
1

CS559 – Lecture 28
Texture Mapping

These are course notes (not used as slides)
Written by Mike Gleicher, Nov 2006
Updated Nov 2007

© 2006 Michael L. Gleicher

Goal: Complexity

• How to make something complex?

• Given what we have: lots of small triangles
– To now, Gouraud shading – color per vertex

• Why not?
– Hard to model / author / design
– Hard to draw fast
– Hard to sample (triangles get smaller than a pixel)
– Hard to maintain the models
– Hard to store the models

Alternative Approach to Complexity:
“Texture” Mapping (and its variants)

• Use simple geometry (big polygons)
• Vary color (and other things) over its surface

• Analogy: paint a picture on something

• Basic case: change color at each point
– Advanced cases later

Why just paint objects?

• Why paint rather than model?
– Easier (can use 2D tools, photographs)
– Less to store
– Less to model
– Faster to draw (*)
– Easier to sample

• Why not?
– Things really aren’t flat
– Parallax / self-shadowing / illumination effects
– More advanced “texturing” to get these later

Faster to draw requires special
hardware!

Only recently has this become
common!

Texture Mapping

• For every point on the object, have a “map”
(function) to color
– Later extend to other properties

• Big pieces here:
– Need ways to “name” points on object

Texture Coordinates
– Need ways to describe the mappings

• Procedural
• Use images

How to assign points to objects

• Use world space positions?
– No – properties usually move with objects
– Might be OK for things like lights that effect objects

• Use local 3D positions?
– 3D Textures
– Problem: harder to define functions that give colors for

all points in a volume
– Don’t care about points off the surface anyway

– Use 3D textures when its easy to make 3D functions
• Procedural wood, stone, …

2

2D Texture Mapping

• So common, its almost synonymous with Texture

• For every point, give a 2D coordinate
– Texture coordinate
– U,V for every vertex

• Interpolate across triangles
– (same as across quads)

Interpolating Coordinates

(x1, y1), (s1, t1)(x2, y2), (s2, t2)

(x3, y3), (s3, t3)

3
13

1
1

13

11 s
yy
yys

yy
yysR ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−=
3

23

2
2

23

21 s
yy
yys

yy
yysL ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−=

R
LR

L
L

LR

L s
xx
xxs

xx
xxs ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−= 1

Barycentric Coordinates

• An alternate way of describing points in triangles
• These can be used to interpolate texture

coordinates
– Gives the same result as previous slide
– Method in textbook (Shirley)

x3

x1

x2

βαδ

β

α

γβα

−−=

=

=

++=

1
),,(
),,(
),,(
),,(

321

31

321

32

321

xxx
xxx
xxx
xxx
xxxx

Area
Area
Area
Area

x

How to represent the function

• C(u,v)
– Write code (needs programmable graphics system)

• Programmable shaders (later in course)
– Use an image and sample

• Sampling is an issue even for procedural texture
– Its just harder!

• One pixel can be a large part of a triangle

Image Based Texture Maps

• So common its
synonymous

• U,V coords at vertices
• Specify where in texture to

get colors

Perspective Correction

• Linear interpolation wrong
if polygon isn’t screen
aligned

• Stuff farther away needs to
be smaller

• Need to interpolate in
world space, then do
perspective

• Need to interpolate w, and
divide (per-pixel)

• Divide per pixel used to be
expensive

Equal size,
Tip it back

Linear
Preserve size ratio

Perspective
Correct

3

Perspective Correct Texture Mapping

• Don’t worry – the graphics hardware does it

• 1/Z (or 1/W) is linear in screen space
– This is a little tricky to prove

1/2 in screen line

Interpolate 1/3->1/6
halfway = 1.5 / 6

Z of halfway point=4

1/3 of line

0 2

2

1

1

3

3

4 5 6

Lin
e t

o I
nte

rpo
lat

e

Li
ne

 o
n

Sc
re

en

Halfway in screen

=1/3 of line

To do perspective correct

• Interpolate 1/Z (or 1/W)
• Compute Z (from 1/Z) – requires divide
• Compute fraction of way from begin to end in Z
• Use this fraction to get how far in U/V
• Can combine steps

• Big picture – need to do a divide for every
conversion (pixel)

• See Shirley for details

Sampling

• Have U,V for the pixel – what color is it?
• Look it up in the texure map

• Point sample

• Bilinear interpolation (if between pixels)
– Always will be between pixels

• Filtering – pixel maps to a region of texture

Fast Sampling

• Screen pixel is funny shape in Texture Space
• Perespective transform of circle (skewed ellipse)

• Use a simpler shape for sampling

Average over rectangular regions Square Region Centered at Point

• Pretend pixels are squares

• If region is 1 pixel big, this is easy!
– Use bilinear interpolation to get position right

• If the region is bigger, halve both region and image
– 2x2 region – halve the image (each pixel is average of a

2x2 block)
– 4x4 region – halve the image twice

4

MIP Map

• Repeatedly halve the image to make a “pyramid”
– Until there’s 1 pixel (which is average of whole)

• Given a position and square size
– Use square size to pick pyramid level
– Use bilinear interpolation to get position

• But only have pyramid for 1,2,4,8… pixel squares
– Linear interpolate between levels!
– E.g. 5 = ¼ way between 4 and 8, so compute 4 and 8

and interpolate
– Tri-Linear Interpolation! - looks at 8 texels (4 per level)

Making Textures Work

• Need to load textures into FAST memory
– Multiple lookups per pixel

• Need to build MipMaps
• Need to give triangles UV values
• Need to decide how to filter
• How is texture color used

– Replace existing color?
– Blend with it?
– Before or after specular highlight?

• Need to decide what happens to “out of bounds” texture
coordinates
– Clamp, repeat, border

More stuff with textures

• Lots of extensions and uses!

• Multi-Texturing (combine several textures)
• Bump Mapping – lookup normal values
• Displacement Mapping
• Textures for lighting and shadows

• Can fake many complex effects by using texturing
in interesting ways
– Draw many times – each with another texture

RECAP

• Object / Triangle
• Texture Coordinates
• Interpolation

– Linear in space
– Perspective on screen

• For each pixel lookup color
• Bilinear interpolation
• Tri-Linear interpolation

– MIPMAP

Small Gotcha

• Lighting computed at Vertex
• Color (texture) at each pixel

• Do per-pixel lighting (write a shader)
• Do Gouraud Shading on “Base Color”

– Texture modulates base color
– Color = Ct * Cl (color from lighting)
– Make objects white, mult “over” color
– Special tricks for dealing with specular highlights

Color Modulation

• Rather than multiply…
– Add, subtract, …

• Combining multiple color sources

• Use lighting + colors
• Use multiple textures simultaneously

– Basic color, plus surface detail
– Use textures for lighting effects

5

But my object still look flat

• Simple method – BUMP mapping

• Use texture to change NORMAL
• Object is still flat, but reflects as if bumpy
• Normal map = displacement of “real” normal vector

– N’ = N + a U + b V (U,V=tangents, N=original normal)

Bump Mapping is limited

• Only changes lighting

• No self-shadowing
• Doesn’t change silhouette

• But can be done with clever combinations of basic
texturing

• Improved versions hack some of the benefits

Displacement Mapping

• Actually move points
– Moving points changes normal

• Map stores positional offsets
– Usually relative to surface direction

• Hard to do – since a pixel might get moved into
another pixel

Multi-Texturing

• Use multiple textures
– Combine together

• Many uses
– Different textures based on viewpoint (or light direction)
– Different “layers” of texture (scratches in woodgrain)
– Light effects “painted on”

• Complex highlights, reflections, shadows, …
• How to do?

– Texture combiners
– Multiple texture access in shaders (but limits…)
– Multi-pass rendering (talk about later)

Environment Mapping

• Make mirror reflections
• Draw a picture of the world onto a map

– Must know what will be reflected
– Typically make a sphere or cube

• Assume object is an infinitessimal sphere

Environment map details

6

Lighting with Texture

• Paint lighting onto objects

• Volumetric textures (things get lit around source)
• Environment map

– Allows for positioning of many lights
– Allows for capture of real lights
– Mainly for specular highlights

• But sampling (mipmapping) can give fuzzy highlights
for things in-between specular and diffuse

• Slide projector mapping

Shadow Mapping

• Not to be confused with painting dark spots
– Which is like slide-projector mapping

• Shadow map – can light be seen
– Render scene from light’s point of view
– Visible objects are lit, others are shadowed
– Keep the Z-buffer (the shadow map) to know which

object

Hack Shadows / Spotlights

• Draw black or white splotches
• Draw semi-transparent

– How to avoid overdraw?

• Stencil buffer
– A buffer you can write any value you want to
– Write values when drawing
– Test values when drawing

• Useful for many things in multi-pass rendering

Hack Shadows with Stencil Buffer

• Clear stencil buffer to zero
• Draw the ground plane with stencil buffer on
• Draw the shadows

– Only draw with the stencil buffer bit set
– Set to zero when drawn

• Notice:
– No drawing off of the ground plane
– No overdraw of the shadows!

