What color are things?
- How do things appear?
- Influenced by object and lighting
- Qualities of the surface
 - Shape + Material
- Qualities of the light / interaction

Lighting in the real-world
- Light bounces off everything
- All objects influence all others
- Appearance (illumination) is a global problem

Global Illumination
- All objects affect all other objects
- Interactions, interdependence, ...
 - Spill, reflections, shadows, ...
- Important for advanced effects!
- Very hard to do
 - CG illumination needs to make simplifications
 - Global illumination is done – but simplified
 - Still an advanced topic

Local Lighting
- What happens when light interacts with an object
 - Arguably, part of global lighting
- Again, surface interaction could be really complex – simplify to make easy
- Use only local lighting for most CG

Local Lighting in CG
- How to light 1 point on a surface
- Surface at that point
 - (material, local geometry)
- Eye Position
- Lights
 - Position/direction, color, intensity
- Appearance of object only depends on the point – not other points
Local Lighting

• What can’t we do?
 – No shadows
 – No self-shadows
 – No color spill
 – No inter-reflection / reflection / refraction
 – No area light sources

• Add these effects in with hacks

The generalized model

• Color of a point is determined by **shading**

• Shading considers all local information, gives color
 – Old days, fixed function (lighting)
 – Now/future - programmable

The fanciest local models

• **BRDF**
 – Bi-Directional, Reflectance, Distribution Function

• Any direction in, any direction out, what colors are transmitted

The common model

• Simplified, time-tested

• Originally built into hardware (and OpenGL)

• Now, fixed function is going away
 – (but this still gets used a lot)

• Can use with anything…

Simplified local lighting model

• 3 parts per light
 – Specular (direct reflection)
 – Diffuse (scattering)
 – Ambient (hack for indirect lighting)

• This is a hack – but a well established, common hack that gets the main phenomena

• Fancier local models exist

Specular (Direct Reflection)

• Mirror reflection

• Light gets to eye if it bounces perfectly
Specular Lighting

• Real surfaces aren’t perfectly smooth
 – So don’t need to be exact
 – Shinier (smoother) more exact bounces
• Fall off as get away from direct reflection
 – Rate of falloff depends on “shininess”

Diffuse Lighting

• Really rough surfaces (chalk)
• Matte objects
• Light is scattered in all directions equally
 – Randomness of surface direction at a micro-level, still does mirrors, but they are small
• Lambertian reflector

Diffuse Lighting (Lambertian)

[Diagram]

Ambient Lighting

• What about indirect lighting?
 – Room isn’t totally black
 – Should have SOME color
• Ambient light is indirect light that is just bouncing around
• HACK: add in a constant light source that just lights up everything
The entire lighting Model

- Eye position (direction vector)
- Object local geometry (normal)

- Each light source
 - Position (maybe infinity) + color
- Ambient light has a color (and amount?)

- Surface has a color for each light type and shininess (Cd, Cs, Ca, s)

The final model

$$\text{color} = A \cdot C_d + \sum_{i \in \text{type}} (I_i \cdot (C_e \cdot (\mathbf{H} \cdot L_i)) + C_s (\mathbf{N} \cdot L_i)^s)$$

- Ca, Cd, Cs = object colors
- La, Ld, Ls = light colors
- S = shininess
- N = normal, L = light direction, H = half angle