CS559 – Lecture 3
Image Representation and Quantization

These are course notes (not used as slides)
Written by Mike Gleicher, Sept. 2005

© 2005 Michael L. Gleicher

Last time
• How images are formed
• The eye as a sensor

• Today:
 – Properties of the eye as a sensor
 – What this means for graphics
 – How to represent images for display

Types of photoreceptors:
Rods
• Photopigment: Rhodopsin
 – Breaks into retinene + protein
 – Must be reassembled before can work again
• Very sensitive
 – Bright light means that it breaks down faster than it is
 regenerated
 – Less useful in bright light
• Blinded by bright light at night

Cones
• Photopigments reform quickly
• Different types of cones sensitive to different kinds
 of light (color sensitivity)
 – Humans – 3 types of cones
 • Except for color blindness
 – Dogs – 1 type of cone
 – Many mammals (horses, cows, deer, …) – 2 types
 – Ducks, Pigeons - 5 types (?)
 • Birds range in number – European Starling 4
 • http://people.eku.edu/ritchisong/birdbrain2.html
• We’ll talk about

Persistence of Vision
• Photopigments take some time to regenerate
• If you see a flash, you sense it for a while
 afterwards
• This is NOT how you fuse movie frames together
 in order for it to seem continuous
 – This is actually hard psychological science that is not
 well understood
 – Integration happens as a higher level process in the
 brain
 – Many other effects

“Flicker-based Displays”
• If something flashes fast enough, it seems to be
 continuous
 – Flicker frequency – approx 40-45 hz in a dim/dark room
 – Sensitivity varies with age and ambient brightness
• Used to create different types of displays
 – CRT
 – Movies
How many megapixels is the eye?

- Density of photoreceptors varies (see book)
- Dense area of cones = fovea
 - Eye moves the scene around, fovea looks at a little piece and over time gets the whole picture
 - Saccade – movement of the eye to see different piece
 - Fixation –
- Wide angle view means “resolution” hard to talk about – easiest to talk about in terms of angle
- Discriminate about ¼ minute of arc (for 20/20 vision)
 - At .5 meters, this is .1mm

How sensitive is the eye?

- Amazing range!
 - Night vision – when eyes adjusted, camping
 - Bright daylight
 - Sunlight 10000.
 - Twilight 10.
 - Starlight 0.001
 - Catch: at any given time, can’t see this range
 - Adaptation – bright light, iris closes, lets in less light, ...
 - At any given time, about 100:1 contrast ratio
 - This is a lot more than most displays
 - Better displays = more constrast
 - Often by blacker blacks

High Dynamic Range Imagery

- Most sensors/displays have less range than eye
 - Certainly less range than scenes do
- What happens?
 - Bright areas – all white (no details)
 - Dark (shadow) areas – all black (no details)
- What to do?
 - Adjust exposure (time, aperture, sensitivity) to get the most important stuff
 - Acquire “High Dynamic Range” Imagery
 - Special sensors
 - Multiple exposures (at different settings) – cool thing to do
 - Tone Map -> display on device with less range
 - A chapter in the book we won’t get to

Perception of intensity

- Eye senses relative differences
 - Equivalent differences 50:100 20:40
 - Hard to tell absolute differences directly
 - Adaptation to current setting
- Can sense 1% differences
- At any given time 100:1 contrast ratio
- How many levels can you see in an image?
 - $1.01^463 = 100.2$ (e.g. 463 1% differences = 100:1)
 - This is about 8 bits of precision (less than 9)
 - But it’s VERY non linear 1, 1.01, … , 99.2, 100.2

Non-linearity of intensity

- Non-linear mapping from “amount of light” to perceived brightness
- Want uniform mapping of intensities -> perception
 - Level 1, 2, 3, … 255 -> 1, 1.01, 1.02, … 99, 100
- Worse: displays are non-linear too
 - Voltage -> amount of light is non-linear
 - Different displays are different
- Want to linearize the system
 - Intensity levels map nicely to perceived levels

Gamma correction

- Idea: put a non-linear function between intensity and output
 - Done as the last step (usually) – after all computations
- Could create arbitrary functions for mapping
 - Too cumbersome
- Exponential is a good approximate model
 - Exponential non-linearity of perception
 - Exponential power laws in CRTs
Modeling a display device

- 5/2 power law (five-halves)
 - Models physics of a CRT
 - Real CRTs are close, LCDs designed to be similar

- \(L = M (i + \varepsilon)^\gamma \)
 - \(i \) = input intensity value
 - \(L \) = amount of light
 - \(\varepsilon \) = since zero isn't really black
 - \(M \) = maximum intensity
 - \(\gamma \) = specific property of display

Linearizing the display

- Define a function \(g \) that corrects for non-linearity
 - \(L = M (g(i))^\gamma \) (ignoring \(\varepsilon \))
 - \(G = 1/\gamma \)

- Where do we get \(\gamma \) from?
 - Pick it so things look right

- Note: 1st order approximation (very simple)
 - Only 1 parameter to specify (\(\gamma \)), many factors

Gamma correction

- Want value 0 = minimum intensity
- Want value max (1 or 255) = maximum intensity
 --- those 2 are easy to get
- Pick one more point
 - Midpoint should be 50%
 - Easy – show 50% black white + 50% gray
 - Adjust gamma until it looks the same

- All this happens “behind the scenes”
- Everything gets harder when we deal with color

How to represent an image

- Now we know what intensity is, \(i = f(x, y) \)
 - Issues with things being continuous

- Quantization – 255 levels OK for I
 - But often get less – black and white printing, …

- Discretization / Sampling – only a finite set of points

2 types of image representation

- Raster or “image-based”
 - Regular samples
 - Pixels
 - Usually a rectangular grid
 - But doesn’t have to be
 - Hexagonal grid, …
 - Dense
 - Does not adapt to scene
 - Store value for each regular sample
 - Pixels

- Vector or Geometric
 - Mathematical description of regions
 - Exact position of points
 - Mathematical descriptions of sets of points (shapes)
 - Adapts to scene
 - Store value for each unit
 - Objects

What is a pixel?

- Raster means regular, or uniform “grid”

- Two views of a pixel
 - A pixel is a POINT SAMPLE
 - Measurement at an infinitesimally small place
 - A pixel is finite region with constant value
 - Assumes image is collection of piecewise constant regions

- Point sample is better
 - More correct, better mathematics, can model the other
Point Sampling Has Problems

• Miss small things
• Problem: discretization throws away information
• Don’t know what happens between samples
• Sampling loses information – you cannot get back the information once its lost!

Little squares lose differently

• Are squares better than point samples?
• Average over a little square
• But:
 – Don’t know what really happened
 – Was it really constant, or was it a spike?
• Good intuition for what is coming up

Dealing with discretization

• Sampling
 – Understand what information we are throwing away
• Reconstruction
 – Recreate as well as possible from the samples
• Re-Sampling
 – Transform the image
• Signal Processing / Image Processing
• Consider the 1D case first since its easier