
1

Lecture 27 – Meshes, Parametric 
Surfaces

CS 559 Lecture Notes
Not for display

November 2007

Polygons

• Or triangles

• Need to have a front/back
• Outward facing normal

• Be consistent in orientation (e.g. CCW)

Polygon Soup

• Random Assortment
• Unstructured

– At least get ordering right

• Tells little about how polygons connect
• Lots of redundancy

Cube Soup

struct Triangle Cube[12] =
{{{1,1,1},{1,0,0},{1,1,0}},
{{1,1,1},{1,0,1},{1,0,0}},
{{0,1,1},{1,1,1},{0,1,0}},
{{1,1,1},{1,1,0},{0,1,0}},
…

};

(0,0,0)

(1,0,0)
(0,1,0)

Polygon Soup

• Advantages
– Easy

• Problems
– Redundancy
– No global info
– No open/closed info
– Hard to edit
– Hard to prevent degeneracies
– No non-local information

Is it closed?
Is it connected?
Is this an edge or internal?

Cracks / Cracking

• Gaps in the surface
• Prevents from being solid
• Can be ugly
• Airtight / Watertight

– No cracks

• Beware edge/vertex
– Numerical errors cause cracks



2

Mesh

• Share vertices
– Indirection to vertex table
– Prevents cracking
– More efficient (lots of info at vertex)

• Store Polygons as vertex lists
• Store Edges – Faces are lists of edges

– Every edge borders 2 faces
• Simplicial Complex

– Mathematically deep term
– Fancy way to say “nice mesh” – all faces meet at an 

edge, …

Vertex Indirection

• List of vertices
• Everything is an index into this table

• Good points:
– Sharing prevents some cracking
– Transform/Light each vertex once
– Data reduction

More complex Mesh Structures

• Store Edges
– Can be handy to have

• Each edge only 2 faces – one CW one CCW (pass through 
edge in opposite ways)
– Store “next” edge for each direction
– Winged Edge Data Structure

E2E7

E3

E4E5

E6 E1

E1: A->B

Forw: next=E5, 
prev=E7

Back: next=E2, 
prev=E4

A

B

Getting Meshes to Hardware Fast

• Minimize number of vertices sent down pipe
– Old days – definitely bottleneck
– Now – maybe not, since lots of per-pixel computation

• Vertex Buffers
– Send small number of vertices 
– Index into this small array (since memory << model size)
– Group into small sets (like 8 or 16) of vertices, draw all triangles 

between them

• Vertex Cache
– Automatically buffer, use LIFO

Vertex Arrays

• Hardware caches vertices (after transform)

• Give vertex list and connectivity
• Do in an order to get cache performance

– Groups of n vertices
• Hardware specific trick

• Best way to draw triangles in opengl
• Send blocks of data at once (avoid function call overhead)

– Can be high since function call means call to low-level driver
• Possibly: store array in fast memory specific for graphics

– On graphics card or in driver address space
• Issues with data formats

Regular Meshes

• Reduce number of vertices 
needed

• Reduce amount of connectivity 
info needed (which can be 
sizable!)

• Often have meshes with uniform 
patterns

• Grids, fans, strips

• Connectivity is implicit
• Very efficient
• Processing is easy
• Avoid redundant transforms

1

2
3

4
5

6

7

1

2

33

4

5

6



3

Normals

• Per Face
– Can be computed (assume polygon, order)

• Per Vertex
– Assumes we’re approximated smooth surface

• Per Face/Vertex
– If you want discontinuous normals

Smooth Surfaces

• Approximate with polygons

• Consider Cylinder
– Number of faces
– Better looking with smooth shading
– Even better with Phong Shading

• Tradeoff: more polygons = smoother

• Better: use pieces that are really curved
– Will (almost always) draw them by tesselating
– But – easier to model with fewer pieces,more accurate, adaptive, …


