMHDFAEDLDACLIOJIHCEJ:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	FGBBCAFJIDCCKPLAMKGHLNBCHIDCPPJH:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	IHNBLJOGECJLGGPBNCNEEAEOIKIFOLHJ:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	LAMILNIONABJOLJLEKMANOINPKADOIBP:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	CAONHPKNOCKPPDFAACMEJHFMDANOBHKPID:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	ACGCBOCECCJPAHPNOOAOOBALEHAFPDGA:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	HMGLHAOANLBINGKELNIHNMCNMCAEOLLF:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	BMMCPMPDDGLCBJPFBCDILHMPKALJNEFMDA:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	OEEGGCEPIJLACPNABKMOPMEILDAIKOKI:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	PFBEANNFAGOCGAMMBHGGCEDBKOPICBFMAH:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	IHDABEBAJKFHKMMACIGLIFDHECFEKGIO:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	JBPHLJHKFKLLDDBODBHBPOPMKAGFMBHL:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	EGPIEONGGLKDNIINBODKGKKGALLDOKJD:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	HBBJPLOMFGPJDPIKHNFMAHMAEDEFABBGFC:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	OJFFOPHMPCEFALBKMHKHLLCBHAIJKIIM:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	PFEDHBDLAGNLINLMMBPAHGBOHMJPLIPO:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	HIMLNICGNKFHMNDKAPAPGDLPMPGEMPBO:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	CKKAMEDAGFKOEJCNMDLLKBDHICHABLNP:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	ICNNDIOBCPCNJCOFLGADFNENCPIBDNKO:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	EEPHENDCJOLLFLKAJAJBACEPGDNCLIIC:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	PIJHCNNOODANLOCDMEEAKHDMPEDHAFNB:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	EPBLGIFFAOANCPELPFBHJPDKELGIOJOE:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	IEBAJNLAEPCCDAMBPOMBCDBOBBANGPFH:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	KPPJJHDNPNMDEBLKICIBBBDOPNOGIMBK:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	IJJKLENCDLOJODJEBPHIMOMIKFEGPCEP:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	AHCDKHNHBIBNADEIBHEJNDCMHFAHDELE:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	KAPHPCOOIKKFJJDNOAGKAFDHEJEOIFNE:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	CPIKBLBKKPNNAMJABLHKHEHJJBANHNEF:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	CPAOMGFAGLIBFAIMIDJIHIGHKOGDADNF:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	LMKCBKJAJLEIHENNKBHMDACEFANMEPMP:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	OGIHJJDEDFPEOBMPBHMHJGCDIDOFCPBG:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	NGFEHPKDADPGKDGNIBANBJGBKMKGBGDI:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	GHHDCHHBHKPNAMCNEKLHLCIGGFJDOLOB:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	LLGJOMNNNLLGOOMMJFKJBJJDHAHIBEDJ:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	HIBBNJKOPBJCJINFEMFBIPGCPIOOCPID:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	NKJPFPIEOIGJJLHHPLNNHFHPLFOCCNNE:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	FKONHOCCIBFMDABNEGNAJBPAHGGJBHIDHD:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	MJGBLBFJCINAOKJIPPHKIIINIDNAEHBP:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	DDDCMEHEEEJNBBHOEKCBCHKEBGFOBICA:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	ICHCNMEHGNIFPJELHFAKJMEHEIMPKAKE:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	OKFGGFHCFNDGBDIALOFMFMFACDLHNJOJIK:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	JLONHGBLHPNNIENFIKJCEAOHACIHGHKA:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	GAPDJJFNFMDAJNDGOLCFIIFJDDAKAKNMMN:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	FHKIPFEGDGCLNCEKPEADGDFMAHDHGGJBNM:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	NGPEDNHMCFOPKJMELONAKKEEFMDAIJMFGD:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	ACBJKBNBILLMFHABDCOBLLDLAHAHFEBM:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	EKLOJBBGDMOPBGHPCGKLLEKGBPGJDIOH:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	NPONJAENCHNBIAPNODKGCGPNHMCINAJI:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	ACGINNFNDBANLHNHIMPDGBPBDAFNEECE:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	FLCMIEEIOCEADIPFDAAPMJMEOADEHKDK:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	BOKAIGOOMIJDLDKHFNBMOLCCPIHLADDI:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	LJINCIJOFMFMNLDOGMFKNJIHJJFMDAHGPPCI:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	GAPAMNGCENBKKPIOFLGFLKMLGBAKFLFK:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	PBGKGCLBGINLHILOIOLBBBGDPBKECFFC:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	MGIFIDDKCHGAPGBDBFGDBAAHOPCBKPIC:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	BHNPNMOOHJNOIOLKONNIEMDNADNLINBE:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	LJGPHBGMEHFFDPIOBPLMFJJPNJPPDCOM:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	PJDODDBNNPINMIBEOCBDOEBJBDMDICPE:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	AIBIHEAONCCJAEGBHNLIFILHMIHBDDEN:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	CABPMMIPCEHMFHOHGIIOMMPIACBMFFFN:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	OBIJHAEFAKOACAONOMCBFFLMDKAGBAKI:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	ENGEMPIDFBIELKAOCBACPHHGEGIACDOP:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	PFBHBDEAHOPIIIIAEFFMDAEKJJJOLIFOIJ:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	LCAJDFADNIIFCNGFPDBNIIGJBIEHGPIJ:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	BHEEHCLLJLBPECKLPIFGKMJEGJCKKCEB:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	PILIFJLNEKDCFMFMGBGMHEEAKFJNLJJBDD:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	HFHNLDAMFPOPAEEHNENPGJNEKNBMFLBN:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	BNLHPLGLDHDLIFHBMNDGKDAGHNGBEHGE:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	ENDFMOLDMLDGMANHPEDLHOPHGHOABADH:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	AOJCCDPBNENHAIHNNAODPJCKMKECKCHH:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	PPJEJGILHNOEOJJLDGIFDKIGMFLLHEOE:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	GMPFGLGBCKBCHABPDGFKBLDBHKPDJEMB:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	FNICNDNMPOOHGLAKODLGFPMLGHNGKJPJ:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	FAALELBNEGJFKEDHJPDOGCEGJOIINGAH:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	DBEDOFEBAGPNNLKHENELPPCPIKFEBMEC:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	LPOOOGENGKBNDPGBKEIDNIEDOMJHJJPH:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	FJMAKMEHPMPOKAGHJLOOPNDIAKFJDMBA:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	CPFILCFDHEAMNAKKIMIPEHBBKDEFDENO:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	LGDAJKHJFNCIANDGPOPPGIIMNFAHLNHJ:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	GDBKMPBKBIOCLBBNPPFNHPCBFHEDNNAL:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	ILCJDIEAHAFHDEFGIBMDJBFNKCMMCNDM:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	CEFLDPMMDEEDCCHKFMDAEBCEANOFGOJOHI:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	OEDJBCHLHCEOEJPMOPKBKHFFHEHHKPME:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	JJPPOECHDINGDHAOMOIJHPEJHLOCIBGK:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	ADJACKEBIEDKBJLCKICAGNBOCKICKPPE:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	AHDKEGABKOHPIPLMBDDJFKLECPFFDFHE:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	OJAKKOMLOLNGDALBOACCIDHCBNEKFGBM:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	PJEBDPBAHKGBMAAGOIJEGJPNOAGLDKNO:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	MHPMGKHGFPCCGHCCDIKLPBOMFFCGCHJN:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	DOJFOAOCDPLIHPLELDNJAEKFDPHCKPOL:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	EPMJDNCLJDIAOCFGECIFBNLCCPBEOAIH:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	FMAHMNFBLOMLNNNDJGGJALEPFNELMLPNEF:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	BEJHOHJNAKMEMDAJFKHJJDJGIJOCMCJN:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	IGOLGMNEEBMJNEOBNAHNNNNLHGHNJHNI:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	NFICOBFJAHIKBDMOIPHAHNHIOCFGOBOM:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	LCPMLLFOOJHMKHHNEPEAAKLIFLCDAGIC:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	MIBAADNNGMINPJJCNHHJELCFKIFODMMI:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	GGFBKGJAFPGEDHNJLNFBPOJALHFBEBGJ:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	OBJGHNKLGLMILDEBPMAGMCJBMGOALJGD:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	MHDHDMAGDOFNLOIOLNPOLIPBEPBAPDLO:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	JIPMMHMJMBGNOAMNPICHDNCBNPBKMJFJ:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	GPACJPOMKDODIPPBKEHFFPAIJKNNBPAN:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	BGKDDFPAECEJDPGLKGBOGNDIHOFMFMGNFG:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	HKKPFPOJOLDNIDKOEODHJGJBNKJAMCPI:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	ACKKMPJACGCPDJLEOKFKMOAOPJDAFGFA:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	IBJKJLIJHCFKPOOKFIPEPJIBCGEDOFLO:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	FOGOKLKNMJFCKMDOGHMJJAOAHAMMAJEC:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	IJBPGADFENAGKAPDELBGKLNICDLEHCPC:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	BCAHMMFPMIIIMICLGBLFEHOABHJDDLLL:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	DNJAAOBEFAGKOABNCDMHKAHKNADHOEOF:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	FBFIBNPHHCKNJDJEJNHOJEIIEEAGFMFMFL:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	PLANGKJEDLFPFGDAMDAGHAINDMLOPKAJ:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	OJDDNMBGNOHBPFODOHCACJAHFMAHECNNAN:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	POHFGIGGIBNMILLPNMFCBNFMFMBEENMBAH:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	IMBPFMAHHCNODEFMAHEGEJDHPMNHOHCHPKEK:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	NNHHMABPGJMJDJBBFBECMGBPGBDEEGJI:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	CEFMAHNOHNGGGOAEAOAOEAOAPFIHBFPEIN:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	NBGMAGKBMOLPDDNMBHHDPFGJCHEBGFMD:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	JDJNBGDDDIKKLMMGJCKIDPFHFDGKKBDL:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	CBDGEJMDFMDAFAEEHKHFPANGOPEJGFGGKA:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	BPCJHOIHEKBHIPEFFOGJHJKCDFOMDMPK:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	ODDBIJLGAMLCGBNJJFNDMNEMJMKENHBG:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	PFKLDKBLCHICIHPJKEJMPJNIFOHNPNIP:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	MHPOLDBGLMEGJIJDGAEPABEEJNNKNODD:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	BEHGHGIMCMAKLKOFNLKOCIBMLCHFDLNM:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	DMEJALNGGEFILMHGEFJAPHDMOJKNJDDB:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	AODFLLOJJIPLLLBBOCCJHDJIOHFMDAHMKF:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	LDDACHECCKNIHECDNJIGKFIMEODODEFMDA:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	MLDKPMIHIHEHBHDHEFPBNBHKFKPLDOAI:
	form1:
	x:
	f1:

	f2: Search
	f3:

	form2:
	x:
	f1:

	f2: Search
	f3:

	ICCNIBNOGOPCDBEIKGABDDDFAGNDHBNF:
	form1:
	x:
	f1: 1
	f2: Off
	f3: Off
	f4: Off
	f5: Off
	f6: Off
	f7: Off
	f8: Off
	f9: Off
	f10: Off
	f11: Off
	f12: Off
	f13: Off
	f14: Off
	f15: Off
	f16: Off
	f17: Off
	f18: Jam-O-Drum

	f19: Search
	f20:

	BAOEGCHCCDIBJONCFLPCADIPJMIEGOFN:
	form1:
	x:
	f1: 1
	f2: Off
	f3: Off
	f4: Off
	f5: Off
	f6: Off
	f7: Off
	f8: Off
	f9: Off
	f10: Off
	f11: Off
	f12: Off
	f13: Off
	f14: Off
	f15: Off
	f16: Off
	f17: Off
	f18: Debugging_and_Performance_Tuning

	f19: Search
	f20:

