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Lecture 5 – Sampling Theory in 
Practice

Michael Gleicher
Sept 2007

Notes not for Display

Overview

Last Time
• Why we care 
• Aliasing

• Sampling Theory 
Intuitions

• Fourier Transforms
• Filtering
• Nyquist Theorem

This Time
• Using Sampling 

Theory
• Ideal Reconstruction
• Real filtering
• Convolutions
• Implementing 

– Reconstruction
– Re-Sampling

Sampling Theory

• Given a set of samples (at a sampling rate):
– There is exactly one band-passed signal that 

goes through those samples
– Where the band-pass is less than half the 

sampling rate

• Ideal reconstruction
– View samples as spike chain, low-pass filter
– Need an ideal low-pass filter
– Approximate ideal low-pass filter

Sampling Theory (2)

• If we sample a band-passed signal
AND the sampling rate is > 2*highest freq
THEN we can do ideal reconstruction

• If you know the highest frequencies you care 
about, you know how fast you need to 
sample!
– CD Audio Example: human hearing isn’t so 

great after 22Khz, so sample at 44.1Khz

Sampling Theory (3)

• If your signal is not bandpassed
(i.e. has HF >= 2*sampling rate)
THEN you will get aliasing when you sample

• Once you’ve aliased – you can’t go back!
• You have no idea what the original was!

• Need to PREFILTER the signal before 
sampling to make it bandpassed

What’s a filter?

• Generic – an operation that maps a signal to 
another signal

• Specifically: a LOW-PASS filter
– Attenuates high frequencies

– Easy to describe in frequency domain
(give frequency response)

– Multiply certain values
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Convolution

• Multiplication in frequency is convolution in 
time (space)

• Convolution is the generalization of 
averaging

• Continuous convolution
Discrete convolution 

Convolution

• Operator on 2 signals
– f(t) * g(t) (f and g are both signals)

• Specifically
– One signal is “our signal”
– The other is the filter (called a kernel)

Filtering in the Spatial Domain

• Filtering the spatial domain is achieved by 
convolution

• Qualitatively: Slide the filter to each position, 
x, then sum up the function multiplied by the 
filter at that position
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Convolution Example

Result

Filter Function

Discrete Convolution

• h(t) = (f*g)(t) = SUM f(i) g(t-i)
– Notice that we flip g backwards as we slide it
– Often g is symmetric, so this is easy to forget

• g = [ 1 2 ]  f = [ 1 3 1 2 0 ]  (outside range is 
0)

• Zero centering of g  ([1/3 1/3 1/3])
– Weighted average

Dealing with boundaries

• Pretend data outside boundaries is 0
– Dims edges

• Reflect about ends
• Keep constant values at edges
• Renormalize kernel
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Convolution in 2D

• Show box moving around

• Seperable filters
– Can do as 1D convolution in both directions
– Not all filters can do this
– Useful to find ones that can

Reconstruction in Practice

• Sample a sample – no problem!
• Issue is samples between samples

• Theory: LPF a spike chain
– Convolve “resonstruction kernel” with samples
– Only really need to evaluate at places where you’ll 

sample

• Another view: interpolation
– Different interpolations are different filters

Some reconstruction kernels
Crude approximations to LPF

Constant Triangle
(Bartlet)

Interpolating
Cubic
(Catmull-Rom)

Spacing (1 unit = sample distance)

Scaling issues

Interpolating (non-interpolating kernels exist as well)

Approx to Ideal LPF

Reconstruction Example

• Sample at sample
• Sample between samples

• Bartlett filter
– Width correct for sample 

spacing

• See how we get linear 
interpolation

• Could do this as linear 
interpolation
– Generalizes nicely this way

• Need to evaluate filter for 
various values

• Convolve reconstruction 
kernel with sampling kernel 
(LPF for frequency limit)

• Easier ways to implement 
nearest neighbor


