Lighting Recap

- Compute lighting at a point
- Given
 - Position (used for eye vector, light vector)
 - Normal
 - Surface Properties (Cs Cd Ca s)
 - Light Properties (position, intensity, color, shape)
 - Eye position

\[
\text{color} = A \cdot C_a + \sum_{i} \left(I_i \cdot (C_b \cdot (N \cdot l)) + C_s \cdot (N \cdot h)^g \right)
\]

What are we lighting?

- Surfaces (discuss in detail later)
- Triangles (what we really end up drawing)
- Smooth objects (that we approximate with triangles)

When do we do lighting

- Per-Triangle
 - Flat shading
 - If things really were triangles, would be right
 - Faceted appearance – CG = quaint
- Per Vertex
 - Allow each vertex to have a different normal
 - Fake a smooth object
 - Interpolate colors inside of the triangle
 - Gouraud (smooth) shading
 - Small number of shading computations

When to shade (2)

- Per pixel
 - Interpolate NORMAL vectors (and other stuff)
 - PHONG shading (as opposed to Phong lighting)
- Why is this better than interpolating colors?
 - Catches real geometric changes
 - Shaper features
 - Looks MUCH better

Modeling 3D Shapes

- Modeling = process of describing an object
 - Representation
- Can model shape, physical properties, behavior, …
- Many uses of (geometric) models
 - Graphics – make a picture
 - CAD – represent for manufacture
Types of Shape Models in 3D

- Points
- Curves
- Surfaces and Solids
- Volumes

Surface vs. Volume

- Cube
 - Volume = space inside 0 <= x,y,z < 1
 - Surface = 6 squares (0,0,0)(0,0,1)(0,1,1)...
- Surface can be a boundary
 - But might not be
- Graphics (often) only need surfaces

When might we care about Volumes?

- Engineering / Manufacturing / Design
 - Can’t be non-physical
- Some kinds of data has “insides”
 - Medical data (scanned)
- Some operations make sense
 - Constructive solid geometry
 - Cut / Join / Subtract / Union
 - Makes less sense on surfaces

How to do volumes?

- Hard: need to insure that you always have a volume!
- Operations on primitives
 - Make solid pieces (spheres, cylinders, polyhedra, …)
 - Combine with sensible operators (union, intersection, difference)
 - Construction Solid Geometry
- Boundary Representations
 - Store the surface
 - Represent what’s inside
 - Be careful that there always is an inside – no holes!
- Implicit Representations
 - F(x) < 0 – for some fancy F
 - Distance fields, union of blobs, …
 - Tend to be special purpose
- Sampled Volumes (like medical data)

Surface Basics

- Locally flat
- At any point
 - Normal
 - Tangent Plane
 - Tangent vectors in plane

Surfaces

- Generally what we use in graphics
 - Hard enough!
- Similar issues to curves, but worse
- Named vs. Free-Form
- Build out of little pieces
- Linear pieces (polygons) – analogy to lines
Basic Strategy

• Break complicated surfaces into pieces
• Need to choose good pieces
• Need to make sure that the pieces connect
• Connections are more complicated