
1

CS559 – Lecture 19 and 20
OpenGL Survival

These are course notes (not used as slides)
Written by Mike Gleicher, Oct. 2006
Updated Oct 2007

© 2005 Michael L. Gleicher

The Basics of doing 3D Graphics

• Stuff you need to know to write programs

• Toolkit details best done by looking at code
– And trying it yourself!

• See online tutorials (e.g. Survival Guide)
• See the red book

• Try to refresh the concepts behind using library

• Goal: get you to know enough to do Project

List of stuff you need to know

• Basics of Toolkits
• Dealing with a window
• Double buffering
• Drawing context
• Transformations / Coordinate Systems / Cameras
• 3D Viewing / Visibility (Z-Buffer)
• Polygon drawing
• Lighting
• Picking and UI

Basics of a toolkit

• OpenGL is for drawing graphics in a window
• Doesn’t care where the window comes from

– Need something to deal with Operating system
• Less good for text and widgets

• Use some toolkit to do windowing and UI support
– FlTk – supports OpenGL well
– Glut – simple, designed for doing OpenGL demos
– Native windows – um, I can’t comment

The Drawing Context

• OpenGL is stateful
– Draw in the current window, current color, …
– Contrast with stateless systems

draw(x1,y1,x2,y2)
draw(window, coordsys, x1, y1, x2, y2, color, pattern, …)

• Where is all that state kept?
– Drawing Context

• Each window has its own state
– Need mechanisms for keeping track of it
– Making it the current state
– FlTk does this for you (in draw, or with make_current)

• Beware! You can only draw with a current context

When does drawing happen

• Two different types of graphics toolkits
– Immediate mode – stuff goes right to frame buffer
– Retained mode – keep 3D objects on list, system draws

all at once
• OpenGL supports both (usually immediate mode)
• What happens with a triangle

2

Double Buffering

• Double Buffering – independent of
immediate/retained!

• Prevent from seeing partially drawn results
• (potentially) keep synced with screen refresh

• Draw into back buffer
• Swap-buffers

• FlTk will take care of this for you

When do I draw?

• When the window is “damaged”
• Periodically (animation / interaction)

• With FlTk:
• It calls the draw function when needed

– NEVER call it yourself
• If you want to force a redraw, damage your window

– It will be redrawn when appropriate

Where do I draw

• Screen coordinates – the main place everyone can
agree

• OpenGL uses unit coordinates
– Depth is -1 to 1 as well

• The Viewport
– GL lets you limit things to a rectangular area of the

screen
– This is the only thing measured in pixels!

• Need to correct for aspect ration of screen

Getting my own coordinate system

• OpenGL only knows 1 coordinate system
– The “Normalize Device Coordinates” - NDC
– Viewport mapped to unit cube
– There is actually 1 other coord system, but that’s a detail

for lighting

• If you’re transformation is the identity, you get NDC

• All points transformed by the “current
transformation”

OpenGL coordinate transforms

• OpenGL has 2 “current” transforms
n = P M x

n = point in NDC x = point in your coordinate system
P = projection matrix M = Model View matrix
P and M are both stacks (although P is a short stack

• Why 2 matrices?
– Esoteric detail of lighting

• Only the perspective transform goes into P
– Unless you’re doing something wierd

• M gives “camera coordinates”
– Only lighting happens there in GL

Is OpenGL Post-Multiply?

• An internal detail – unless you look at the matrices

• Think of it as Post-Multiply
– And if everything is being transposed, no big deal

• Only “load” is to load the transpose
– OpenGL used to be pre-multiply, but since everyone

else is post-multiply

3

How do I set the transform?

• Need to pick which matrix “stack”
– Projection, ModelView

• Can either load, or post-multiply
– Almost everything does a post-multiply
– Except for the load operations
– BEWARE: make sure to do a load identity first!

• Most matrix operations build a matrix and post-
multiply it onto the “current” stack

Getting your coordinate systems

• Need things in camera
coordinates

• Rotate and translate the
world coordinates (and
possibly scale)

• Think of placing and
pointing the camera

Getting the camera scale?

• Projection does some
scaling (by Z)

• Projection puts eye at z?

• Projection puts near
clipping plane at -1, far
plane at 1

• Use OpenGL’s projection
matrix

• Field of view/aspect ratio

Moving coordinate systems

• Multiplying matrix means changing the coordinate
system

• Or think about it as things closest to the object go
first

Your own coordinate system

• Draw your triangle…
– On a piece of paper
– In your hand
– When you’re on a platform
– On a crane

• Build transforms!
– Camera->world
– World->crane
– Crane->top of crane
– Crane->platform
– Platform->person
– Person->arm
– Arm->paper . . .

Convenient ways to make transforms

• Projection
– gluFrustum, glPerspective

• Matrix handling
– Load, get, pushmatrix, popmatrix
– Rarely load anything but the identity

4

Actually drawing

• Begin / end blocks of points
• Send each point by itself (or as an array)
• Uniformity in how you draw different things

– Lines
– Triangles
– Strips of triangles
– Quads

• Things are drawn in the “current” state
• Color, line style, …

Normal Vectors

• Assign per-vertex or per-triangle
• Unit vector towards the “outside”
• Not done automatically for you

• Will be very useful for lighting, so get in the habit

What color are things?

• Turn off lighting – and say colors directly

• Turn on lighting – and let the games begin!

• Idea: color of object is affected by lights
– Need some light to see things
– Direction of light affects how things look
– Say where the lights are, how strong they are
– What the reflectance of the surfaces are

• A whole topic for days in this class

What happens to stuff off the screen?

• Clipping
– Things get chopped by a plane
– Each side of the viewing volume
– Other planes as well – if you want

• Important to do correctly and efficiently
• A lot of work into the methods – but really boring

Visibility

• Give polygons in any order (even back ones last)
• Use a Z-Buffer to store depth at each pixel

• Things that can go wrong:
– Near and far planes DO matter
– Backface culling and other tricks can be problematic
– You may need to turn the Z-buffer on
– Don’t forget to clear the Z-Buffer!

So, I got a black screen…

• Celebrate – you’ve gotten a window, and that’s step 1!

• Are you drawing at the right time?
• Do you have a drawing context?
• Are you drawing objects?
• Is the camera pointing at them?
• Are they getting mapped to the screen?
• Is something occluding them?
• Are they in the view volume?
• Are they lit correctly?
• And a zillion other things that can go wrong…

