Visualization
December, 2007

CS559 Class Notes
(not for projection)

Visualization
• Helping someone see something
 – Data Visualization (information)
 – Data Visualization (scientific)
 – Architectural, Engineering, Artistic, …
• Visualization referring to a field
 – Scientific data
 – Information
 – Separation somewhat historical (spatial abstraction)

Scientific Data Visualization
• A whole big field – could be a course
• Hit some high points (parallel with book)

• Could be anything
 – Drawing graphs like in high school physics
 – Medical illustrations
• Generally field is more focussed
 – How to display large / regular data sets
 – Some basic/general concepts

Scalar Field Data
• A common form of data
• Doesn’t matter what field is

• Range, Domain
 – R = f(D) D in R^n
 – Could be vector valued
• Samples across the domain
 – Regular sampling (like an image)
 – Irregular sampling

“Easy” Version 2D
• R = f(x,y) (an image)

• How to display?
 – An intensity (why? Why not?)
 – Psuedo coloring R->(r,g,b)
 • Makes things stand out, emphasis
 • Can lie with colorings
 – Contour lines – isocontours
 – Height field (add shading to emphasize)

A Common Hard Case: 3D
• Scalar field in 3D v = f(x,y,z)
• Common to have regular samples

• Important cases:
 – Medical images (CT, MRI)
• Often just slice (since 2D is easier to visualize)
 – Still preferred in medicine
3D Scalar Fields

- Method 1: Make isosurfaces
 - Gives a “solid” surfaces, use normal surface methods to show it

- Isosurface extraction method:
 - Marching cubes
 - Explain as 2D – marching squares
 - Data a points on grid
 - Need to decide where edges go
 - 2^4 cases of how the region might be filled

Marching squares

- Each square can be in 1 of 16 configurations
- Can Adjust edge intersect point based on where “level crossing” is

Marching cubes

- 256 (2^8) cases
- Gives a slightly blocky surface
 - Can be smoothed
- Really only lets you pick one “isovalue”
 - Can change isovalue, get new surface

- Isosurface rendering
 - Useful for looking at specific objects within a field (a bone inside a CT scan)

Direct Volume Rendering

- Treat each square as a density
 - Lets some light through
 - Changes the color
- Trace path through the volume
- Maximum intensity projection
 - Integral along the line (as if ray is going through transparent cells)
- Transfer function
 - (what each value does to ray)
 - Effects Opacity and Color
 - Can depend on normal (to get fake lighting)

Beyond scalar fields

- Vector Fields
 - Every point has a vector $x,y,z = F(x,y,z)$
 - Velocity fields
 - Force fields
 - Fluid visualizations
- Tensor fields
 - Matrix / coordinate system at every point
 - Get from various MRI technologies
 - Which way things can wiggle

Challenges of Sci-Vis

- Making sure you can see things
- Managing complexity
 - Computationally (big data sets)
 - Conceptually (limits of perception)