CS559 – Lecture 9
JPEG, Raster Algorithms

These are course notes (not used as slides)
Written by Mike Gleicher, Sept. 2005
With some slides adapted from the notes of Stephen Chenney

Lossy Coding 2

- Suppose we can only send a fraction of the image
 - Which part?
- Send half an image:
 - Send the top half (not too good)
 - Halve the image in size (send the low frequency half)
- Idea: re-order (transform) the image so the important stuff is first

Perceptual Image Coding

- Idea: lose stuff in images that is least important perceptually
 - Stuff least likely to notice
 - Stuff most likely to convey image
- Who knows about this stuff: The experts!
 - Joint Picture Experts Group
 - Idea of perceptual image coding

JPEG

- Key Ideas
 - Frequency Domain (small details are less important)
 - Block Transforms (works on 8x8 blocks)
 - Discrete Cosine Transform (DCT)
 - Control Quantization of frequency components
 - More quality = use more bits
 - Generally, use less bits for HF

JPEG

- Multi-stage process intended to get very high compression with controllable quality degradation
- Start with YIQ color
 - Why? Recall, it’s the color standard for TV

Discrete Cosine Transform

- A transformation to convert from the spatial to frequency domain – done on 8x8 blocks
- Why? Humans have varying sensitivity to different frequencies, so it is safe to throw some of them away
- Basis functions:
Quantization

• Reduce the number of bits used to store each coefficient by dividing by a given value
 – If you have an 8 bit number (0-255) and divide it by 8, you get a number between 0-31 (5 bits = 8 bits – 3 bits)
 – Different coefficients are divided by different amounts
 – Perceptual issues come in here
• Achieves the greatest compression, but also quality loss
• "Quality" knob controls how much quantization is done

Entropy Coding

• Standard lossless compression on quantized coefficients
 – Delta encode the DC components
 – Run length encode the AC components
 • Lots of zeros, so store number of zeros then next value
 – Huffman code the encodings

Lossless JPEG With Prediction

• Predict what the value of the pixel will be based on neighbors
• Record error from prediction
 – Mostly error will be near zero
• Huffman encode the error stream
• Variation works really well for fax messages

Video Compression

• Much bigger problem (many images per second)
• Could code each image separately
 – Motion JPEG
 – DV (need to make each image a fixed size for tape)
• Need to take advantage that different images are similar
 – Encode the Changes?

MPEG

• Motion Picture Experts Group
 – Standards organization
• MPEG-1 simple format for videos (fixed size)
• MPEG-2 general, scalable format for video
• MPEG-4 computer format (complicated, flexible)
• MPEG-7 future format
• What about MPEG-3? – it doesn’t exist (?)
 – MPEG-1 Layer 3 = audio format

MPEG Concepts

• Keyframe
 – Need something to start from
 – "Reset" when differences get too far
• Difference encoding
 – Differences are smaller/easier to encode than images
• Motion
 – Some differences are groups of pixels moving around
 – Block motion
 – Object motion (models)
MPEG

- **Frame 1** (keyframe) → **Frame 1 (comp) + motion** → **Find motion vectors** → **Frame 2** (keyframe) → **Encode vectors** → **Encode Difference (lossy)** → **Frame 2**

Other Practical Tricks…

- Don’t really know what is in image
 - Makes it hard to make changes
- Getting rid of noise
 - Low pass filters
 - Edge-preserving filtering
- "Sharpening"
 - Can we actually do it? (no – adding aliasing)
 - High-Pass attenuation
 - Unsharp mask (subtract out low frequencies)
- Feathering
 - Sharp transitions are noticeable
 - Blend/Blur around edges of changes

Geometric Graphics

- Mathematical descriptions of sets of points
 - Rather than sampled representations
- Ultimately, need sampled representations for display
- Rasterization
 - Usually done by low-level
 - OS / Graphics Library / Hardware
 - Hardware implementations counter-intuitive
 - Modern hardware doesn’t work anything like what you’d expect

Drawing Points

- What is a point?
 - Position – without any extent
 - Can’t see it – since it has no extent, need to give it some
- Position requires co-ordinate system
 - Consider these in more depth later
- How does a point relate to a sampled world?
 - Points at samples?
 - Pick closest sample?
 - Give points finite extent and use little square model?
 - Use proper sampling

Sampling a point

- Point is a spike – need to LPF
 - Gives a circle w/roll-off
- Point sample this
 - Or…
 - Samples look in circular (kernel shaped) regions around their position
- But, we can actually record a unique “splat” for any individual point

Anti-Aliasing

- Anti-Aliasing is about avoiding aliasing
 - once you’ve aliased, you’ve lost
- Draw in a way that is more precise
 - E.g. points spread out over regions
- Not always better
 - Lose contrast, might not look even if gamma is wrong, might need to go to binary display, …
Line drawing

• Was really important, now, not so important
• Let us replace expensive vector displays with cheaper raster ones
• Modern hardware does it differently
 – Actually, doesn’t draw lines, draws small, filled polygons
• Historically significant algorithms

Line Drawing (2)

• Consider the integer version
 – (x1,y1) \rightarrow (x2,y2) are integers
 – Not anti-aliased (binary decision on pixels)
• Naïve strawman version:
 – \(Y = mx + b \)

For \(x = x_1 \) to \(x_2 \)

\[y = mx + b \]

set(\(x, y \))

• Problems:
 – Too much math (floating point)
 – gaps

Brezenham’s algorithm
(and variants)

• Consider only 1 octant (get others by symmetry)
 – \(0 \geq m > = 1 \)
• Loop over x pixels
 – Guarantees 1 per column
• For each pixel, either move up 1 or not
 – If you plotted \(x,y \) then choose either \(x+1,y \) or \(x+1,y+1 \)
 – Trick: how to decide which one easily
 – Same method works for circles (just need different test)
• Decision variable
 – Implicit equation for line (\(d=0 \) means on the line)

Midpoint method

\[x_k \]

\[y_k \]

\[d_1 = y_k - y \]

\[d_2 = y_{k+1} - y \]

If \(d_1 < d_2 \) pick \(y_k \)

\[\Delta d = d_1 - d_2 \]

\[\Delta d = (y_{k+1} - y_k) - (y_k + 1 - y) \]

If \(d_1 \neq d_2 \) pick \(y_{k+1} \)

\[\Delta d = 2(mx + b) - 2y_k - 1 \]

Multiply both sides by \(\Delta x \) (since we know its positive)

\[\Delta d \Delta x = 2y \Delta x y_k + 2 \Delta y - 2 \Delta x y_k - \Delta x \]

\[\Delta d \Delta x = 2 \Delta y x_k + 2 \Delta y \Delta x + 2 \Delta x y_k + c \]

\[c = 2 \Delta y + \Delta x(2b - 1) \]

(all the stuff that doesn’t depend on \(k \))

Derivation

Incremental Algorithm

• Suppose we know \(p_k \) – what is \(p_{k+1} \)?
• \[p_{k+1} = p_k + 2 \Delta y - 2 \Delta x (y_{k+1} - y_k) \]
 – Since \(x_{k+1} = x_k + 1 \)
• And \(y_{k+1} - y_k \) is either 1 or 0, depending on \(p_k \)
Brezenham’s Algorithm

- \(P_k = 2 \Delta y + x \)
- \(Y = y_1 \)
- For \(X = x_1 \) to \(x_2 \)
 - Set \(X, Y \)
 - If \(P_k < 0 \)
 - \(Y += 1 \)
 - \(P_k += 2 \Delta y - 2 \Delta x \)
 - Else: \(P_k += 2 \Delta y \)

Why is this cool?

- No division!
- No floating point!
- No gaps!
- Extends to circles

But…
- Jaggies
- Lines get thinner as they approach 45 degrees
- Can’t do thick primitives