559 Course Notes – 2007
Transforms (lectures 13-14)

Mike Gleicher
October 2007
Notes for lectures, not shown in class

Geometric graphics

- Primitives
 - Points
 - Lines
 - Polygons
 - Shapes

- 0d vs. 1d vs 2d vs. space embedded into

- What do positions mean?
 - Need coordinate systems

Coordinate Systems

- Tells us how to interpret positions (coordinates)

- In graphics we deal with many coordinate systems and move between them
 - Use what is convenient for what we’re doing

- Examples
 - Chalkboard as coordinate system
 - One panel of chalkboard as coordinate system
 - Monitor as coordinate system

What is a coordinate system

- Position of the zero point
- Directions for each axis
 - Represent points as a linear combination of vectors
 - Vectors (basis) are axes
 - Scale of vectors matter (what is “1 unit?”)
 - Directions matter (which way is up)
 - Doesn’t need to be perpendicular (just can’t be parallel)

Describing Coordinate systems

- Need to have some “reference”
 - Where we will measure from
- Give origin, vectors
- Once we have 1 system, can define others

- Can move points by changing their coordinate system
 - Piece of paper is a coordinate system
 - Move piece of paper around
 - If it were a rubber sheet could stretch it as well

Changing Coordinate Systems

- Changing coordinate systems allows us to change large numbers of points all at once

- Need to move points between coordinate systems
 - A coordinate system transforms points to a more canonical coordinate system
 - Can define coordinate systems by transformations between coordinate systems
Transformations

- Something that changes points
 - \(y', y' = f(x, y) \) \(f \in \mathbb{R}^2 \)
- Coordinate systems are a special case
- Other examples
 - \(F(x, y) = x^2, y^3 \)
 - \(F(x, y) = -y, x \)
 - \(F(x, y) = x^2, y \)
- Easy way to effect large numbers of points

Interpreting Transformations

- Can be viewed as a change of coordinates
 - What happens to a piece of graph paper?
 - Just sometimes to a stretchy piece of paper
- View as a function applied to points
- Function composition
 - \(F(g(h(x))) \) (note order)
- Easy way to effect large numbers of points

Linear Transformations

- Important special case – linear functions
- Can be written as a matrix \(x' = M x \) (\(x \) is a vector)
- Good points
 - Many useful transformations are of this form
 - Composition by matrix multiply
 - Easy analysis
 - Straight lines stay straight lines
 - Inverses by inverting the matrix
- Note: linear operators preserve zero!

Example Linear Operators

- Uniform Scale
 - \(\text{scale}(s) = \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix} \)
- Non-Uniform Scale
 - \(\text{nuscale}(s, t) = \begin{bmatrix} s & 0 \\ 0 & t \end{bmatrix} \)
- Reflect
 - \(\text{reflect}(s, t) = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \)
- Skew
 - \(\text{skew}(a) = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \)

More linear operators

- Rotate
 - \(\text{rotate}(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \)
 - Note: all of this keeps zero
 - All linear operations are around the origin (?)

Understanding linear operators

- This is POST-Multiply (vector on the right)
 - Pre-multiply convention works too
 - All the matrices get transposed
- What does each element do?
 - Left column – where does X axis go (put in unit X vector)
 - Right column – where does Y axis go
- Can’t do anything about origin!
Post-Multiply vs. Pre-Multiply

- Post multiply – column vector on the left
 \[\begin{bmatrix} F & G & H \end{bmatrix} x \]

- Pre-multiply – row vector on the right
 - Older convention, not used as often
 \[x^T \begin{bmatrix} H & G & F \end{bmatrix} \]

- I will (almost always) use the post-multiply convention

Affine Transformations

- Translation = move all points the same (vector +)
- Affine = Linear operations plus translation
- Cannot be encoded in a 2x2 matrix (for 2d)
 - Need six numbers for 2d
 - Could be a 3x2 matrix – but then no more multiplies

- Rather than treat as a special case, improve our coordinates a bit

Homogeneous Coordinates

- Big idea for graphics – really important
 - Will be used for several things – translation is just 1
- Basic idea: add an extra coordinate
 - 2D becomes 3D (3x3 matrices)
 - 3D becomes 4D (4x4 matrices)
- Convert “back” from homogeneous coordinates by division
 - \((x,y) \rightarrow (x,y,1)\)
 - \((x,y,w) \rightarrow (x/w, y/w)\)
- Projection
 - Many points in higher dim space = 1 point in lower dim space
- For now, just make \(w=1\)

Translation in Homogeneous Coords

- Translate in 2D = Skew in 3D
 - Deck of cards

\[
\begin{bmatrix}
1 & 0 & x \\
0 & 1 & y \\
0 & 0 & 1
\end{bmatrix}
\]

What about other linear ops

- Just add an extra coordinate
- Don’t change \(w\) (unless you know what you’re doing)

\[
scale(s) = \begin{bmatrix} s & 0 & 0 \\
0 & s & 0 \\
0 & 0 & 1 \end{bmatrix}
\]

\[
rotate(\theta) = \begin{bmatrix}
cos(\theta) & -sin(\theta) & 0 \\
sin(\theta) & cos(\theta) & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

Matrices as Coordinate Systems

- Where does X axis go?
- Where does Y axis go?
- Where does origin go?

- Assumes that bottom row is \([0 \ 0 \ 1]\)

- Can you scale by changing \(w\)?
 - Yes, but often we prefer to renormalize so bottom right number is 1
Homogeneous Coordinates

- Big idea for graphics – really important
 - Will be used for several things – translation is just 1
- Basic idea: add an extra coordinate
 - 2D becomes 3D (3x3 matrices)
 - 3D becomes 4D (4x4 matrices)
- Convert “back” from homogeneous coordinates by division
 - (x,y) -> (x,y,1)
 - (x,y,w) -> (x/w, y/w)
- Projection
 - Many points in higher dim space = 1 point in lower dim space
- For now, just make w=1

Homogeneous Coordinates

- “Normal” space is a subspace
 - W = 1
- Think about 1D case (so embed into 2D x,w)
- Many equivalent points (projection)

Translation in Homogeneous Coords

- 1D Translation = 2D Skew

Translation in Homogeneous Coords

- Translate in 2D = Skew in 3D
 - Deck of cards

What about other linear ops

- Just add an extra coordinate
- Don’t change w (unless you know what you’re doing)

Homogeneous Coordinates

- Makes translation (affine transforms) linear
- Need to work in higher dimensional space
- Useful for lots of other things
 - Viewing (perspective)
Matrices as Coordinate Systems

- Where does X axis go?
- Where does Y axis go?
- Where does origin go?

- Assumes that bottom row is [0 0 1]

- Can you scale by changing w?
 - Yes, but often we prefer to renormalize so bottom right number is 1

Composing Transformations

- Order matters!
 - Scale / rotate vs. rotate/scale

- Can implement by multiplying matrices
 - \(T_1 T_2 T_3 \mathbf{x} = (T_1 T_2 T_3) \mathbf{x} \)

Why Compose?

- Rotate about a point
 - \(T_c R T_c^{-1} \mathbf{x} \)

- Scale along an axis
 - Move point to origin
 - Align axis w/major axis
 - Scale
 - Put things back
 - \(T_c R_s R \theta T_c^{-1} \mathbf{x} \)

Hierarchical coordinate Systems

- Car
 - Wheel
 - Wheel

- Person
 - Head / Neck
 - Arm / forearm / hand

Matrix Stack

- Multiply things onto the top
- Top is “current” coordinate system
- Push (copy the top) if you’ll come back
- Pop to go back

- Think about it as moving the coordinate system
- Top of stack is “current coordinate system”
 - Where we will draw
- Transformations change current coord system
 - Or change the objects that we are going to draw

Matrix Stack Example

- Draw Car = …. Push trans wheel pop …

- Push trans – draw car – pop push trans – draw car