Triangles?

- Old way: Scan conversion
 - Start at top
 - Brezenham’s algorithm gives left/right sides
 - Draw horizontal scans
- New Way: point in triangle tests
 - Generate sets of points that might be in triangle
 - Do half-plane tests to see if inside
- Tricky part: edges
 - Need to decide which triangle draws shared edges

General Polygons?

- Inside / Outside not obvious for general polygons
- Usually require simple polygons
 - Convex (easy to break into triangles)
- For general case, three common rules:
 - Non-exterior rule: A point is inside if every ray to infinity intersects the polygon
 - Non-zero winding number rule: trace around the polygon, count the number of times the point is circled (+1 for clockwise, -1 for counter clockwise). Odd winding counts = inside (note: I got this wrong in class)
 - Parity rule: Draw a ray to infinity and count the number or edges that cross it. If even, the point is outside, if odd, it’s inside (ray can’t go through a vertex)

Parity

- Any point, take any ray (that doesn’t go through a vertex)
- Odd number of crossings = inside
- Even number of crossings = outside

Winding Numbers

- Count the number of times a point is circled counter clockwise
 - Clockwise counts negative
- Can pick any ray from point and count left/right
 - Right (relative to away direction) = CCW = +1
 - Left = CW = -1

Non-Zero Winding Rule

- Any non-zero winding is “inside”
- What Adobe Illustrator does
- Odd Winding Rule / Positive Winding Rule / ….
Inside/Outside Rules

- Polygon

- Non-zero Winding No.

- Non-exterior

- Parity