
1

High Quality Rendering

CS559 Lecture Notes
Not for Projection

Mike Gleicher, November 2007

Rendering

• How to make an image (from a model)
• How we “draw” with computers

• Generally, term implies trying to make high-quality images

• Two main categories of approaches
– Object-Based
– Light-Based

• Distinction is a little fuzzier than that

Object-Based Rendering

• What we’ve been doing so far
• Draw each object independently

• Primitives and abstractions provided by hardware
– Triangles, texture mapping, multi-pass, local shading, …

• Hacks to make better and better visual effects

• Pros: abstractions efficient on hardware
• Cons: it’s a hack!

– Can’t achieve all effects (without more hacks)
– Not accurate model of real world

Light-Based Rendering

• Model what happens with light in scene

• Assume that we have a model of the scene
• Figure out how light interacts with it

• Allows for global effects
– Or at least non-local ones

• Simulate what really happens
– To varying degrees of realism in the model

How the real world “renders”

• Photons (Rays) from source
• Bounce paths
• Some lucky photons make it to the eye (very few)

• Not a practical strategy – too inefficient

Ray Tracing

• Technically “Backward Ray Tracing”
– From eye to light
– There are cases where we actually do forward tracing
– Terminology is confusing – I prefer “from the eye”

• Idea: 
– For each pixel (image space algorithm)
– Figure out where the photon would have come from

– Note: get projective transform from ray fan out
– Note: could use real model of lens to determine ray directions
– Note: Sampling Issue



2

Ray Tracing Pieces

• 1. Figure out what ray is
• 2. Figure out what ray hits (ray-object intersection)
• 3. Figure out where it could have come from

– Recursive – since outgoing ray must have come from someplace

• Ray / Object Intersection
– Straightforward mathematical calculation (root finding)
– Tricky part: making it go fast
– Accelleration structures:

• Simplified models (bounding spheres/boxes)
• Hierarchical models (check rough stuff first)
• Spatial Data structures

Where did the ray come from?

• We know: outgoing direction, local surface geometry

• Specular bounce 
– Good for mirror reflection

• Real surfaces are diffuse – could come from any direction
– Distribution of likelihoods
– Different surfaces distribute light differently
– Really requires an integral over incoming ray directions

– Bi-directional Reflectance Distribution Function

– Ideal case: sample all incoming directions

Hack ray-tracing

• Try to model the rays most likely to be important

• Mirror reflection bounce (or refraction bounce)
• Direction towards light sources

– Probably important since they are bright
– Check to see if path is clear (hit something = shadow)
– Use local lighting model

• What does this give us?
– Everything from local lighting
– Shadows
– Reflections and Refractions

Shadows

• Shadows of point lights give hard edges
– Even in the real world!
– Quite ugly

• Soft shadows are nicer
• Come from area light sources

– Umbra / penumbra

• How to achieve?
– More than one ray towards the light source
– Sampling of directions 

Distributed Ray Tracing

• Need to sample a distribution of ray directions

• Some uses:
– Soft shadows (distribution of directions towards area light)
– Anti-Aliasing (distribution of rays within the pixel)
– Imperfect reflections (distribution of outgoing rays)
– Motion Blur (distribution of times)
– Depth of Field

– All indirect light directions (for diffuse surfaces)
• Get inter-object color transfer

– Notice how quickly this becomes impractical

What can we do with Ray-Tracing?

• Given infinite rays, just about anything

• Realistically:
– Can be clever about how to sample
– But ultimately, limited in number of rays

• To understand limits, need to talk about light paths



3

Light Path Calculus

• Lights
• Diffuse Reflections
• Specular Reflections
• Eyes

• All paths L (D | S)* E
– Regular expressions

• (Backward) Ray tracing can do:
– L (D|S) S* E

• What ray tracing can’t do
– Anything else

Global Illumination

• Real world lots of diffuse objects
• Inter-reflections are really important
• Indirect lighting common and good

• Not handled by ray tracing!

• Truly requires a global solution
– Light bounces many times (potentially)
– All objects can influence all others (potentially)

• Not readily solved with ray-tracing

Radiosity

• A special case of global illumination

• Assume all objects are diffuse
– View direction doesn’t matter

• Polygonal patches that are constant light “output”
• L D+ E paths

• Output of patch = sum(input)
• Input = for each other patch

– Form factor (how much can it see)
– Diffuse lighting

• Big linear system of equations (each patch depends on 
others)

Radiosity

• Requires little patches
– Patches too big, they look silly

• Only diffuse lighting
• Doesn’t handle curved surfaces well
• Hard to determine all the factors exactly
• Doesn’t scale (big linear system)

Examples of other things

• Caustics
– Light bounces off mirror (or through lens) to light a diffuse object
– L S* D E

• Semi-Diffuse objects (real objects)

Advanced “Physically-Based” 
Rendering
• Smart Sampling – of all possible paths
• Bi-Directional Ray Tracing

– Do some “from the light” and store energy on surfaces
– Photon Maps

• Random sampling
– Over ray directions (send out lots of rays, both directions)
– Over possible paths

• Complex reflection distribution functions
– Require complex sampling mechanisms to express
– Integration over incoming (or outgoing) ray directions


