Today

- Polygon rules (since I got them wrong last time)
- Homogeneous coordinates
- Working with transformations / composition
- Hierarchies / Matrix Stacks
- Transformations in 3D
 - Coordinate systems in 3D
 - Rotations
 - Projections (3D->2D)

General Polygons?

- Inside / Outside not obvious for general polygons
- Usually require simple polygons
 - Convex (easy to break into triangles)
- For general case, three common rules:
 - Non-exterior rule: A point is inside if every ray to infinity intersects the polygon
 - Non-zero winding number rule: trace around the polygon, count the number of times the point is circled (+1 for clockwise, -1 for counter clockwise). Odd winding counts = inside (note: I got this wrong in class)
 - Parity rule: Draw a ray to infinity and count the number or edges that cross it. If even, the point is outside, if odd, it's inside (ray can't go through a vertex)

Parity

- Any point, take any ray (that doesn't go through a vertex)
- Odd number of crossings = inside
- Even number of crossings = outside

Power Point uses this rule!

Winding Numbers

- Count the number of times a point is circled counter clockwise
 - Clockwise counts negative
- Can pick any ray from point and count left/right
 - Right (relative to away direction) = CCW = +1
 - Left = CW = -1

Non-Zero Winding Rule

- Any non-zero winding is “inside”
- What Adobe Illustrator does
- Odd Winding Rule / Positive Winding Rule / ...
Inside/Outside Rules

- Polygon
- Non-exterior
- Non-zero Winding No.
- Parity

Homogeneous Coordinates

- Big idea for graphics – really important
- Will be used for several things – translation is just 1
- Basic idea: add an extra coordinate
 - 2D becomes 3D (3x3 matrices)
 - 3D becomes 4D (4x4 matrices)
- Convert “back” from homogeneous coordinates by division
 - (x,y) -> (x,y,1)
 - (x,y,w) -> (x/w, y/w)
- Projection
 - Many points in higher dim space = 1 point in lower dim space
- For now, just make w=1

Homogeneous Coordinates

- “Normal” space is a subspace
 - W = 1
- Think about 1D case (so embed into 2D x,w)
- Many equivalent points (projection)

Translation in Homogeneous Coords

- 1D Translation = 2D Skew

Translation in Homogeneous Coords

- Translate in 2D = Skew in 3D
 - Deck of cards

What about other linear ops

- Just add an extra coordinate
- Don’t change w (unless you know what you’re doing)

\[
\begin{align*}
\text{scale}(u) &= \begin{bmatrix}
 s & 0 & 0 \\
 0 & u & 0 \\
 0 & 0 & 1
\end{bmatrix} \\
\text{rotate}(\theta) &= \begin{bmatrix}
 \cos(\theta) & -\sin(\theta) & 0 \\
 \sin(\theta) & \cos(\theta) & 0 \\
 0 & 0 & 1
\end{bmatrix}.
\end{align*}
\]
Homogeneous Coordinates

- Makes translation (affine transforms) linear
- Need to work in higher dimensional space
- Useful for lots of other things
 - Viewing (perspective)

Matrices as Coordinate Systems

- Where does X axis go?
- Where does Y axis go?
- Where does origin go?
- Assumes that bottom row is [0 0 1]
- Can you scale by changing w?
 - Yes, but often we prefer to renormalize so bottom right number is 1

Composing Transformations

- Order matters!
 - Scale / rotate vs. rotate/scale
- Can implement by multiplying matrices
 - \(T_1 T_2 T_3 x = (T_1 T_2 T_3) x \)

Why Compose?

- Rotate about a point
 - \(T_c R T_{-c} x \)
- Scale along an axis
 - Move point to origin
 - Align axis w/major axis
 - Scale
 - Put things back
 - \(T_c R_\theta S R_{-\theta} T_{-c} x \)

Hierarchical coordinate Systems

- Car
 - Wheel
 - Wheel
 - Person
 - Head / Neck
 - Arm / forearm / hand

Matrix Stack

- Multiply things onto the top
- Top is “current” coordinate system
- Push (copy the top) if you’ll come back
- Pop to go back
- Think about it as moving the coordinate system
- Top of stack is “current coordinate system”
 - Where we will draw
- Transformations change current coord system
 - Or change the objects that we are going to draw
Matrix Stack Example

- Draw Car = …. Push trans wheel pop …
- Push trans – draw car – pop push trans – draw car

3D

- 3D coordinate system & handedness
- Prefer right-handed coordinate systems
- Right-hand rule

What happens in 3D?

- 4D Homogeneous Points
 - 4x4 matrices
- Basic transforms are the same
 - Translate
 - Scale
 - Skew
- Rotation is different
 - Rotation in 3D is more complicated?

What is a rotation?

- A transformation that:
 - Preserves distances between points
 - Preserves the zero
 - Preserves “handedness” (in 2D clockwiseness)
- A subset of linear transformations
- Some things that come out of these:
 - Axes remain perpendicular
 - Axes remain unit length
 - Cross product holds

Parameterizing Rotations

- Rotations are Linear Transformations
 - 2x2 matrix in 2D
 - 3x3 matrix in 3D
- The set of rotations = set of OrthoNormal Matrices
- Inconvenient way to deal with them
 - Can’t work with them directly
 - Not stable (small change makes it not a rotation)
- Is there an easier way to parameterize the set?

Measuring rotation in 2D

- Pick 1 point (1,0)
- Any rotation must put this on a circle
- If you know where this point goes, can figure out any other point
 - Distances (w/point & origin) + handedness says where things go
- Parameterize rotations by distance around circle
 - Angle
- Issues with wrap around
 - Many different angles = same rotation
Much harder in 3D

- Any point can go to a sphere
- That one point doesn’t uniquely determine things

- No vector in \mathbb{R}^n can compactly represent rotations
 - Singularities
 - Nearby rotations / far away numbers
 - Nearby numbers / far away rotations

- Hairy-Ball Theorem
 - Any parameterization of 3D rotations in \mathbb{R}^n will have singularities

Representation of 3D Rotations

- Two Theorems of Euler
 - Any rotation can be represented by a single rotation about an arbitrary axis (axis-angle form)
 - Any rotation can be represented by 3 rotations about fixed axes (Euler Angle form)
 - XYZ, XZX, any non-repeating set works
 - Each set is different (gets different singularities)

- Building rotations
 - Pick a vector (for an axis)
 - Pick another perpendicular vector (or make one w/cross product)
 - Get third vector by cross product

Euler Angles

- Pick convention
 - Are axes local or global?
 - Local: roll, pitch, yaw
 - What order?
- Apply 3 rotations
- Good news: 3 numbers
- Bad news:
 - Can’t add, can’t compose
 - Many representations for any rotation
 - Singularities