Lecture 15 – 3D Transformations

Michael Gleicher
October 2007
Notes not for display

3D
• 3D coordinate system & handedness
• Prefer right-handed coordinate systems
• Right-hand rule

What happens in 3D?
• 4D Homogeneous Points
 – 4x4 matrices
• Basic transforms are the same
 – Translate
 – Scale
 – Skew
• Rotation is different
 – Rotation in 3D is more complicated?

What is a rotation?
• A transformation that:
 – Preserves distances between points
 – Preserves the zero
 – Preserves “handedness” (in 2D clockwiseness)
• A subset of linear transformations
• Some things that come out of these:
 – Axes remain perpendicular
 – Axes remain unit length
 – Cross product holds

Parameterizing Rotations
• Rotations are Linear Transformations
 – 2x2 matrix in 2D
 – 3x3 matrix in 3D
• The set of rotations = set of OrthoNormal Matrices
• Inconvenient way to deal with them
 – Can’t work with them directly
 – Not stable (small change makes it not a rotation)
• Is there an easier way to parameterize the

Measuring rotation in 2D
• Pick 1 point (1,0)
• Any rotation must put this on a circle
• If you know where this point goes, can figure out any other point
 – Distances (w/point & origin) + handedness says where things go
• Parameterize rotations by distance around circle
 – Angle
• Issues with wrap around
Much harder in 3D

- Any point can go to a sphere
- That one point doesn’t uniquely determine things

- No vector in \mathbb{R}^n can compactly represent rotations
 - Singularities
 - Nearby rotations / far away numbers
 - Nearby numbers / far away rotations
- Hairy-Ball Theorem

Representation of 3D Rotations

- Two Theorems of Euler
 - Any rotation can be represented by a single rotation about an arbitrary axis (axis-angle form)
 - Any rotation can be represented by 3 rotations about fixed axes (Euler Angle form)
 - XYZ, XZX, any non-repeating set works
 - Each set is different (gets different singularities)

- Building rotations
 - Pick a vector (for an axis)
 - Pick another perpendicular vector (or make one w/cross product)

Euler Angles

- Pick convention
 - Are axes local or global?
 - Local: roll, pitch, yaw
 - What order?
- Apply 3 rotations
- Good news: 3 numbers
- Bad news:
 - Can’t add, can’t compose
 - Many representations for any rotation
 - Singularities

Viewing Transformations

- How do we transform the 3D world to the 2D window?
- Concepts:
 - World Coordinates
 - View (or window) VOLUME
 - Need 3rd dimension later to get occlusions right
 - Viewing Coordinates
 - 3D Viewing coordinates
 - Separate Issues
 - Visibility (what’s in front)
 - Clipping (what is outside of the view volume)

Orthographic Projection

- Projection = transformation that reduces dimension
- Orthographic = flatten the world onto the film plane

View Volumes / Transformations

- Viewing transformation puts the world into the viewing volume
- A box aligned with the screen/image plane
Canonical View Volume

- -1 to 1 (zero centered)
- XY is screen (y-up)
- Z is towards viewer (right handed coordinates)
 - Negative Z is into screen
- For this reason, some people like left-handed

2 Views of Viewing Transform

- Put world into viewing volume
- Position camera in world (view volume into world)
- Clip stuff that is outside of the volume
- Somehow get closer stuff to show up instead of farther things (if we want solid objects)

Orthographic Projection

- Rotate / Translate / Scale View volume
 - Can map any volume to view volume
- Sometimes pick skews
- Things far away are just as big
 - No perspective
- Easy – and we can make measurements
 - Useful for technical drawings
 - Looks weird for real stuff
 - Far away objects too big