A Curve Tutorial for Introductory Computer Graphics

Michael Gleicher
Department of Computer Sciences
University of Wisconsin, Madison

October 7, 2003

Note to 559 Students: These notes were put together rather hastily. Some
sections are still missing. However, the ones that are important for this class
are here (or in Fundamentals of Computer Graphics). Sometimes I refer to
the old 559 textbook Computer Graphics by Hearn and Baker. Be sure to
check for errata - I hope I didn’t make many mistakes, but realistically, ...

1 Curves

Mathematically, a curve is:
A continuous map from a one-dimensional space to an n-dimensional space.

Intuitively, think of a curve as something you can draw with a (thin) pen on a piece of paper. You
cannot create filled regions, but you can create the outlines of things.

A curve is an infinitely large set of points. The points in a curve have a property that any point has
2 neighbors, except for a small number of points that have one neighbor (these are the endpoints).
Some curves have no endpoints, either because they are infinite (like a line) or they are closed (loop
around and connect to themselves).

The problem that we need to address is how to describe a curve - to give “names” or representations
to all curves so that we can represent them on a computer. For some curves, the problem of naming
them is easy since they have known shapes: line segments, circles, elliptical arcs, etc. A general
curve that doesn’t not have a “named” shape is sometimes called a free-form curve.

Because a free-form curve can take on just about any shape, they are much harder to describe.

There are three main ways to describe curves mathematically:

Implicit curve representations define the set of points on a curve by giving a procedure that can
test to see if a point in on the curve. Usually, an implicit curve is defined by an implicit
function of the form:

f($7y) =0

so that the curve is the set of points for which this equation is true. Note that the implicit
function is a scalar function (it returns a single real number).

Explicit or Parametric curve descriptions provide a mapping from a free parameter to the set of
points on the curve. That is, this free parameter (a single number) provides an index to the
points on the curve. The parametric form of a curve defines a function that assigns positions
to values of the free parameter. Intuitively, if you think of a curve as something you can draw
with a pen on a piece of paper, the free parameter is time, ranging from the time that we
began drawing the curve to the time that we finish. The parametric function of this curve
would tells us where the pen was at any instant in time:

x,y = f£(t).

Note that the parametric function is a vector valued function that returns a vector (a point
position). Since we are working in 2D, these will be 2-vectors, but in 3D they would be 3
vectors.

Generative or Procedural curve descriptions provide procedures that can generate the points
on the curve that do not fall into the first two categories. FExamples of generative curve
descriptions include subdivision schemes and fractals.

Some curves can be easily represented in both explicit and implicit forms. For example, a circle
with its center at the origin and radius of 1 can be written in implicit form as:

flz,y) =2 +y* =0,

or in parametric form as:
x,y = f(u) = cosu, sin u.

Different representations of curves have advantages and disadvantages. For example, parametric
curves are much easier to draw because we can sample the free parameter. Generally, parametric
forms are the most commonly used in computer graphics since they are easier to work with. Our
focus will be on parametric curves.

1.1 Natural and Arc-Length Parameterizations

A parametric curve is a mapping from the values of the free parameter to positions. To be more
precise, a parametric curve is a mapping from a range or interval of the parameters. Without loss
of generality, we can have the range of the parameter be from 0 to 1. It is often useful to have the
parameter in this range. When the free parameter ranges over the unit interval, we often denote it
as u.

If we consider the parametric curve to be a line drawn with a pen, we can define the beginning of
time (when u = 0) to be when the pen is first set down on the paper, and the unit of time to be the
amount of time it takes to draw the curve (u = 1 is the end of the curve). To use a different unit
for time (for example one second), we scale or shift time into the unit interval. The parametric
curve is defined by a function that maps time (in these unit coordinates) to positions. Basically,
the definition of the curve is a function that can answer the question “where is the pen at time u?”

The existence of the free parameter (or the element of time) adds an invisible, potentially unknown
element to our curves. When we look at the curve after it is drawn, we don’t necessarily know the
timing. The pen might have moved at a constant speed over the entire time interval, or it might

Figure 1: A: a curve that can be easily represented as two lines; B: a curve that can be easily
represented as a line and a circular arc; C: approximating curve B with 5 line segments

have started slowly and sped up. While simply using the free parameter (or time) is a simple and
natural way to index the points along the curve (and is, therefore, sometimes referred to as the
natural parameterization), the fact that we don’t know about how the speed changes along the
curve can make working with the curve difficult. For example, while © = .5 is halfway through the
parameter space, it may not be half-way along the curve if the motion of the pen starts slowly and
speeds up at the end.

If we know that the pen moves at a constant velocity, then the values of the free parameters have
more meaning. Halfway through parameter space is half-way along the curve. Rather than measur-
ing time, the parameter can be thought to measure length along the curve. Such parameterizations
are called arc length parameterizations because they define curves by functions that map from the
distance along the curve (known as the arc length) to positions.

Computing the length along a curve can be tricky. In general, it is defined by the integral of the
magnitude of the derivative (intuitively, the magnitude of the derivative is the velocity of the pen
as it moves along the curve). So, given u, you can compute s (the arc length distance along the
curve from the point £f(0) to the point f(u)) as:

“ 2
s= [1E@)Pde W
0
where f(v) is the curve function with a natural parameterization.

Using the arc-length parameterization requires being able to solve Equation 1 for u given s. For
many of the kinds of curves we examine, it cannot be done in a closed-form (simple) manner, and
must be done numerically. In this document, we work exclusively with natural parameterizations.

Generally, we use the variable u to denote natural free parameters that range over the unit interval,
s to denote arc-length free parameters, and ¢ to represent parameters that aren’t one of the other
two.

1.2 Piecewise Parametric Representations

For some curves, defining a parametric function that represents their shape is easy. For example,
lines, circles, and ellipses all have simple functions that define the points they contain in terms of a
parameter. For many curves, finding a function that describes their shape can be hard. The main
strategy that we use to create complex curves is divide-and-conquer: we break the curve into a
number of simpler smaller pieces, each of which has a simple description.

For example, consider the curve in Figures 1. The first two curves are easily described in terms
of two pieces. In the case of curve B, we need two different kinds of pieces: a line segment and a
circle.

To create a parametric representation of a compound curve (like B), we need to have our parametric
function switch between the functions that represent the pieces. If we always define our parametric
functions over the range 0 < u < 1, then curve A or B might be defined as:

f1(2xu) if u<.5

B = fovu—1) ifu> 5, ®

where f; is the parametric function of the first piece, and fs is the parametric function of the second
piece, and both of these functions are defined over the unit interval.

We need to be careful in defining the functions f; and fa to make sure that the pieces of the curve
fit together. If f1(1) # f2(0), then our curve pieces will not connect, and will not form a single
continuous curve.

To represent curve B in Figure 1 well, we needed to use two different types of pieces: a line segment
and a circular arc. For simplicity’s sake, we may prefer to use a single type of pieces. If we try to
recreate curve B with only one type of piece (line segments), we cannot exactly recreate the curve
(unless we use an infinite number of pieces). While the new curve made of line segments (as in
Figure 1 C) may not be exactly the same shape as B, it might be close enough for our uses. In such
a case, we might prefer the simplicity of using the simpler line segment pieces to having a curve
that more accurately represents the shape.

Also, notice that as we use an increasing number of pieces, we can get a better approximation. In
the limit (using an infinite number of pieces) we can exactly represent the original shape.

One advantage to using a piecewise representation is that it allows us to make a tradeoff between:

1. how well our represented curve approximates the real shape we are trying to represent;
2. how complicated the pieces that we use are;

3. how many pieces we use.

So if we’re trying to represent a complicated shape, we might decide that a crude approximation is
acceptable, and use a small number of simple pieces. To improve the approximation we can choose
between using more pieces and using more complicated pieces.

In computer graphics practice, we tend to prefer using relatively simple curve pieces (either line
segments or cubic polynomial segments).

2 Curve Properties

To describe a curve, we need to give some facts about its properties. For “named” curves, the
properties are usually specific to the type of curve. For example, to describe a circle, we might
provide its radius and the position of its center. For an ellipse, we might also provide the orientation
of its major axis, and the ratio of the lengths of the axes. For free form-curves however, we need
to have a more general set of properties to describe individual curves.

Some properties of curves describe only a single place on the curve, while other properties require
knowledge of the whole curve. For an intuition of the difference, imagine that the curve is a train

track. If you are standing on the track on a foggy day you can tell that the track it is straight or
curving and whether or not you at at an end point. These are local properties. You cannot tell
whether or not the track is a closed curve, or crosses itself, or how long it is. We call the second
kind a global property.

The study of local properties of geometric objects (curves and surfaces) is known as differential
geometry. Technically, to be a differential property there are some mathematical restrictions about
the properties (roughly speaking, in the train track analogy, you would not be able to have a GPS
or a compass). Rather than worry about this distinction, I will use the term local property rather
than differential property.

Local properties are important tools for describing curves because they do not require knowledge
about the whole curve. Local properties include:

e continuity
e position at a specific place on the curve
e direction at a specific place on the curve

e curvature (and other derivatives).
Some examples of useful global properties include:

e whether the curve is open or closed
e whether the curve ever passes through a particular point, or goes through a particular region

e whether the curve ever points in a particular direction

2.1 Continuity

It will be very important to understand the local properties of a curve where two parametric pieces
come together. If a curve is defined using an equation like Equation 2, then we need to be careful
about how the pieces are defined. If f3(1) # f2(0), then the curve will be “broken” - we would
not be able to draw the curve in a continuous stroke of a pen. We call the condition that the
curve pieces fit together continuity conditions because if they hold, the curve can be drawn as a
continuous piece.

In addition to the positions, we can also check that the derivatives of the pieces match correctly.
If £1/(1) # £2/(0), then the combined curve will have an abrupt change in its first derivative at the
switching point. The first derivative will not be continuous. In general, we say that a curve is C(n)
continuous if all of its derivatives up to n match across pieces. We denote the position itself as
the 0" derivative, so that the C(0) continuity condition means that the positions of the curve are
continuous, and C(1) continuity means that positions and first derivatives are continuous.

An illustration of some continuity conditions is shown in Figure 2. A discontinuity in the first
derivative (the curve is C(0) but not C(1)) is usually noticeable because it leads to a sharp corner.
A discontinuity in the second derivative is sometimes visually noticeable. Discontinuities in higher
derivatives might matter, depending on the application. For example, if the curve is a motion, an

O o Q

G(1) >
C(2 G(2) >
Figure 2: An illustration of various types of continuity between two curve segments

abrupt change in the 2nd derivative is noticeable, so 3rd derivative continuity is often useful. If the
curve is going to have a fluid flowing over it (for example if it is the shape for an airplane wing or
boat hull), a discontinuity in the 4th or 5th derivative might cause turbulence.

We have been considering derivative continuity with natural (rather than arc-length) parameteriza-
tions. Curves that are C'(1) continuous in their natural parameterizations may not be continuous in
the derivatives of their arc length parameterizations. Creating continuity conditions for arc-length
parameterizations can be very difficult.

Because the “speed” of the parameterization might be different, even if the derivatives match, we
define a different type of continuity that ignores the speed. We define geometric continuity to be
the condition where the derivative of the end of one segment differs only in magnitude from the
beginning of the next. That is, where the C(1) condition requires:

f1'(1) = £/(0),
the G(1) continuity condition requires:
f1'(1) = k £5/(0)

for some value k. Geometric continuity is less restrictive than parametric continuity (a C(n) curve
is necessarily G(n), but not vice versa).

3 Parametric Polynomial Pieces

The most popular representations for curves in computer graphics are piecewise parametric func-
tions where each piece is a polynomial of the free parameter. Piecewise linear representations (a

line segment is a polynomial of order 1) are a special case of this. In this section, we look over the
mathematics of the individual polynomial pieces. In the next section, we discuss how to put pieces
of polynomials together.

To introduce the concepts of polynomial parametric curves, we will discuss line segments. In prac-
tice, line segments are so simple that the mathematical derivations will seem extraneous. However,
by understanding this simple case, things will be easier when we move on to more complicated
polynomials.

3.1 A Line Segment

Let’s return to a line segment that connects point pg to p1. We could write the parametric function
over the unit domain for this line segment as:

f(u) = (1 —u)po + up1. 3)

Since we’re treating each element of the point vector independently, we could have written this as
separate equations in each dimension,

fw(u) = (1 - u)pﬂx +upi,
fyu) = (1 —u)po, + upry,

but from now on we’ll stick to vector notation since its cleaner. We will call the vector of control
parameters p the control points, and each element of p a control point.

While describing a line segment by the positions of its endpoints is obvious and usually convenient,
there are other ways to describe a line segment. For example:

1. the position of the center of the line segment, the orientation, and the length;

2. the position of one endpoint and the position of the second point relative to the first;

3. the position of the middle of the line segment and one end.
It should be fairly obvious that given one kind of a description of a line segment, we can switch to
another.

A different way to describe a line segment is:
f(u) = ap + uay. (4)

Any line segment can be represented either by specifying ag and aj, or the endpoints (po and
p1). It is usually more convenient to specify the endpoints, because we can compute the other
parameters from the endpoints.

The description of the line using ag and aj is convenient mathematically because it has a form
that extends easily to more complicated curves. More generally, we might write Equations 4 as:

f(u) = Z uiai, (5)
=0

where n is the degree of the polynomial (1 for a line). To write this equation in a vector form, we
define a vector u that is a vector of the powers of u:

u= {1uu2 ud .. u"}
so that Equation 5 can be written as:
f(u) =u a. (6)
This vector notation will make transforming between different forms of the curves easier.

Equations 5 or 6 describe a curve segment by the set of polynomial coefficients for the simple form
of the polynomial. We call such a representation the canonical form. I will denote the parameters
of the canonical form by a.

While it is mathematically simple, canonical form is not always the most convenient way to specify
curves. For example, we might prefer to specify a line segment by the positions of its endpoints. If
we want to define pg to be the beginning of the segment (where the segment is when v = 0) and
p1 to be the end of the line segment (where the line segment is at u = 1), we can write:

p0 =f(0) =[10] [ag ai]
pl =f(1) =[11] [aﬁ ai]. (7)

We can solve these equations for ag and aj:

ap = Po
ai = P1 — Po-

3.1.1 Matrix Form for Polynomials

While this first example was easy easy enough to solve, for more complicated examples it will be
easier to write Equation 7 in the form:

HEEIN

Or, if we call this constraint matriz C, we can write
p=Ca, (8)

although, this is being a little sloppy with notation'. If having vectors of points bothers you, you
can consider each dimension independently (so that p is [po, p1,] or [po, p1,]) and a is handled
correspondingly).

We can solve Equation 8 for a by finding the inverse of C. This matrix we will call the basis
matrix, and we will denote it by B. The basis matrix is very handy since it tells us how to convert
between the convenient parameters p and the canonical form a and therefore gives us an easy way

to evaluate the curve:
f(u) =u B p.

We can find a basis matrix for whatever form of the curves that we want, providing that there are
no non-linearities in the definition of the parameters.

1T am being very sloppy about whether vectors are row vectors or column vectors. In general, the sense of a vector
should be obvious from its context, and I'll skip all of the transpose symbols for vectors.

Another Example: Suppose we want to parameterize the line segment so that pg is the half-
way point (v = .5), and pp is the ending point (u = 1). To derive the basis matrix for this
parameterization:

(po) = f(5)= lag+.5a
()= f(1)= lag+1a

So

and, therefore

3.2 Beyond Line Segments

Line segments are simple enough that the effort of finding a basis matrix is silly. However, it was
good practice for curves of higher degree. First, let’s consider quadratics (curves of degree 2). The
advantage of the canonical form (Equation 5) is that it works for these more complicated curves,
just by letting n be a larger number.

A quadratic (a degree 2 polynomial) has 3 coefficients, ag, a;, and az. These coefficients are
not convenient for describing the shape of the curve. However, we can use the same basis matrix
method to devise more convenient parameters. If we know the value of u, Equation 5 becomes a
linear equation in the parameters,and the linear algebra from the last section still works.

Suppose that we wanted to describe our curves by the position of the beginning (u = 0), middle?
(u=.5), and end (u = 1). Filling the appropriate values into Equation 5:

Po = f(O) = qQ + 01 al + 02 az
P1 = f(5) = ag + 5l a; —+ 52 as
p2 =f(1) =ap+ 1! a3 +1% aa.
So the constraint matrix is:
1 0 O
C=1|1 .5 25|,
1 1 1
and the basis matrix is:
1 0 0
B=C'=|-3 4 -1
2 -4 2

There is one additional type of constraint (or parameter) that is sometimes convenient to specify:
the derivative of the curve (with respect to its free parameter) at a particular value. Intuitively,
the derivatives tell us how the curve is changing, so that the first derivative tells us what direction
the curve is going, the second derivative tells us how quickly the curve is changing direction, etc.
We will see examples of why it is useful to specify derivatives later.

ZNotice that this is the middle of the parameter space, which might not be the middle of the curve itself.

For the quadratic,
f(u) = ag + ayu + agu?,

the derivatives are simple:

f’(u) = ﬁ = aj + 2azu,

du
and 2f d
f'(u) = — = = = 2a,.
() du? du az
Or, more generally,
f'(u) = Sy iu' tay,
f'(u) = S oi(i — Du'2a;

For example, consider a case where we want to specify a quadratic curve segment by the position,
first, and second derivative at its middle (u = .5).

Po = f(5) = ag+ 5l a1+ 52 as
p1 =f'(5) = ait 2 (5) az
P2 = f”(5) = 2 ag.
So the constraint matrix is:
1 5 .25
c=(0 1 1],
0 0 2
and the basis matrix is:
1 -5 .125
B=C'!=|0 1 -5
0 0 5

3.3 Basis Matrices for Cubics

Cubic polynomials are popular in graphics (See Section 5). One reason is that the basis matrix is
a 4x4 matrix, which is something graphics people work with a lot. The derivations for the various
forms of cubics are just like the derivations we’ve seen already in this section. We will work through
one more example, for practice.

A very useful form of a cubic polynomial is the Hermite form, where we specify the position and
1st derivative at the beginning and end. That is,

po = f(0) =ap+ 0'ay + 0%axt 0% ag

p1 = f(0) = a; +2 0las+ 3 0%as
P2 = f(l) =ag + 1! a; -+ 12 as+ 13 asg
ps = f'(1) = a; +2 1las+ 3 12ag
So the constraint matrix is:
1 000
0100
C= 1111}’
01 2 3

10

and the basis matrix is:

1 0 0 0
1 0o 1 0 0
B=C"=1 3 » 3 4

2 1 -2 1

We will discuss Hermite cubic splines in Section 5.2.

3.4 Blending Functions

If we know the basis matrix (B) we can multiply it by the parameter vector (u) to get a vector of
functions

b(u) =u B.

Notice that we denote this vector by b(u) to emphasize the fact that its value depends on the free
parameter u. We call the elements of b(u) the blending functions because they specify how to blend
the values of the parameter vector together:

£(uw) = Y bi(w)pr)

It is important to note that for a chosen value of u, Equation 9 is a linear equation, specifying
a linear blend (or weighted average) of the control points. This is true no matter what degree
polynomials are “hidden” inside of the b; functions.

Blending functions provide a nice abstraction for describing curves. Any type of curve that can
be represented as a weighted linear combination of its control points, where those weights are
computed as some arbitrary functions of the free parameter.

For a single polynomial segment, writing out the blending functions is probably over-kill.

Another common term for blending function is basis function.

3.5 Exercises

For each of the following, find the constraint matrix, the basis matrix, and the blending functions.
You should not invert matrices by hand - use a program such as MATLAB or OCTAVE (a free
MATLAB-like system).

EX1: A Line Segment: Parameterized with pg being 25% of the way along the segment
(u=.25), and p1 being 75% of the way.

EX2: A Quadratic: Parameterized with pg being the position of the beginning point (u = 0),
p1 being the 1st derivative at the beginning point, and p2 being the 2nd derivative at the beginning
point.

EX3: A Cubic: With its control points being positions that are equally spaced (po has u = 0,
p1 has u = 1/3, p2 has u = 2/3, and pg has u = 1).

11

EX4: A Quintic: (adegree 5 polynomial, so the matrices will be 626) Where pg is the beginning
position, p; is the beginning derivative, pg is the middle (u = .5) position, pg is the 1st derivative
at the middle, p4 is the position at the end, and ps is the 1st derivative at the end.

4 Putting Pieces Together

Now that we’ve seen how to make individual pieces of polynomial curves, we can consider how to
put these curve pieces together.

4.1 Knots

When we put smaller pieces of parametric functions together to form a compound function, there
are choices in how we divide up the parameter space. In the previous sections, we have always
defined curves over the interval 0, 1, so if we were to define a parametric function f having three
pieces, we would choose:
£1(3 % u) if0<u<i
f(u) = f2(3%u—1) if L §u<%
f3(3xu—2) if % <u<l.

It is sometimes more convenient to have the curves defined over a different range. Most generally,
if a curve has n segments, we could define f as:

f1(u) ifo<u<ty
f(u) . f2(u—t1) ift1 <u<ty+t
o f3(u—t1—t2) if ty+to<u<ty+ty+ts’

o fn(u — Z?:_f t;) if Z;‘lz_ll ti<u <Yt

where t; is the length of the parameter space of piece ¢. This type of notation is nice when each
piece might have a different parametric length. The parameter values where the curves change are
known as the knot values, and the individual spacings, t; in this example, are called knot spacings.

If you look closely, you will notice that for symmetry, each curve piece is an interval that is open
at its end. In practice, when working with piecewise polynomials we will close the last interval.

Usually, basis functions are chosen so that they are non-zero only in a limited range of the parameter.
At any given time, only a subset of the basis functions may be active, or potentially non-zero. A
more formal definition of a knot is a place on the curve where the set of basis functions that are
active changes.

For most of our discussion, we will consider only uniform knot spacing with the ¢;. The more
generalized notation will be handy when we introduce B-Splines in Section 6.2.

4.2 Putting Segments Together
If we want to make a single curve from two line segments, we need to make sure that the end of

the first line segment is at the same location as the beginning of the next. There are three ways to
connect the two segments(in order of simplicity):

12

1. Representat for the line segment as its two endpoints, and then use the same point for both.
We call this a shared-point scheme.

2. Copy the value of the end of the first segment to the begining of the second every time that
the parameters of the first segment change. We call this a dependency scheme.

3. Write an explicit equation for the connection, and enforce it through numerical methods as
the other parameters are changed.

While the simpler schemes are preferable since they require less work, they also place more restric-
tions on the way the line segments are parameterized. For example, if we wanted to provide the
center of the line segment as a parameter (so that the user could specify it directly), we might want
to use the beginning of each line segment and the center of the line segment as their parameters.
This would force us to use the dependency scheme.

Notice that if we use a shared point or dependency scheme, the total number of control points is
less than n * m, where n is the number of segments and m is the number of control points for
each segment; many of the control points of the independent pieces will be computed as functions
of other pieces. Notice that if we use either the shared-point scheme for lines (each segment has
its two endpoints as its parameters and shares interior points with its neighbors), or if we use the
dependency scheme (such as the example one with the first endpoint and midpoint), we end up
with n + 1 controls for an n segment curve.

Dependency schemes have a more serious problem. A change in one place in the curve can propagate
through the entire curve. This is called a lack of locality. Locality means that if you move a point
on a curve it will only effect a local region. The local region might be big, but it will be finite. If a
curve’s controls do not have locality, changing a control point may effect points infinitely far away.

To see locality, and the lack thereof, in action, consider two chains of line segments, as shown
in Figure 3. One chain has its pieces parameterized by their endpoints and uses point-sharing to
maintain continuity. The other has its pieces parameterized by an endpoint and midpoint, and uses
dependency propagation to keep the segments together. The two segment chains can represent the
same curves: they are both a set of n connected line segments. However, because of locality issues,
the endpoint-shared is likely to be more convenient for the user. Consider changing the position of
the first control point in each chain. For the endpoint-sharing version, only the first segment will
change, while all of the segments will be affected in the midpoint version, as in Figure 3. In fact,
for any point moved in the endpoint-shared version, at most two line segments will change. In the
midpoint version all segments after the control point that is moved will change, even if the chain
were infinitely long.

In this example, the dependency propagation scheme was the one that did not have local control.
This is not always true. There are direct sharing schemes that are not local, and propagation
schemes that are.

We emphasize that locality is a convenience of control issue. While it is inconvenient to have the
entire curve change every time, the same changes can be made to the curve. It simply requires
moving several points in unison.

13

Each line segment is parameterized by its endpoints.

A

The end of one segment is shared with the beginning endpoint of the next

Moving a control point causes a change only in a localized region.

Each line segment is parameterized by its endpoint and
its centerpoint.

The endpoint of segment 2 is equated
to the "free" end of segment one

The endpoint of segment 3 is equated
to the "free" end of segment 2, and so forth

A change in any control point causes
ALL later line segments to be affected.

Figure 3: A chain of line segments with local control and one with non-local control.

14

5 Cubics

In graphics, when we make polynomial curves that are not lines, they are almost always cubics.
There are a number of reasons why cubics are popular in computer graphics:

e Cubic polynomials allow for C'(2) continuity, which is generally sufficient for most visual
tasks. The C'(1) smoothness that quadratics offer is often insufficient. The greater smoothness
offered by higher order polynomials is rarely important.

e Cubic curves provide the minimum-curvature interpolants to a set of points. That is, if you
have a set of n + 3 points and define the “smoothest” curve that passes through them (that
is the curve that has the minimum curvature over its length), this curve can be represented
as a piecewise cubic with n segments.

e Cubic polynomials have a nice symmetry where position and derivative can be specified at
the beginning and end.

e Cubic polynomials have a nice tradeoff between the numerical issues in computation and the
smoothness.

e The linear equations that cubics lead to (when using the matrix forms of Section 3.1.1) are
4 x 4, and computer graphicists tend to like 4 x 4 matrices.

e Everyone in computer graphics seems to use cubics. It is what the books talk about, its what
the graphics libraries best support, ... The popularity of cubics is somewhat self-perpetuating!

Notice that we do not have to use cubics. They just tend to be the best tradeoff between amount
of smoothness and complexity. Different applications may have different tradeoffs. For example,
many font rendering systems use quadratic polynomials. We focus on cubics since they are what
most computer graphics end up use.

A segment of a cubic is defined by:

f(u) = ag + ay u + az u? + az v

As we discussed in Section 3, the polynomial coefficients are not usually a convenient way to describe
a cubic segment. Instead, we will choose alternate representations that can be converted to this
canonical form using the methods of Section 3.

Unfortunately, there is no single “best” representation for a piecewise cubic. It is not possible to
have a curve representation that has all of the following desirable properties:

1. the curve is a cubic;
2. the curve interpolates its control points;
3. the curve has local control;

4. the curve has C'(2) continuity.

15

We can have any three of these properties, but not all four. The are representations that have any
combination of three. In this document, we will discuss cubic B-Splines that do not interpolate
their control points (but have local control and are C(2)), Cardinal and Catmull-Rom splines that
interpolate their control points and offer local control but are not C'(2), and natural cubics that
interpolate and are C(2), but do not have local control.

The continuity properties of cubics refer to the continuity between the segments (at the knot
points). The cubic pieces themselves have infinite continuity in their derivatives (the way we have
been talking about continuity so far). Note that if you have a lot of control points (or knots), the
curve can be wiggly, which might not seem “smooth.”

5.1 Natural Cubics

With a piecewise cubic curve, it is possible to create a C(2) curve. To do this, we need to specify
the position, first and secondd derivative at the beginning of each segment (so that we can make
sure that it is the same as the end of the previous segment). Notice, that each curve segment
receives 3 out of its 4 parameters from the previous curve in the chain. These C(2) continuous
chains of cubics are sometimes referred to as natural cubics.

For one segment of the natural cubic, we need to parameterize the cubic by the positions of its
endpoints, and the first and second derivative at the beginning point. The control points are
therefore:

Po :f(()) :a0+01a1—|—02a2+03a3

p1 = f'(0) =a;+20'ay+30%a;3

p2 = f"(0) =2az+60" a3

P3 :f(l) :a0+11 aj + 12 a2+13a3.

Therefore, the constraint matrix is:

1 0 0O
01 00
C= 00 2 0]’
1 111
and the basis matrix is:
1 0 0O O
0 1 0 0
_ -1 _

B=C"= 0 0 S50

-1 -1 -5 1

The disadvantage of natural cubic splines is that they are not local. Any change in any segment
may require the entire curve to change (at least the part after the change was made). Another
issue is that we only have control over the derivatives at the curve at its beginning. Segments after
the beginning of the curve determine their derivatives from their beginning point.

5.2 Hermite Cubics

Hermite cubic polynomials were discussed in Section 3.3. A segment of a cubic Hermite Spline
allows the positions and first derivatives of both of its end points to be specified. A chain of

16

o>

v,
:,"
.

04 -
%

L |
0"

Figure 4: A Hermite Cubic Spline made of 3 segments.

-
-

[ol0]

Figure 5: A segment of a cardinal cubic spline interpolates its second and third control points (p1
and p2), and uses its other points to determine the derivatives at the beginning and end.

segments can be linked into a C(1) spline by using the same values for the position and derivative
of the end of one segment and the beginning of the next.

A Hermite spline specifies a curve from a sequence of points. Each point has an associated vector
(for the derivative at that point). The spline interpolates the points, as shown in Figure 4.

Hermite cubics are convenient because they provide local control over the shape, and provide C(1)
continuity. However, since the user must specify both positions and vectors, a special interface for
the vectors must be provided. One possibility is to provide the user with points that represent
where the derivative vectors would end if they were “placed” at the position point.

5.3 Cardinal Cubics

A Cardinal Cubic Splineis a type of C(1) interpolating spline made up of cubic polynomial segments.
A Cardinal Spline interpolates all of its controls except for the first and last (as opposed to a Hermite
Spline which interpolates half of its controls, and uses the other half to specify derivative vectors).
Cardinal Splines have a parameter called tension that controls how “tight” the curve is between the
points it interpolates. For the important special case of ¢ = 0, the splines are called Catmull-Rom
splines.

A segment of a Catmull-Rom spline interpolates its second and third points. The derivative at the
beginning of the curve is determined by the vector between the first and third control points, while
the derivative at the end of the curve is given by the vector between the second and forth points,
as shown in Figure 5.

The tension parameter adjusts how much the derivatives are scaled. Specifically, the derivatives

17

1 2 6 7

Figure 6: Cardinal splines through the 7 control points with varying values of tension parameter ¢.

are scaled by 1/2(1 — t). The constraints on the cubic are therefore:

f(O) = P

f(l) = P2

F0)= 3(1—t)(p2—po)
ff()y= 30-1)(ps—p1)

Solving these for the control points (defining s = (1 —t)/2) gives:

po= [f(1)= 5/ (0) =ao+(1—{)ai+az+a3
p1= f(0) = ap
p2 = f(1) =ap+ a1+ az + a3
ps= f(0)+ %f’(l) = ap + %al + 2%612 + 3%&3
This gives the cardinal matrix
0 1 0 0
—s 0 S 0

_ 1 _
B=C"= 2s s—3 3—2s5 —s

—s 2—5 s—2 S

Cardinal splines are useful because they are the easiest way to interpolate a set of points with C'(1)
continuity and local control. They are only C(1), so they sometimes get “kinks” in them.

In Figure 6, a set of cardinal splines through a set of points are shown. The curves use the same
control points, but use different values for the tension parameters. Note that the first and last
control points are not interpolated.

5.4 Tension-Continuity-Bias Controls

Omitted in this version. See the section in Hearn and Baker for details.

6 Approximating Curves

It might seem like the easiest way to control a curve is to specify a set of points for it to interpolate.
In practice, however, interpolation schemes often have undesirable properties because they have

18

less continuity and offer no control of what happens between the points. Curve schemes that only
approximate the points are often preferred. With an approximating scheme, the control points
influence the shape of the curve, but do not specify it exactly. Although we give up the ability to
directly specify points for the curve to pass through, we gain better behavior of the curve and local
control. The two most important types of approximating curves in computer graphics are Bézier
Curves and B-Splines.

6.1 Bézier Curves

Mathematician Pierre Bézier was a pioneer in the mathematical representation of free form curves.
The curves that are named after him are an approximating form of polynomial curves that were
specifically developed to be convenient for users to control.

A segment of a Bézier curve can be of any degree (polynomial order). Each segment is a single
polynomial. Usually, complex curves are made up of a number of low order pieces. Many popular
illustration programs (such as Adobe Illustrator and Macromedia Freehand) use cubic Bézier seg-
ments, and many font representation schemes (such as the one used in Postscript) use quadratic
Bezier segments to describe the outlines of the characters.

Like other polynomial forms, a Bézier segment of order n has n+ 1 control points. No matter what
the order of the segment is, it will always begin at its first end point and end at its last endpoint.
The other control points influence the shape of the curve, but it will not pass through them. Bézier
segments have the property that they always stay inside the convex hull of their control points.

The first derivatives (tangents) of Bézier curves are always proportional to the vector between the
end control points and the ones they are adjacent to. The derivative at the beginning is a fraction of
the vector between the first and second control points, and the derivative at the end of the segment
is a fraction of the vector between the second to last and last end point. The proportionality
constant is the order of the curve segment. Therefore the first derivative of a cubic Bézier at its
beginning is 3 times the vector between the first and second control point.

Note that cubic Béziers bear a resemblance to cubic Hermite polynomials. Both allow for easy
specification of the ends of the segments, and easy specification of the first derivatives at the ends.
The key difference is that all of the controls of the Bézier curve are in the same space as the curve
itself, whereas the some of the controls of the Hermite polynomial are vectors. Also, remember the
scaling factor between the vector between points and the derivatives in the Bézier curves.

Given that we know what the control points of a Bézier curve do, we could write constraints and
solve for the parametric form as we did in Section 3.3 (and you will be asked to do this in an
Exercise). However, the blending functions for Bézier curves have the common form that works for

all orders:
bk,n(u) = C(n7 k) uk (1 - u)(n - k)a

where n is the order of the Bézier curve, and k is the blending function number between 0 and n
(inclusive). C(n, k) is the binomial coefficients

n!

C(n, k) = o=k

19

1‘ ‘4 10 04

Figure 7: An illustration of the De Casteljau algorithm for a cubic Bézier . The left shows the
construction for u = .5. The right shows the construction for .25, .5, and .75.

Given the positions of the control points pj, the function to evaluate the Bézier curve of order n
(with n + 1 control points) is:

p(u) = f:pkc*(n, k) u* (1 —u)n— k).
k=0

Continuity between Bézier curve segments must be created by placing the control points of each
segment in the right place. For C'(0) continuity, the first point of one curve must be the last point
of the other. For G(1) continuity, the 2nd to last point of the first curve and the second point of
the 2nd curve must be collinear with the equated endpoints. For C(1) continuity, the distances
between the points must be equal as well.

6.1.1 The De Casteljeau Algorithm

One nice feature of Bézier Curves is that there is a very simple and general method for computing
them. The method, called the de Casteljau Algorithm, uses a sequence of linear interpolations to
compute the positions along the Bézier curve of arbitrary order.

The De Casteljau algorithm begins by connecting every adjacent set of points with lines, and finding
the point on these lines that is the u interpolation, providing a set of n — 1 points. These points are
then connected with straight lines, those lines are interpolated (again by), giving a set of n — 2
points. This process is repeated until there is one point. An illustration of this process is shown in
Figure 7.

6.2 B-Splines

Suppose we were to develop a type of piecewise polynomial curve that approximated a set of points.
Given n points, we would want to define n blending or basis functions, defined over the domain of
the curve u € [0,n]|. B-Splines provide a method for defining these basis functions for any degree
d — 1 of polynomial (although, the degree must be less than the number of points). B-Splines
provide a number of very useful properties:

20

1. The basis functions (as well as the resulting curve that is the sum of the basis functions) is
C(d —2) continuous.

2. The basis functions are local. That is, they are zero except for a finite size region that depends
only on d, not on n. This means that the points give local control over the curve.

3. The basis function sum up to one for any parameter value where there are d active basis
functions. This is important since it means that shifting all of the points causes the entire
curve to shift.

4. The blending functions have a simple and (in the opinion of many people, including myself)
elegant procedure for construction, thanks to the method of Cox and de Boor. This procedure
is very general.

5. The curves tend to be very mathematically well behaved, and respond nicely to changes in
the point positions. Therefore, even though they do not interpolate the points, they still can
be used interactively by having the user drag the points around.

6. The basis functions can be defined for any set of knot values.

To use the B-Splines, we need to have a weight each blending function by the value of its control
point,

F6) =3 pr Bealt).
k=0

To illustrate the B-Splines, we’ll consider the simple ones with d = 2. This means that the polyno-
mials will be of degree 1 (to be consistent with the literature, the degree of the B-Spline is one more
than the degree of the polynomial - don’t ask me why). The blending functions have the form:

0 ift<i—1
1) fi-1<t<i
Bis =1 (¢ i) iti<t<iv1
0 if >+ 1

These blending functions are graphed for various values of ¢ in Figure 8.

Notice that for d = 2, the B-Splines create a linear interpolation of the points, and that for this
case, all of the useful properties are met (the curve is C'(0), moving a point only affects the curve
near it, ...). The case of d = 2 is unusual for B-Splines because it does interpolate the points.

You should also notice that for this example, the knot values are the integers from 0 to n, inclusive.
More general methods for defining B-Splines would allow us to provide a vector of knot values.
We denote the knot vector by u, and will use a subscript to refer to an individual knot value. For
the d = 2 example, knot value u; is the parameter value of the curve where the curve interpolated
point 7. The blending functions would then have the form:

0 if ¢t <wujq
1-— ui—t if Us—1 <t< s
B;o(t) = Yol N . 1
2 (t) 1- F:Eul if u; <t <wuip (10)
0 if ¢t > Ui4-1

21

b4(u)

0
0 1 2 3 4 5 6
1 1| b3(u)
b2(u)
0 0
0 1 2 3 4 5 6 0 1 2 3 4 5
1 1
bO(u) b1(u)
0 0
0 1 2 3 4 5 6 0 1 2 3 4 5

Figure 8: B-Spline blending functions for d = 2 and n = 5 and uniformly spaced knots at the
integers.

The general recurrence (the Cox / de Boor equation) for basis function k of arbitrary B-Spline
order d, and knot vector u is:

1 ifug <t <up

Bk’l(t) - 0 otherwise

Bra(t) = % By (t) + 2t B0 (1)

Ug+d—1—Ug Ug+d—Ug+1

The B-Spline functions for the knot vector [0, 1,2, 3,4, 5,6, 7, 8] are shown for various values of d in
Figures 9 through 11.

6.3 Uniform B-Splines

If the spacing between the knots is uniform, then the B-Spline is referred to as a uniform B-Spline.
A non-uniform B-Spline is a B-Spline that makes use of the extra generality afforded by non-uniform
spacing.

For uniform B-Splines, the blending functions are all very similar. In fact, they have the same
shape, just shifted to a different “place.” For this reason, uniform B-Splines are said to be periodic.

The periodic basis functions can create a problem at the beginning and end: because it takes d
basis functions to add up to one, before knot d — 1, there aren’t enough basis functions. Notice
in Figure 8 how the functions sum to one between that values of 1 and 5. Within this range, the
B-Spline curve caused by summing the basis functions is useful.

There are three different ways to handle the problem of basis functions not summing up:

22

1.50

B6
1.25 B5
1.00 B4
0.75 B3
0.50 B2
0.25 B1
0.00 Ly BO

0 1 2 3 4 5 6 7 8
Figure 9: B-Spline functions for knot vector [0,1,2,3,4,5,6,7,8] and d = 2.

1.50 B
1.25 B4
1.00F R
0.75 B2
0.50 B1
0.25 —BC

0.00

Figure 10: B-Spline functions for knot vector [0,1,2,3,4,5,6,7,8] and d = 3.

1.50 B4
1.25F ———RB-
1.00F y
0.75F B1

0.50 —BC

0.25
0.00

0 1 2 3 4 5 6 7 8

Figure 11: B-Spline functions for knot vector [0,1,2,3,4,5,6,7,8] and d = 4.

23

1. We can restrict the values of the parameter that we look at to the useful range. In the example
of Figure 8 this is 1 to 5.

2. We can add extra knots that are outside of the range that we want the parameter to span.
In the example of Figure 8, we can add a knot (and therefore a basis function) for —1 works
over the entire range 0 to 5. This means we need to specify another control point for the new
blending function.

3. If the curve is closed, then we can use the control points of the last knots for the beginning,
and of the first control points for the ends. This is another way that the uniform B-Splines
are periodic (the period is around the closed curve).

If we are willing to use non-uniform B-Splines, we can repeat the first and last knot multiple times in
order to get the extra knots we need to make the curve span the correct parameter range. Because
we associate control points with knot values not their indices, this does not require adding any new
control points. If we replicate the first and last knots enough, the B-Splines will interpolate their
end control points.

6.3.1 Cubic B-Splines
For reasons discussed earlier, cubic polynomials are popular in graphics. B-Splines of order d = 4
(since the B-Spline order is one more than the polynomial order) are often used.

A different way to look at B-Splines is as a bunch of polynomial segments, each using the same set
of blending functions on a different set of points. This form makes B-Splines work like the curves
we talked about in Sections 3 and 5.

The basis matrix for periodic, uniform, cubic B-Splines is:

-1 3 -3 1
11 3 -6 3 0
Mb=51_-3 0 3 o
1 4 1 0

To make segments connect properly (with C'(2) continuity) they must share 3 points. That is, if
the first segment of the curve uses points pg, pl, p2, and ps, then the next segment should use

points p1, P2, P3, P4.
The uniform, cubic B-Spline segment is similar to a cardinal cubic in that it connects the 2nd and

3rd of its 4 points. Unlike a cardinal spline, however, it does not interpolate its points. For giving
up interpolation, you get better continuity (the cubic B-Splines are C(2)).

6.4 Curve Fitting

Suppose that you have a set of points that you want a curve to interpolate. You might make an
interpolating curve that passes through all of them, but then it might be hard to get the continuity
and other nice properties of B-Splines. Instead, you might want to adjust a B-Spline (or other
piecewise polynomial curve) to fit the points as closely as possible.

24

6.5 Exercises

EX1: Basis Matrix for Cubic Bézier The constraints for a segment of a Bézier cubic are:

f(O) =Po
f1(0) = 3(p1—po)
f(1) =p3
1) =3(ps—p2)

Using the methods of Section 3, derive the basis matrix and blending functions for a Bézier cubic
segment.

EX2: De Castijeau Algorithm Use the De Castijeau algorithm to evaluate the position of the
cubic Bézier curve with its control points at (0,0), (0,1), (1,1) and (1,0) for parameter values u = .5
and u = .75. Drawing a sketch will help you do this.

EX3: Cox / de Boor Recurrence Use the Cox / de Boor recurrence to derive Equation 10.

25

