Image warping
Li Zhang
CS559

Slides stolen from Prof Yungyu Chuang
http://www.csie.ntu.edu.tw/~cyy/courses/vfx/07spring/overview/

What is an image e

< We can think of an image as a function, f: R2>R:
- f(x, y) gives the intensity at position (X, y)
- defined over a rectangle, with a finite range:
 f: [a,b]x[c,d] - [0,1]

« A color image r(x,y)
f(XVY): g(xry)
b(x,y)

A digital image Rl

= We usually operate on digital (discrete) images:
- Sample the 2D space on a regular grid
- Quantize each sample (round to nearest integer)

« If our samples are D apart, we can write this as:
f[i ,j] = Quantize{ f(i D, j D) }
= The image can now be represented as a matrix
of integer values

A

.| le2 79 23 119 120 105 4 0
z l 10 10 9 62 12 78 34 0
10 58 197 46 46 0 0 48
176 135 5 188 191 68 0 49
2 1 1 29 26 a7 0 7
0 89 144 147 187 102 62 208
255 252 0 166 123 62 0 31
166 63 127 17 1 0 99 30

Image warping Rl

Change pixels locations to create a new image:

() = 9(h(x)

. | h(x.yD=[x.y/2]
IR

Parametric (global) warping 0ig 3

Examples of parametric warps:

perspective

cylindrical

Original

Parametric (global) warping

p=(xy) p’=(xy)
¢ Transformation T is a coordinate-changing
machine: p’ = T(p)
¢ What does it mean that T is global?

— can be described by just a few numbers (parameters)
— the parameters are the same for any point p

e Represent T as a matrix: p’ = M*p [X} X

y' y

Scaling e

« Scaling a coordinate means multiplying each of
its components by a scalar

 Uniform scaling means this scalar is the same
for all components:

I E e
)

Scaling BFved

¢ Non-uniform scaling: different scalars per

T

Xl

' o5y
X %2,
yx05

Scaling BFved
« Scaling operation: X'=ax
y'=by
e Or, in matrix form:
X' a 0| x
y'| [0 by
%_J
scaling matrix S
What's inverse of S?
[Digil[2d

2-D Rotation

2-D Rotation L
o (X, Y’)
(X, y)
X” = x cos(6) - y sin(6)
0 y’ = xsin(6) +y cos(6)

 This is easy to capture in matrix form:

x| [cos(@) —sin(@)] x
y'| |sin(6) cos(®) |y
%K_J
R
» Even though sin(6) and cos(0) are nonlinear to 0,
— X' is a linear combination of x and y
— vy’ is a linear combination of x and y
» What is the inverse transformation?

— Rotation by -0
— For rotation matrices, det(R) =1 so R'=R"

2X2 Matrices EFTve]

« What types of transformations can be
represented with a 2x2 matrix?

2D Identity?
o G
y'=y y| [0 1]y

2D Scale around (0,0)?

X'=8,*X x [s, 07x
y'=s,*y M_ 0 s, M

2x2 Matrices EFTve]

» What types of transformations can be
represented with a 2x2 matrix?

2D Rotate around (0,0)?
X'=cos@*x—sing*y x| [cos@ —sind| x
y'=sin@*x+cosf*y y'| |sin6 cosé |y
2D Shear?

X'=x+sh, *y X' 1 sh | x
y'=sh,*x+y y'_shy 1y

2x2 Matrices BFvex

« What types of transformations can be
represented with a 2x2 matrix?

2D Mirror about Y axis?
o R
y'=y y] L0 1]y
2D Mirror over (0,0)?

= - Ak

All 2D Linear Transformations BFvex

* Linear transformations are combinations of ...
— Scale,
— Rotation,
— Shear, and
— Mirror
 Properties of linear transformations:
— Origin maps to origin
— Lines map to lines
— Parallel lines remain parallel
— Ratios are preserved '

2x2 Matrices CFfvex

* What types of transformations can not be
represented with a 2x2 matrix?

2D Translation?
X'= X+t

‘ NO!
y'=y+t,

Only linear 2D transformations
can be represented with a 2x2 matrix

— Closed under composition X — a bjx
y] [c d]y
Translation _—

* Example of translation)
Homogeneous Coordinates

¥ 3 &

e
)

—
<
nu
=N

Affine Transformations EFTve]

« Affine transformations are combinations of ...
— Linear transformations, and
— Translations
* Properties of affine transformations:
— Origin does not necessarily map to origin
— Lines map to lines

Projective Transformations e

¢ Projective transformations ...
— Affine transformations, and
— Projective warps
« Properties of projective transformations:
— Origin does not necessarily map to origin
— Lines map to lines
— Parallel lines do not necessarily remain parallel
— Ratios are not preserved X' a b c
— Closed under composition

— Models change of basis
W

.
]

g h i

Very Useful In Texture Mapping!

— Parallel lines remain parallel | X' a b cix

— Ratios are preserved - y. =ld e f y

— Closed under composition

— Models change of basis 1 0 0 11
Image warping Rl

¢ Given a coordinate transform x’ = T(x) and a
source image 1(x), how do we compute a
transformed image I'(X") = I(T(x))?

Forward warping Rl

= Send each pixel I(x) to its corresponding
location x* = T(x) in I’(X”)

Forward warping e

fwarp(l, 17, T)
{
for (y=0; y<l.height; y++)
for (x=0; x<l.width; x++) {
X7,y7)=T(X,y);
77, y")=1(X,¥);

}
u T

Forward warping e

= Send each pixel I(x) to its corresponding
location x* = T(x) in I’(X”)
» What if pixel lands “between” two pixels?
» Will be there holes?

» Answer: add “contribution” to several pixels,
normalize later (splatting)

H 0 S
L L

X) X g0)

Forward warping
fwarp(l, 17, T)

{
for (y=0; y<Il._height; y++)
for (x=0; x<l.width; x++) {
X7LyD=TOGLY);
Splatting(l’,x”,y”,1(X,y).kernel);
}
b [[

T
e

Inverse warping e

= Get each pixel I’(x”) from its corresponding
location x = T-1(x’) in I(x)

Inverse warping Rl

= Get each pixel I’(x”) from its corresponding
location x = T-1(x’) in I(x)

* What if pixel comes from “between” two pixels?
» Answer: resample color value from
interpolated (prefiltered) source image

S

Inverse warping Rl
iwarp(l, 17, T)
{
for (y=0; y<I’_height; y++)
for (x=0; x<I’.width; x++) {
LY=TH(X7,y7)5
" (x7,y")=1(X.y);
¥
} | T -
[8 _EH
X
Ty
[]
DigilTZd

Inverse warping

iwarp(l, 17, T)
{
for (y=0; y<I’_.height; y++)
for (x=0; x<I’.width; x++) {
CGY=TH(X7,Y7);
1 (x”,y”)=Reconstruct(l,x,y,kernel);
}
} | T1

X X g0)
Sampling e
v . band limited
v \._ _.f/ N il
\._ A X ‘r..'.\ s
x *
+ M(x) . Ifs)
X | H
T so

Reconstruction EFTve]

1

Reconstruction
X filter |_| s

4

‘wa-c('y'_:x._-.- X FaLY]

The reconstructed function is obtained by interpolating
among the samples in some manner

Reconstruction

Digil[3

= Reconstruction generates an approximation to
the original function. Error is called aliasing.

sampling
sample value

reconstruction

0254

Reconstruction 0igilTzY

= Computed weighted sum of pixel neighborhood;
output is weighted average of input, where
weights are normalized values of filter kernel k

k(qg;) f
()~ Zk@ (@)
— > k(@)
color=0;
weights=0;
- for all g’s dist < width
(pC width \ d = dist(p, q);
‘; / w = kernel(d);

color += w*qg.color;
q weights += w;)
/ p-Color = color/weights;

[} 5 6 7 8 1 23 4 56 7 8
sample position
Reconstruction (interpolation) BFved

= Possible reconstruction filters (kernels):

- nearest neighbor
- bilinear
- bicubic

- sinc (optimal reconstruction) &

Bilinear interpolation (triangle filter)

= A simple method for resampling images
(i,j+1) (i+1.+1)

(z,9)

a

b

(i,) (i+1,5)

fley) = A-a)@-b) flid]
+a(1—b) fli+1.4]
+ab fli+1+1]
+(@—a) Sl +1]

Non-parametric image warping —

Non-parametric image warping —

= Specify a more detailed warp function
= Splines, meshes, optical flow (per-pixel motion)

Non-parametric image warping

= Mappings implied by correspondences
= Inverse warping

Warp

Non-parametric image warping Rl

P = w,A+W,B+W.C P'=w,A+w,B+w.C

Barycentric coordinate

Warp

Non-parametric image warping —

P'=w, A'+w,B'+w.C'
P=w,A+wgB+w.C
Barycentric coordinate

Warp

Barycentric coordinates BFved
Ay
!1
P=tA +t,A +1,A
L+t +t,=1
Digil[3

Non-parametric image warping

a2
Gaussian p(r)=e ﬁr

thin plate _ 2
IR p(r)=r*log(r)

AP :iZ(P')AXi

radial basis function

Warp

Demo EFTve]

* http://www.colonize.com/warp/warp04-2.php

= Warping is a useful operation for mosaics, video
matching, view interpolation and so on.

Image morphing

Image morphing Rl

= The goal is to synthesize a fluid transformation
from one image to another.

« Cross dissolving is a common transition between
cuts, but it is not good for morphing because of
the ghosting effects.

image #1 dissolving image #2

Image morphing e

image #1 cross-dissolving image #2
: ; _ A

morphing

Image morphing Rl
= Why ghosting?
« Morphing = warping + cross-dissolving
shape color
(geometric) (photometric)
DigilTZd

Morphing sequence

Multi-source morphing e

Cross-drscive.

Multi-source morphing e

Face averaging by morphing Digil[Zy

average faces

The average face EFfvex

« http://www.uni-
regensburg.de/Fakultaeten/phil _Fak II/Psychol

ogie/Psy_llI/beautycheck/english/index.htm

O the Lft. e “ceal” Misa Ooumaciy 200 (» Miss Bedic) .m o the sight: the “virtual”
Miss Gemeny, whath was comp of the final sound
snd wes rated a3 being much mare atisactive

Image morphing e

create a morphing sequence: for each time t

1. Create an intermediate warping field (by
interpolation)

2. Warp both images towards it

3. Cross-dissolve the colors in the newly warped
images

A A 4

t=0.33

Warp specification (mesh warping) e

* How can we specify the warp?

1. Specify corresponding spline control points
interpolate to a complete warping function

N

'l'm_. —4

LSS
ﬂ,‘

AW
i

“.-n
TR N

v
F

|IBI

easy to implement, but may not be
expressive enough

Warp specification

¢ How can we specify the warp
2. Specify corresponding points
* interpolate to a complete warping function

Digil[3

1. Define a triangular mesh over the points
— Same mesh in both images!
— Now we have triangle-to-triangle correspondences
2. Warp each triangle separately from source to destination
— How do we warp a triangle?
— 3 points = affine warp!
— Just like texture mapping

Warp specification (field warping)

* How can we specify the warp?

3. Specify corresponding vectors
« interpolate to a complete warping function
* The Beier & Neely Algorithm

Algorithm (single line-pair) —

¢ For each X in the destination image:
1. Find the corresponding u,v
2. Find X' in the source image for that u,v
3. destinationimage(X) = sourcelmage(X’)
e Examples: -] e

Affine transformation

Beier&Neely (SIGGRAPH 1992) <
* Single line-pair PQ to P'Q’:
4 o
\(~@
o u
|)
Destination lmage Source Image
(X-P)-(@-P)
o= —]
e-ri
. X=P)y -Fu.pma‘u ufurlQ—_P:l)
1g-ri
@ [T SR i P"Pﬂl'ﬁ.'w:iw' AL
Digi|

Multiple Lines

Destination Image Source Image

ap \

weight[i]= M
a+distli]

length = length of the line segment,

dist = distance to line segment
The influence of a, p, b. The same as the average of X;’

10

Resulting warp

Warp interpolation BFved

* How do we create an intermediate warp at
time t?
— linear interpolation for line end-points

— But, a line rotating 180 degrees will become 0
length in the middle

— One solution is to interpolate line mid-point and
orientation angle

————o 0

¢ g i1

. Di' ﬁ
Full Algorithm
WarpImage(Sourcelmage, L'[...], L[...])
begin
foreach destination pixel X do
XSum = (0,0)
WeightSum =0
foreach line L[i] in destination do
X'li]= X transformed by (L[i].L'[i])
weight[i] = weight assigned to X'[i]
XSum = Xsum + X'[i] * weight[i]
WeightSum += weight[i]
end
X' = XSum/WeightSum
Destinationlmage(X) = Sourcelmage(X')
end
return Destination
end
. - Di' a
Comparison to mesh morphing
* Pros: more expressive
« Cons: speed and control
Digil[3

Animation

GenerateAnimation(Image, L [...].Image , L [...])
begin
foreach intermediate frame time t do
for i=1 to number of line-pairs do
L[i] = line t-th of the way from L [i] to L [i].
end
Warp, = Warplmage(Image , L [...]. L[...])
Warp, = Warplmage(Image , L [...], L[...]}
foreach pixel p in Finallmage do
Finallmage(p) = (1-t) Warp (p) + t Warp (p)
end
end
end

Animated sequences e

« Specify keyframes and interpolate the lines for
the inbetween frames

« Require a lot of tweaking

11

Results

Michael Jackson’s MTV “Black or White”

http://www.michaeljackson.com/quicktime blackorwhite.html

Problem with morphing

= So far, we have performed linear interpolation
of feature point positions

= But what happens if we try to morph between
two views of the same object?

0 0oe o

Figire 2: A Slhape-Dissorting Morgh, Lisesnly isserpolatissg two perspeetive views of a ehock (far left and fir right) esmses » geometric bending
<ifoct in the in-between images. The dased Hie shows the lnear path of coe featee during the course of the transformation. This exansple |
s andicative of the types. of dissortions tat can arise witls mnage nsoepliss technigees

View morphing

* Seitz & Dyer

http://www.cs.washington.edu/homes/seitz/vmorph/vmorph.htm

= Interpolation consistent with 3D view

intAavinalatinnm

Vil Camras

| wsr s v |

Figare 1+ View morphing hetween two imapes of mm object takem
Erous two different viewpoints prodeces. the dllusion of phyeally
moving a virmsal camers.

Main trick

* Prewarp with a
homography to "pre-
align" images

« So that the two views
are parallel

- Because linear
interpolation works
when views are
parallel

% ¥

Figure 4: View Morphing in Three Steps. (1) Original images To
asd Ty are prewarped to form parallel views To and £i. (2) 1. s
dh ing (i arped images. (3) T,

morphing
is postwarped to forms T,

homographies @,

——~—'J’|:__T:_
[Figie & View Merphing Procedurs: A._ﬂud - yellom: fimen) i s d Ty ad 7). Using these Featisies, the nsages
are 1 ped hace T and Ty The p '] 2 seqmence of in-between images. the middle
of wehich o+ is shown at top~center. T 5 is imteractively povrwarped by sebecting a quadsilateral region {marked red) and specifyims its
desired confignmation. (o s m Ta s The postwanps for other in-betwem mages 3 P (bottom).

d 7 = N\
d & == N\

Figie 10: Tisage Meephing Vess View Morplsng. Top smage morpd berween o views of hebicopter oy e the indetween iages
o contract and bend. Eloetom: view morph between the same rwo views resulss in 8 lysically consisten meeph. In this example the imnage
moeph 3l results in an extranesus bode between the blade and the stick. Holes can sppear in view morphs as well

12

T Tan Tus Tar

Figuwe - Mona Lisa View Morgh. Morphed vaew {cemer) iv halfeny o) st Figwe 7. Facial View Mespds. Top: naceph betwosn rwo views of the aanse pernces. Botioen: morph betwesn views of two different people]
: In ench cave, view morphing captuses the change i facial pose between origmal mmages To and 7. conveying 8 naneal 3D rotstion.

