Viewing Transformations

- How do we transform the 3D world to the 2D window?
- Concepts:
 - World Coordinates
 - View (or window) VOLUME
 - Need 3rd dimension later to get occlusions right
 - Viewing Coordinates
 - 3D viewing coordinates
- Separate Issues
 - Visibility (what’s in front)
 - Clipping (what is outside of the view volume)

Orthographic Projection

- Projection = transformation that reduces dimension
- Orthographic = flatten the world onto the film plane

Canonical View Volume

- -1 to 1 (zero centered)
- XY is screen (y-up)
- Z is towards viewer (right handed coordinates)
 - Negative Z is into screen
- For this reason, some people like left-handed
Orthographic Projection

- Rotate / Translate / Scale View volume
 - Can map any volume to view volume
- Sometimes pick skews
- Things far away are just as big
 - No perspective
- Easy – and we can make measurements
 - Useful for technical drawings
 - Looks weird for real stuff
 - Far away objects too big

Perspective Projection

- Farther objects get smaller
- Eye (or focal) point
- Image plane
- View frustum (truncated pyramid)
- Two ways to look at it:
 - Project world onto image plane
 - Transform world into rectangular view volume (that is then orthographically projected)

Perspective

- Eye point
- Film plane
- Frustum
 - Simplification
 - Film plane centered with respect to eye
 - Site down negative Z axis
 - Can transform world to fit

Basic Perspective

- Similar Triangles
 - Warning = using d for focal length (like book)
 - F will be "far plane"
 - Project world onto image plane
 - Transform world into rectangular view volume (that is then orthographically projected)

Use Homogeneous coordinates!

- Use divide by w to get perspective divide
- Issues with simple version:
 - Font / back of viewing volume
 - Need to keep some of Z in Z (not flatten)

\[
\begin{bmatrix}
 x' \\
 y' \\
 z' \\
 w'
\end{bmatrix} = \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 1 & 1
\end{bmatrix}\begin{bmatrix}
 x \\
 y \\
 z \\
 w
\end{bmatrix} = \begin{bmatrix}
 x/z \\
 y/z \\
 z/z = 1 \\
 1
\end{bmatrix}
\]

The real perspective matrix

- N = near distance, F = far distance
- Z = n put on front plane, z=f put on far plane

\[
P = \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & n+f/n & 0 \\
 0 & 0 & -n & 0
\end{bmatrix}
\]
Shirley’s Perspective Matrix

• After we do the divide, we get an unusual thing for z – it does preserve the order and keeps $n & f$

$$P_x = P\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x'z \\ y'z \\ n + f - \frac{fn}{z} \\ 1 \end{bmatrix}$$

Camera Model

• The “window coordinate” system is all we really know
• In a sense, it is the camera coordinate system
• Easiest to think about it as a camera taking a picture of the work
• Transform world coordinates into camera coordinates
 – Or, think about it the other way…

How to describe cameras?

• Rotate and translate (and scale) the world to be in view
• The camera is a physical object (that can be rotated and translated in the world)
• Easier ways to specify cameras
 – Lookfrom/at/vup