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ABSTRACT
Motivation: Tandem repeats (TRs) are associated with
human disease, play a role in evolution and are important
in regulatory processes. Despite their importance, locating
and characterizing these patterns within anonymous DNA
sequences remains a challenge. In part, the difficulty is
due to imperfect conservation of patterns and complex
pattern structures. We study recognition algorithms for
two complex pattern structures: variable length tan-
dem repeats (VLTRs) and multi-period tandem repeats
(MPTRs).
Results: We extend previous algorithmic research to a
class of regular tandem repeats (RegTRs). We formally
define RegTRs, as well as two important subclasses:
VLTRs and MPTRs. We present algorithms for identifica-
tion of TRs in these classes. Furthermore, our algorithms
identify degenerate VLTRs and MPTRs: repeats contain-
ing substitutions, insertions and deletions. To illustrate our
work, we present results of our analysis for two difficult
regions in cattle and human data which reflect practical
occurrences of these subclasses in GenBank sequence
data.

In addition, we show the applicability of our algorithmic
techniques for identifying Alu sequences, gene clusters
and other distant regions of similarity. We illustrate this with
an example from yeast chromosome I.
Availability: Algorithms can be accessed at http://www.cs.
wisc.edu/areas/theory.
Contact: kryder@cs.wisc.edu; joseph@cs.wisc.edu
Keywords: tandem repeat; satellite; SSR; STR; MPTR;
VLTR; DNA; algorithm.

INTRODUCTION
The goal of our research is to develop algorithms to iden-
tify repeated occurrences of a pattern within a genomic se-
quence. A simple example of recurring patterns is the tan-
dem repeat (TR) which involves consecutive occurrences
of a pattern. For example, the sequence TGTGTG is de-
fined by three consecutive occurrences of a TG pattern.
TRs can arise when mutational events occur to transform

∗To whom correspondence should be addressed.

a segment of DNA sequence into two or more copies. Ad-
ditional mutation allows the individual copies to diverge.
The algorithmic challenge is to identify the repeat pattern
structure within a sequence without a priori knowledge of
the composition of the repeat.

Significant effort in recent years has yielded many
algorithms for identifying TRs having a simple pattern
structure (Review in Benson, 1999; Kurtz et al., 2000,
2001. Also, Adebiyi et al., 2001; Landau et al., 2001;
Volfovsky et al., 2001). In this paper, we describe two
broad classes of complex pattern structures absent from
the literature but present in genomic sequence data. Prior
approaches have specific limitations that do not allow
identification of TRs in these new classes.

In practice, two issues complicate repeat identification:
imperfect conservation of patterns and complex pattern
structures. We believe fundamental issues associated with
these complications cannot be addressed by a single tech-
nique. Thus, our algorithm is a collection of techniques
each designed to address a fundamental issue observed in
real DNA sequence data. In addition, we extend the algo-
rithm to recognize distant regions of similarity.

DEFINITIONS
Several classes of tandem repeats can be defined. Simple
sequence repeats (SSRs) have patterns which are typically
less than six nucleotides in length and are fairly well
conserved. Long tandem repeats have long patterns (at
least one hundred nucleotides in length) and are often
less conserved. Variable length tandem repeats (VLTRs)
and multi-periodic tandem repeats (MPTRs) have complex
pattern structures.

We assume S is a DNA sequence of length n and over
the DNA nucleotide alphabet � = {A,C,G,T}. A pattern,
p, is a finite length word over S. A perfect tandem repeat,
T = pc, is a simple concatenation of c copies of p, where
c ≥ 2 and designates the copy number of the repeat. For
example, TGTGTG is a perfect TR with p = TG and
c = 3.

Many tandem repeats have complex structures defined
by two or more patterns. We define and study two classes:
VLTRs and MPTRs.
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DEFINITION. A simple nested tandem repeat is formed
by the nested concatenation of several patterns. Formally,
a finite length word, N , is a simple nested repeat if
N = ((p1)c1(p2)c2(p3)c3 . . . (pk)ck )ck+1 where the pi ’s
are patterns and the ci ’s are ≥1. A variable length tandem
repeat (VLTR) is a simple nested tandem repeat in which
the copy number for some pattern pi is variable rather than
constant.

EXAMPLE. CATTAGCC TGTGTGTG CATTAGCC
TGTG CATTAGCC TGTGTGTGTG

This VLTR sequence is composed of two repeated
patterns, CATTAGCC and TG, and can be written as
CATTAGCC(TG)4CATTAGCC(TG)2CATTAGCC(TG)5,
or as ((CATTAGCC)1(TG)∗)3. The later expression
explicitly indicates that the copy number for the
CATTAGCC pattern is fixed and equal to one, while
the copy number for the TG pattern is variable, denoted
with a *.

DEFINITION. A multi-period tandem repeat (MPTR) is
formed by the nested concatenation of two or more i-
similar patterns. Consider the following concatenation of
1-similar patterns.

EXAMPLE. CAGTA CAGCA CAATA CAGCA
CAGTA CAGCA CAATA CAGCA

This sequence is almost a perfect tandem repeat of the
form (CAGTA)8. However, in every other copy the T
becomes a C and in every fourth copy the G becomes an
A. So, this sequence is a simple nested concatenation of
three 1-similar patterns, CAGTA, CAGCA and CAATA;
a MPTR. The multiple periodicity exhibited is written as
follows: a first multiple (1×) of (CAG /A

T /C A)8, a second
multiple (2×) of (CAG /ATA CAG /ACA)4 and a fourth
multiple (4×) of (CAGTA CAGCA CAATA CAGCA)2
where G /A is a position represented by both G and A.

DEFINITION. The class of regular tandem repeats
(RegTRs) includes perfect and degenerate TRs, VLTRs
and MPTRs.

Existing algorithms handle SSRs and long tandem re-
peats well. Our algorithm identifies perfect and degenerate
repeats having both simple and complex pattern structures
including SSRs, MPTRs and VLTRs.

ALGORITHM
Our identification of tandem repeats involves both locating
and characterizing regions. We accomplish this goal by
performing three major tasks: (1) isolate a tandem repeat
by determining its period and its approximate sequence
location, (2) determine the pattern associated with a region
period and (3) characterize the region using the pattern

(See Figure 1). Our technique is similar to Benson,
1999 in that we analyse k-length substrings in a DNA
sequence by finding recurring distances between identical
substrings. We differ in that a statistical model is not
used to locate interesting periods, but rather a simple
and accurate filter coupled with techniques to data mine
sequence differences.

Isolate initial TR period and location
We construct a distance array, D, parallel to S, to record
a distance, d , between identical occurrences of k-length
substrings, termed words. The i th position in D, di ,
records the distance from the word, w, ending in position
i in S to the previous occurrence of w at position j , j < i
such that w does not occur between i and j . For example,
a word occurs at positions 619 and 1083. A distance of
1083 − 618 = 465 is recorded at position 1083. The
leftmost occurrence of a word in S is recorded in D as a
distance of zero. Perfect TRs with a pattern length ≤ k
correspond to d ≤ k and are processed as SSRs in a
separate analysis.

Perfect TRs create runs of consecutive, identical d
in D, termed d runs. Degenerate TRs exhibit d runs
but not throughout the entire region. Edit differences
(substitutions, insertions and deletions) are reflected in
D such that regions with many differences exhibit fewer
and shorter d runs. Our algorithm requires at least five
identical d occurrences to be present in one or more runs.
This requires at minimum one very strong d run of length
five, or two moderate d runs of length two and three, or
three weak d runs of length two each.

We construct histograms which place the position of
identical distances in the same bin or peak. A filtered his-
togram, F , contains only positions associated with d runs.
We select peaks in F beginning with the peak containing
the most positions. We place proximal positions in each
qualifying peak in groups. Each group containing at least
five positions is processed.

The distance between identical words determines the
period of a region. Previous models identify only simple
pattern structures and use the distance associated with a
histogram peak as the initial period of a region. Complex
pattern structures have several associated periods. Thus, a
more thorough period analysis is necessary.

Our period analysis uses word and distance similarities
to determine significant periods within a region. We
begin with positions from the selected distance peak and
their associated words. We find other histogram peaks
containing word occurrences identical to words in the
selected peak. Twice we extend from a set of words
isolated from selected peaks to related histogram peaks.
This process determines significant region periods and
approximate region location and assigns a base period, b,
to the region.
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DNA
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Fig. 1. Basic identification algorithm locates TR regions in a DNA
sequence and characterizes the region using one or more patterns.

Construct region base pattern
Region patterns are constructed in several ways dependent
upon the class designation of the region. The general pro-
cedure is to select a segment of sequence corresponding
to all or a portion of a copy, to align the segment to sev-
eral copies of the region and to form a pattern using the
consensus formed from the alignment. This pattern is des-
ignated as the region base pattern.

The best possible copy is selected from the initial
segment. Best is based on two criteria: copy length closest
to b and occurrences of d = b in D either at positions in
the copy or at positions referring to the copy.

Current VLTR analysis finds nested TRs with short
patterns. SSRs with identical patterns across multiple
region copies are removed by adjusting distances within
the region. The remaining sequence is analysed as a
region having a simple pattern structure and a best copy
is selected. A pattern is constructed by appending the SSR
pattern to the best copy. For example, the SSRs have a
TG pattern which is appended to CATTAGCC to form the
pattern CATTAGCC(TG)∗.

Characterize using region pattern
One or more patterns characterize a region by aligning
each pattern to the region. We use wraparound dynamic
programming (WDP; Fischetti et al., 1992; Myers and
Miller, 1989) modified to handle regular expressions
(RegWDP) in the context of tandem repeat identification.
WDP allows wraparound of scores from the rightmost
column to the leftmost column of the ‘pattern’ in a 2D
alignment. RegWDP allows wraparound of scores from
any column to any other column dependent upon the
regular expression of the pattern. Concatenation joins
patterns together. Unions separate alternative patterns (see
MPTR analysis). Closures indicate TRs and surround
TR patterns. Our closure implementation allows partial
matching of a pattern, unlike true regular expressions, and
results from the biological reality of partial copies at the
edges of a TR region.

We display the final alignment as a series of copies,
each copy representing a pattern occurrence in S. We
stack the copies such that a column through the copies
corresponds to the same pattern position. Furthermore,
we form a consensus pattern by tallying nucleotide and
gap occurrences in each column. These are depicted as
ambiguous nucleotide characters, as appropriate.

MPTR analysis is performed on all regions following
alignment based pattern characterization. We extract a
column in the alignment and treat it as an ordered
sequence. We convert the sequence into a distance array,
C , using k = 3, 4, 5 and 6, and identify significant
periods in C . We analyse each column independently.
Significant region periods coupled with significant column
periods determine significant patterns across copies. If a
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column contains a three-nucleotide pattern then a new
pattern is assembled composed of three occurrences of the
consensus pattern formed from the base pattern alignment,
modified to reflect the cross copy, three-nucleotide pattern.
In addition, our analysis indicates period irregularities
occur in which complete copies are lacking or extras are
present relative to the pattern. To ensure proper alignment,
our approach generalizes this to allow any modified
consensus pattern to match to the next copy by forming
a union between the modified consensus patterns. Thus,
a new pattern which we believe is CAGTACAGCA is
actually represented as CAGTA|CAGCA where ‘|’ is read
as ‘or’.

Identify SSRs
SSRs are identified during construction of D. Every d ≤ k
indicates a SSR. We know this since the region length
≥ (k + d) ≥ 2d, i.e., at least two copies of the pattern.
This approach is reasonable since we use k = 6 and SSRs
are typically defined as TRs with a pattern of at most six
nucleotides. Our algorithm identifies single d and d runs
as perfect SSRs and checks for degenerate SSRs using
pattern characterization procedures.

Identify regions of similarity
Regions of similarity are pairs of non-adjacent regions
with strong similarity. which are identified during con-
struction of D. Potential TR regions, which fail to become
a TR due to fewer than two copies of a pattern within
the region, are examined. A region of similarity satisfies
these criteria: (1) period ≥60, (2) region length ≥20 and
either (3) the region contains ≥ 3d runs of the period or
(4) the region contains ≥ 30 occurrences of the period.
This analysis is preliminary with a wealth of potential
extensions.

Fundamental TR issues
Our early analysis explored the type of TRs present
in annotated sequence data. Sequence data contains a
wide assortment of TRs: TRs with short patterns, several
hundred long patterns and perfect, poor and erratic pattern
conservation, as well as TRs embedded within TRs
and TRs with higher order patterns across multiple
copies of a base pattern. We explored TR identification
by existing algorithms. Early algorithms concentrated
on short patterns and eventually were scaled up to
long patterns. Also, initial algorithms identified perfectly
conserved patterns with eventual extension to degenerate
patterns. Now the pattern structure model, T = pc,
c ≥ 2, requires modification to include complex pattern
structures. Here we discuss several fundamental TR
issues: the period, the conservation model and the role of
data similarities and differences.

The region period is the single most crucial aspect of

TR analysis. Patterns can vary due to edit difference,
but the period should remain roughly constant. Period
variation does occur due to insertions, deletions and
complex pattern structures. Thus any analysis must take
these factors into consideration. Our approach begins with
a single region period which is expanded to a collection of
periods based on recurrence of both words and distances
between identical words.

The conservation model in use by an algorithm dictates
how a base pattern can vary within a region. Our sequence
data analysis revealed a challenging TR class in which
a poorly conserved copy is surrounded by moderate to
well conserved copies. Models which focus on fixed
differences from a pattern (e.g., k-difference approaches)
have difficulty bridging across poorly conserved copies.
Our approach focuses on matches and allows significant
local pattern divergence when poor conservation is offset
by good conservation.

Sequence similarities reveal the ‘big picture’ structure
of a region while differences contain the nuances which
characterize a particular region. Our identification of both
VLTRs and MPTRs utilizes difference or noise mining
which is described by a four step process: throw out
data, analyse the remainder, acquire new information and
incorporate information into the region’s working model.
For VLTRs, we throw out the SSRs, analyse the remaining
sequence by adjusting region distances, acquire period and
pattern information for the adjusted region and construct
a new pattern containing a nested TR. For MPTRs, we
iteratively throw out all but one column, analyse the
columns for cross copy periods, acquire period and pattern
information for multi-copy patterns and construct a new
pattern composed of several modified base patterns.

DISCUSSION
We develop and implement a collection of algorithmic
techniques for identifying simple and complex repeat
pattern structures in DNA sequences. Three examples
illustrate the success of this project. The first is a bovine
sequence containing a highly conserved VLTR. The
second is a human sequence containing a difficult MPTR
region which illustrates the need to detect multiple peri-
odicities. The third is an analysis of yeast chromosome I
in which we identify highly similar regions 12 to 14 kilo-
basepair (kbp) apart. The difficulties presented in these
examples underscore fundamental issues encountered
with repetitive structure identification beyond simple TR
pattern structures.

CASE EXAMPLE I. A bovine sequence contains a fairly
simple VLTR region (Kashi et al., 1990, GenBank Locus:
BOVTGN). Each copy of the VLTR contains a nested TR
with a TG pattern which varies from 12 to 23 copies.
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             10        20        30        40        50        60        70        80 
              |          |          |          |          |          |          |          |  
 149 ccttctcccaatactctctaactttaaaaaaactgccaaagaaaaagcggtacgtaataacaagcgcacagatacgtaat   228 
 229 ttataatggctgacacggttggcagggaaatgtgttacgcaggaattatgtttttatttatgtgtgtcctgttttggaga  308 
              |          |          |          |          |          |          |          |  
             10        20        30        40        50        60        70        80        90 
              |          |          |          |          |          |          |          |          |  
    {tgcctgtctccagmrtaagtaatc{gt}*}*                                                         
 309           cagcataagtaatc atgggtgtgtgtgtgtgtgtgtgtgtgtgt                             352 
 353 tgcctgtctccagcgtaagtaatc atgtgtgtgtgtgtgtgtgtgtgt                                   400 
 401 tgcctgtctccagcgtaagtaatc gtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgt                     462 
 463 tgcctgtctccagagtaagtaatc atgggtgtgtgtgtgtgtgtgt                                     508 
 509 tgcctgtctccagcataagtaatc atgggtgtgtgtgtgtgtgtgtgt                                   556 
 557 tgcctgtctccagcataagtaatc atgggtgtgtgtgtgtgtgtgtgtgtgt                               608 
 609 tgcctgtctccagcataagtaatc atgggggggtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtgtg  689 
              |          |          |          |          |          |          |          |          |  
             10        20        30        40 
              |          |          |          |  
 690 ttgcctgtctccagggacttttgtacagagaagctt  725 
              |          |          |          |  

Fig. 2. This bovine sequence (Genbank Locus: BOVTGN) contains a VLTR. The nested TR, (TG)∗, has a variable number of copies.

Less obvious, a well conserved 22-nucleotide subsequence
occurs between each TG based repeat.

Figure 2 is a display generated by our web-based
software characterizing this (and other) sequence(s). A
regular expression represents the pattern (depicted as a
gray bar across the top of the alignment). Region copies
aligned to the pattern are stacked such that vertical
columns through the copies correlate to the same pattern
position. Columns of well conserved bases are coloured.

Earlier approaches do not properly characterize the
complete region. For instance, Tandem Repeat Finder
(Benson, 1999) locates each nested TG based TR, as well
as adjacent copies in which the number of TG copies is
held constant. The actual structure of the nested repeat is
not determined.

CASE EXAMPLE II. A human sequence contains a
fairly difficult MPTR region (Boan et al., 1997, GenBank
Locus: HSVDJSAT). On first examination, it is quite clear
that the sequence contains a TR with a 9- or 10-nucleotide
period that is highly conserved (Figure 3a, conserved
columns are coloured red). Upon closer examination, the
9- and 10-nucleotide copies frequently alternate to form
a period of 19 nucleotides which we refer to as the 2×
pattern (Figure 3b). Furthermore, frequent alternations
of the 2× pattern form a 38-nucleotide period, which we
refer to as the 4× pattern (Figure 3c). Regular gapping
occurs in both the 2× and the 4× pattern alignments. The
11× pattern captures the remaining structure (Figure 3d
and 3e).

Our algorithm detects important multiples at 2×, 4×,
5×, 6× and 11×. Three patterns, CTGGGAGAGG,
CTGGGAGAG, and CTGGGATTG, primarily compose
the region. The 10-nucleotide pattern primarily occurs
every other copy. The two 9-nucleotide patterns primarily
occur every fourth copy. The 2× and 4× alignments cap-
ture these pattern structures. Their significance is visible

by observing additional column colouring, a reflection of
increased conservation. The 5× and 6× alignments offer
alternative alignments to the 4× alignment and are echoes
of the 11× pattern alignment.

The algorithm detects a period for an 11× pattern;
a 104-nucleotide TR. The 11× alignment produces a
better alignment, but still considerable gapping occurs
(Figure 3d). However, a slightly different pattern produces
a very good alignment in which very little gapping occurs
(Figure 3e).

We believe that this sequence is a good illustration of
the success of our techniques for characterizing MPTR re-
gions by isolating base patterns, detecting patterns across
copies of the base pattern and aligning and displaying the
pattern structures in a easily understood manner.

CASE EXAMPLE III. A yeast sequence illustrates
identification of distant regions of similarity (Bussey et
al., 1995, GenBank Locus: NC 001133; Saccharomyces
cerevisiae chromosome I). Our preliminary analysis uses
words of length six (k = 6) and reveals six distinct regions
of similarity. We discuss three.

The first two are two FLO genes located at opposite ends
of this chromosome; FLO9 at positions 24 to 28 kbp and
FLO1 at positions 204 to 208 kbp. Each has a shadow
located 10 to 14 kbp distal to its own location. Benson
(1999) observed several similar TRs associated with the
FLO1 gene, the FLO9 gene and FLO9 shadow. Our TR
analysis identifies the same TR clusters. In addition, we
identify regions of similarity which link each gene with its
shadow. Analysis of the FLO9 and its shadow is shown in
Figure 4 (left).

The third is a gene and pseudogene cluster bookmarked
by LTRs 5.6 kbp apart (Figure 4 right). The cluster has
many regions of similarity, many of which are linked to
the Prm9p gene.

Analysis using larger windows spans greater distances.
Using a window of k = 12, we identify a region of
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10 20
| |

>1X:{c tgdsarwkr}*
1199 c tgggagagg 1208
1209 c tggga ttg 1217
1218 c tgggagagg 1227
1228 c tgggaga g 1236
1237 c tgacagagg 1246
1247 c tggga ttg 1255
1256 c tgggaaagg 1265
1266 c tgggaga g 1274
1275 c tgggagagg 1284
1285 cctgggaga g 1294
1295 c tgggagagg 1304
1305 c tgtga ttg 1313
1314 c tgggagagg 1323
1324 c tgggagagg 1333
1334 c tgggaga g 1342
1343 c tgggagagg 1352
1353 c tgaga ttg 1361
1362 c tggga agg 1370
1371 c tgggaga g 1379
1380 c tgggagagg 1389
1390 c tgggaga g 1398
1399 c tgggagagg 1408
1409 c tgtga ttg 1417
1418 c tgggagagg 1427
1428 c tgggagagg 1437
1438 c tgggaga g 1446
1447 c tgggagagg 1456
1457 c tgaga ttg 1465
1466 c tgggaaagg 1475
1476 c tgggaga g 1484
1485 c tgggagagg 1494
1495 c tgggaga g 1503
1504 c tgggagagg 1513
1514 c tgggagaga 1523
1524 c tgggaaaga 1533
1534 c tgggaaaga 1543

|
10

(a)          
              

10 20 30
| | |

1X: {c tgdsarwkr}*
>2X:{[ctgdsarwgr|c tgdsarwr]}*
1199 ctgggagagg c tgggattg 1217
1218 ctgggagagg c tgggagag 1236
1237 ctgacagagg c tgggattg 1255
1256 ctgggaaagg c tgggagag 1274
1275 ctgggagagg cctgggagag 1294
1295 ctgggagagg c tgtgattg 1313
1314 ctgggagagg 1323
1324 ctgggagagg c tgggagag 1342
1343 ctgggagagg c tgagattg 1361
1362 c tgggaagg 1370
1371 c tgggagag 1379
1380 ctgggagagg c tgggagag 1398
1399 ctgggagagg c tgtgattg 1417
1418 ctgggagagg 1427
1428 ctgggagagg c tgggagag 1446
1447 ctgggagagg c tgagattg 1465
1466 ctgggaaagg c tgggagag 1484
1485 ctgggagagg c tgggagag 1503
1504 ctgggagagg 1513
1514 ctgggagaga 1523
1524 ctgggaaaga c tgggaaag 1542

| |
10 20

                      

10 20 30 40 50
| | | | |

1X: {c tgdsarwkr}*
2X:{[ctgdsarwgr|c tgdsarwr]}*

>4X:{[ctggsattr|ctggsaragr|c tggsarar|ctggsaragr]}*
1199 ctgggagagg 1208
1209 ctgggattg ctgggagagg c tgggagag ctgacagagg 1246
1247 ctgggattg ctgggaaagg c tgggagag 1274
1275 ctgggagagg cctgggagag ctgggagagg 1304
1305 ctgtgattg ctgggagagg 1323
1324 ctgggagagg c tgggagag ctgggagagg 1352
1353 ctgagattg c tgggaagg 1370
1371 c tgggagag 1379
1380 ctgggagagg c tgggagag ctgggagagg 1408
1409 ctgtgattg ctgggagagg 1427
1428 ctgggagagg c tgggagag ctgggagagg 1456
1457 ctgagattg ctgggaaagg c tgggagag 1484
1485 ctgggagagg c tgggagag ctgggagagg 1513
1514 ctgggagaga 1523
1524 ctgggaaaga c tgggaaag 1542

| | | | |
10 20 30 40 50

                        

10 20 30 40 50 60 70 80 90 100 110 120
| | | | | | | | | | | |

1X: {c tgdsarwkr}*
>11X:{[ctggsagagr|ctgtsattr|ctggsagagr|ctggsagagr|ctggsagar|ctggsagagr|ctgasattr|ctggsaagr|ctggsagar|ctggsagagr|c tggsagar]}*
1199 ctgggagagg ctgggattg ctgggagagg c tgggagag 1236
1237 ctgacagagg ctgggattg 1255
1256 ctgggaaagg ctgggagag ctgggagagg cctgggagag 1294
1295 ctgggagagg ctgtgattg ctgggagagg ctgggagagg ctgggagag ctgggagagg ctgagattg ctgggaagg ctgggagag ctgggagagg c tgggagag 1398
1399 ctgggagagg ctgtgattg ctgggagagg ctgggagagg ctgggagag ctgggagagg ctgagattg 1465
1466 ctgggaaagg ctgggagag ctgggagagg c tgggagag 1503
1504 ctgggagagg 1513
1514 ctgggagaga ctgggaaaga c tgggaaag 1542

| | | | | | | | | | | |
10 20 30 40 50 60 70 80 90 100 110 120

                                                                    

10 20 30 40 50 60 70 80 90 100 110 120
| | | | | | | | | | | |

1X: {c tgdsarwkr}*
>11X:{[ctggsagagr|ctgtsattr|ctggsagagr|ctggsagagr|ctggsagar|ctggsagagr|ctgasattr|ctggsaaagr|ctggsagar|ctggsagagr|c tggsagar]}*
1199 ctgggagagg ctgggattg ctgggagagg ctgggagag ctgacagagg ctgggattg ctgggaaagg ctgggagag ctgggagagg cctgggagag 1294
1295 ctgggagagg ctgtgattg ctgggagagg ctgggagagg ctgggagag ctgggagagg ctgagattg ctggga agg ctgggagag ctgggagagg c tgggagag 1398
1399 ctgggagagg ctgtgattg ctgggagagg ctgggagagg ctgggagag ctgggagagg ctgagattg ctgggaaagg ctgggagag ctgggagagg c tgggagag 1503
1504 ctgggagagg ctgggagaga ctgggaaaga ctgggaaag 1542

| | | | | | | | | | | |
10 20 30 40 50 60 70 80 90 100 110 120

                                     

 

(d)

(e)

(b)

(c)

HSVDJSAT 1x (10 bp).

HSVDJSAT 2x (19 bp).

HSVDJSAT 4x (38 bp).

HSVDJSAT 11x (104 bp): Pattern and alignment are generated by the algorithm.

HSVDJSAT 11x (104 bp): Pattern contains an A inserted at position 80.  The alignment shown is aligned by hand.

Fig. 3. This human sequence (GenBank locus: HSVDJSAT) contains a MPTR. (a)-(d) depict alignments generated by the algorithm. (e)
shows an alignment edited by-hand which uses a pattern similar to the pattern in (d); an A is inserted at position 80.

similarity between a Pau7 gene and an open reading
frame located 174 kbp apart (not shown). Also, the larger
window increased the identified similarity between the
FLO genes and their respective shadows but was not able
to link the FLO genes to one another.

This preliminary analysis is intriguing and by no means
complete. Though simple, it is powerful. Analysis using
larger windows can span greater distances, however, it
decreases the sensitivity of the algorithm. We believe
extensions to our technique will enable more complete

identification while retaining the sensitivity inherent with
small window sizes.

CONCLUSION
In this paper, we characterize complex repeat pattern
structures and present identification algorithms for
MPTRs and VLTRs which contain SSRs. In addition,
distant regions of similarity are identified using our
techniques.
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Fig. 4. Yeast Chromosome I Analysis. At left, the FLO9 gene (24 to 28 kbp) is linked to its shadow (11 to 14 kbp) by regions of similarity.
At right, the Prm9p gene (about 187 kbp) is linked to several pseudogenes. The gene cluster is bookmarked by LTRs about 6 kbp apart. A
region of similarity is two similar sequence regions and is denoted by two spikes linked by an arc. For convenience, the height of the arc and
the two spikes reflects the distance between the similar regions. The width of a spike denotes the range of sequence positions associated with
one half of a region of similarity.
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