Resize as Warp

\[x', y' = f(x, y) \]

pixel \(\rightarrow \) some region
point sample \(\leftarrow \) some region
inverse / forward splitting \(\leftarrow \) way to look at convolution

What does this say about kernel size?
need to be big enough to cover everything (downsample)
why not no overlap?

\[\text{\leftarrow not enough cutoff might alias} \]
Image Warping

\[x', y' = f(x, y) \] \rightarrow \text{resize is special case}

forward warp \quad \text{splat}
reverse warp \quad \text{sample (need } f^{-1} \text{)}

How to filter?

1. don't (point sample)
2. size of kernel = size of area mapped
 \(0 \) derivative
 \(2 \) differences
 \(\frac{a^2 + b^2}{4} = \rho^2 \)
 \(\rho \) circle shape
 (gaussian/circle \(\Rightarrow \) ellipse, or \(\cdots \))
4. super sample
 multiple samples per pixel
 uniform resampling is easy
5. map little squares