

Lecture 7 - Intro to Color

Michael Gleicher September 2007 Notes – not for display

Outline

Last time

 Re-Sampling in Practice

This time: Color

- What does color mean in terms of the project
- What is color?
- How do we see color?
- Why RGB? (or why not)
- Gamuts

Shift Gears: Color

- Color
- Quality of Light
 - Has a wavelength not just an amount
 - Each photon has a wavelength
- Lots of photons = spectra of frequencies
- · Can measure the spectrum of light
 - Graph wavelength vs. amount at the measurement
- Different spectra give different "color impressions"

Colors

- One dominant wavelength = pure color
- No dominant wavelength = "white" (or black/gray)
- What do we perceive?
 - Luminence (amount of light)
 - Color (dominant)
 - Purity of Color
- Complications
 - Differences in perception
 - Artist notions vs. physics vs. psychology

Sensing Color

- · Different sensors have different sensitivities
 - Spectrum of sensor
 - Convolution with spectrum gives response
- Ideal photo sensor / real photo sensor
- Cameras wide range sensor
 - Put filters in front of each CCD element
 - Different parts of spectra (R,G,B)
 - Bayer Mosaic (need to interpolate)
 - Foveon

Color Vision in Animals

- Rods = all the same
 - No color vision
- Cones = have different kinds
 - 1-chromat (can't see color) -> Dogs
 - bi-chromat (2 different types) -> large mamals
 - Tri-chromat -> humans ***
 - Color blindness = lack of 1 type
 - Rare genetics condition gives a 4th type
 - Some birds have 4 or 5 types of cones
 - Ducks&Pigeons have 5, European starlings have 4

Distinguishing colors

- 1 sensor
 - All colors look the same
 - Combination of colors looks like any color
- Metamers perceptually indistinguishable
- · 2 sensors
 - Non-overlap case (what differences?)
 - Overlap case
 - · Middle vs. combination of sides

Faking Colors

- · Metamers allow for faking
- Two different overlapping cones respond
 - Some of each color?
 - Some of the in-between color
- Can fake responses using N "point" colors
- 2 cones = 2 frequencies
- Get either cone, or anything in overlap
- Colors outside of overlap can't be faked

Gamut

- The range of colors that a device can represent
 - Perceptual range
- · Device only shows some primaries
- · Can only fake some colors

(normal) Human Vision

- 3 types of Cones
 - S (short wavelength) cones
 - M (mid wavelength) cones
 - L (long wavelength) cones
- Sortof RGB, but not quite
- · Lots of overlap
- Far fewer S cones than L and M

Different Sensitivities

- Convert to gray requires scaling for sensitivities
- R = 0.212671 * Y
- G = 0.715160 * Y
- B = 0.072169 * Y.

Is RGB good enough?

- Sortof gets close to all colors
 - Need better gamut
- No
 - Inconvenient for talking about color
 - Perceptually non-linear
 - Inconsistencies in what RGB means = no matching
 - Can't get really vivid colors
 - Purples are particularly bad
 - Can't be RGV since violet sensitivity isn't good
 - Old film had different gamuts
 - Robin hood in technicolor

Before we go on... What RGB means for this class

- We'll do everything in RGB
- Can think about an image as 3 separate images
 Intensity for R, for G, for B
- Could store as 3 separate images RRRRR, GGGG
- Could store RGBRGBRGBRGB
 - Generally do the latter
- Analogy with film (3 layers vs. 1 layer)
- 4th color isn't a color its alpha, transparency
 - More on that next time

How do we talk about color?

- · Want to understand the gamut of displays
- Want to compare displays
- · Want to understand limits of RGB

Imaginary Primaries

- Can we excite just one type of cone?
 - No there is overlap
 - Yes shine 1 positive and 1 negative wavelength
 Really need multiple wavelengths to do it
 - No there's no such thing as negative light
 - That's why these are IMAGINARY primaries
- This is a thought experiment for analysis
- Could make LMS primaries (for LMS cones)
- But want to separate color from brightness

Perceptual Color Space

- Choose 3 primaries that do span human vision
 - Complete Gamut can recreate any color
 - Not physically realizable (since has negative energies)
- CIE XYZ
 - Y is "lightness" intensity w/o color
 - XZ are color directions
 - Look at 2D slices of constant brightness (since we're just worried about color)

Determining Gamuts

- Gamut: The range of colors that can be represented or reproduced
- Plot the matching coordinates for each primary. eg R, G, B
- Region contained in triangle (3 primaries) is gamut
- Really, it's a 3D thing, with the color cube distorted and embedded in the XYZ gamut

Gamut Analysis

- Space of colors a device can reproduce depends on primaries
- Device reproduce linear combinations of primaries
 space inside of points
- Different devices have different ranges
 - Print with more inks
 - Films with different formulations

Is RGB good enough?

- Sortof gets close to all colors
 - Need better gamut
- No
 - Inconvenient for talking about color
 - Perceptually non-linear
 - Can't get really vivid colors

 - Purples are particularly bad
 Can't be RGV since violet sensitivity isn't good
 - Old film had different gamuts
 - Robin hood in technicolor