
JavaGenes and Condor: Cycle-Scavenging Genetic 
Algorithms 

AI Globus 
MRJ Technology Solutions, Inc. at 

NASA Ames Research Center 
MS T27A 

Moffett Field, CA 94035 
(650) 604-4404 

globus @ nas.nasa.gov 

Eric Langhirt 
Sterling Software, Inc. at NASA Ames 

Research Center 
MS 258-6 

Moffett Field, CA 94035 
(650) 604-1843 

langhirt@ nas.nasa.gov 

Miron Livny 
Computer Sciences Department 

University of Wisconsin 

1210 West Dayton St. 
Madison, Wl 53706 

(608) 262-0856 
miron@cs.wisc.edu 

Ravishankar Ramamurthy 
Computer Sciences Department 

University of Wisconsin 

1210 West Dayton St. 
Madison, Wl 53706 

(608) 262-2252 
ravi @ cs.wisc.edu 

Marvin Solomon 
Computer Sciences Department 

University of Wisconsin 

1210 West Dayton St. 
Madison, Wl 53706 

(608) 262-1204 
solomon @ cs.wisc.edu 

Steve Traugott 
Sterling Software Inc., at NASA Ames 

Research Center 
MS 258-6 

Moffett Field, CA 94035 
(650) 604-4324 

stevegt @ nas.nasa.gov 

ABSTRACT 
A genetic algorithm code, JavaGenes, was written in Java and 
used to evolve pharmaceutical drug molecules and digital 
circuits. JavaGenes was run under the Condor cycle- 
scavenging batch system managing 100-170 desktop, desk- 
side, and rack-mounted SGI workstations. Genetic algorithms 
mimic biological evolution by evolving solutions to 
problems using crossover and mutation. While most genetic 
algorithms evolve strings or trees, JavaGenes evolves graphs 
representing (currently) molecules and circuits. Java was 
chosen as the implementation language because the genetic 
algorithm requires random splitting and recombining of 
graphs, a complex data structure manipulation with ample 
opportunities for memory leaks, loose pointers, out-of-bound 
indices, and other hard to find bugs. Java garbage-collection 
memory management, lack of pointer arithmetic, and array- 
bounds index checking reduces the frequency of  these bugs, 
substantially reducing development time. While a run-time 
performance penalty must be paid, the only unacceptable 
performance we encountered was using standard Java 
serialization to checkpoint and restart the code. This was fixed 
by a two-day implementation of  custom checkpointing. 
JavaGenes is minimally integrated with Condor; in other 
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words, JavaGenes must do its own checkpointing and I/O 
redirection. A prototype Java-aware version of  Condor was 
developed using standard Java serialization for 
checkpointing. For the prototype to be useful, standard Java 
serialization must be significantly optimized. JavaGenes is 
approximately 8700' lines of code and a few thousand 
JavaGenes jobs have been run. Most jobs ran for a few days. 
Results include proof that genetic algorithms can evolve 
directed and undirected graphs, development of a novel 
crossover operator for graphs, a paper in the journal 
Nanotechnology [3], and another paper in preparation. 

Keywords 
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1. INTRODUCTION 
This paper is a case study of running genetic a lgori thms 
written in Java under Condor. To understand the experience 
and results, it is necessary to have some understanding of bo th  
genetic algorithms and Condor. Since this paper is written for 
the Java Grande 2000 conference, we expect readers to 
understand the Java programming language and run-time 
environment.  

1.1 Genetic Algorithms 
Genetic algorithms seek to mimic natural evolution's abi l i ty 
to produce highly functional objects. Natural evolut ion 
produces organisms. Genetic algorithms produce sets of  
parameters, programs, molecular designs, and many other 
structures. Genetic algorithms usually solve problems by: 
• Randomly generating a population of indiv idual  

potential solutions. 

• For each new generation, repeatedly selecting parent 
individuals at random with a bias towards better ind iv idua ls  
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and applying transmission operators to produce children. 
Transmission operators include: 

1. Crossover: each of two parents is divided into 
two parts and one part from each parent is 
combined into a child. 

2 .  Mutation: a single "parent" is randomly 
modified to generate a child. 

3. Reproduction: a single "parent" is copied into 
the new generation. 

• Continuing until an acceptable solution is found or 
exhaustion sets in. 

A key issue is what constitutes "better individuals." This is 
determined by a "fitness function." The fitness function takes 
individuals (strings, trees, or graphs) as input and returns a 
number representing the fitness of that individual. 

Genetic algorithms differ in their representation of solut ions.  
Bit string representations were used in the first genetic 
algorithms [5], but arrays of floating point numbers, special 
symbols that generate circuits [9], robot commands [13], and 
many other symbols may be found in the literature. Strings 
may be of fixed or variable length. Trees can also be evolved 
[6]. This is usually called genetic programming, because trees 
are particularly useful for representing computer programs. 
Many molecules contain cycles, which chemists call rings, and 
strings and trees don't contain cycles. Therefore, we took the 
unusual approach of evolving graphs. Graphs are a set of  
vertices (for example, atoms) and a set of  edges (for example, 
bonds), each of which connects two vertices. In this paper, the 
term graph does not refer to a two dimensional image used for 
data presentation. 

Evolving graphs involves randomly splitting arbitrary graphs 
into two fragments and then combining fragments. Splitting a 
complex graph, such as morphine involves data structure 
manipulations that can easily result in various bugs. Java was 
chosen as the implementation language to minimize these 
problems. 

Morphine  

0 

O 

O 

JavaGenes has been used for pharmaceutical drug and digital  
circuit design. One approach to drug design is to find 
molecules similar to good drugs. Ideally, a candidate 
replacement drug is sufficiently similar to have the same 
beneficial effect, but is different enough to avoid negative side 
effects. To use JavaGenes for similarity-based drug discovery 

we need a good similarity measure that can score any molecule. 
[2] defined such a similarity measure, all-atom-pairs-shortest- 
path, and searched a large database for molecules similar to 
diazepam. We use a closely related similarity technique to 
evolve a population of molecules towards a target drug 
molecule. 

For an excellent review of genetic algorithms and related 
techniques as of  Spring 1997, see [1]. 

1.2 Condor 
Genetic algorithms have the fortunate property of be ing  
embarrassingly parallel, because fitness function evaluation is 
usually the most time-consuming step in the genetic 
algorithm, and there is no dependency between fitness 
function evaluations. Not only can many fitness funct ion 
evaluations be conducted in parallel, but since genetic 
algorithms are statistical, it is usually necessary to make many 
runs to support a hypothesis. In our work, we usually run 31 
jobs with the same input parameters, each job differing only in 
the random number seed. This provides completely trivial 3 1 
way parallelism. Furthermore, we are usually running several 
experiments at the same time. Thus, it is not uncommon for our 
project to run 100-200 jobs simultaneously. It's also quite 
easy to implement parallel fitness function evaluation within a 
single job, although we haven't found that to be necessary yet. 

Embarrassingly parallel programs are a natural match for 
Condor [7]. Condor is a software system that creates a High 
Throughput Computing [8] environment by effectively 
harnessing the power of a cluster of  UNIX workstations on a 
network. Although Condor can manage a dedicated cluster of  
workstations, a key appeal of Condor is its ability to 
effectively harness non-dedicated, preexisting resources in a 
distributed ownership setting such as machines sitting on  
people's desks in offices and labs. We ran JavaGenes on the 
NAS Condor PO01. NAS is the primary NASA supercomputer 
center [10]. Approximately 200 workstations, purchased and 
used for software development, visualization, email, document  
preparation, etc., are available for batch processing during idle 
times. The Condor daemons watch these 200 workstations. 
When a workstation has been idle for 2 hours, a job from the 
batch queue is assigned to the workstation and will run unt i l  
the workstation detects a keystroke, mouse motion, or 
relatively high non-Condor CPU usage. At that point, the j ob  
will be removed from the workstation and placed back on the 
batch queue. As mentioned before, it's not uncommon to have 
a few hundred JavaGenes jobs in the queue. 

Because a JavaGenes job running under Condor may be 
vacated (removed from the workstation) at any time, the j o b  
must save state (checkpoint) periodically. Condor provides a 
generic checkpoint/restart facility, but for reasons discussed 
below, we could not use this facility for JavaGenes. 
Checkpointing was initially implemented using standard Java 
serialization. Conceptually, this is relatively simple since the 
state of  a genetic algorithm is simply the current population.  
However, standard Java serialization turned out to be a serious, 
but fixable, performance problem, as others have [12]. See the 
section below on serialization oerformance. 

2. APPROACH 
JavaGenes was written in 100% pure Java, version 1.1. There 
were approximately 8670 lines of source, not including the 
graph layout code (Jiggle) provided by Daniel [11]. The graph 
layout code was used to arrange graph vertices in three 
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dimensions for viewing. We will now discuss some of  the 
objects implemented in JavaGenes. .  

2 .1  O b j e c t s  
The nouns used to describe genetic algorithms all became 
classes, including the following: 

• Population -- an array of  Individuals. 

• Individual -- an Evolvable and its fitness. 

• Evolvable (nonstandard terminology) -- a data structure 
capable of being evolved by ChildMaker objects. Currently, 
only Graph plus subclasses Molecule and 
DigitalLogicGraph are implemented, but plans for arrays and 
trees exist. 

• FitnessFunction - these objects have a 'double  
evaluate(Evolvable)' method that implements the desired 
fitness function. General purpose Fi tnessFunct ion  
subclasses included weighted sum (of other  
FitnessFunctions) and MultiplyBy. 

• Breeder (nonstandard terminology) -- a class with a 
'Population breed(Population)'  method that evolves one 
population into another. 

• ChildMaker (nonstandard terminology) - - t hese  objects  
tell a Breeder how many parents they want (two for 
crossover, one for mutation), then take an array of  parents  
and produce an array of  children. 

Another set of  classes are responsible for creating, 
manipulating, and managing graphs: 

• Graph, along with subclasses Molecule and 
DigitalLogicGraph. 

• Vertex, along with subclasses Atom, Digitallnput,  
DigitalOutput, and DigitalDevice (or, and, xor, etc.). 

• Edge, along with subclasses Bond and DigitalWire. 

• BrokenGraph -- responsible for a graph fragment after 
crossover splits a graph. 

• BrokenEdge -- responsible for an edge broken dur ing  
spli t t ing.  

• VertexProvider and EdgeProvider -- these classes are used 
during graph generation and mutation to provide random 
vertices and edges of various types. 

In addition, there are several convenience classes: 

• Parameters, along with subclasses MoleculeParameters 
and DigitalLogicParameters. These objects hold all the 
values that are typically varied from job to job; for example: 
population size, maximum number of generations, f i tness 
function, etc. Most of  the JavaGenes class files are kept in a 
jar file, but the parameter files are compiled for each set o f  
jobs and placed earlier in the CLASSPATH. This provides a 
flexible mechanism (taking advantage of Java dynamic 
loading) to set input parameters without writing an inpu t  
file parser. 

• InputTokenizer and OutputTokenizer -- these are used to 
save and restore state. They can read and write integers, 
doubles, etc. 

2 . 2  F r e e  C o d e  
A certain amount of  Java code is available for free on the Web. 
We took advantage of  this in two cases. First, the Student T- 
Test code used in the statistics class was supplied by NWP 

Associates, Inc. This was a minor, but helpful, convenience. 
Second, and more important, one must examine the evolved 
graphs to understand the results. To examine a graph, it must  
be laid out in two or three dimensions for viewing. In other 
words, xyz locations for each vertex must be chosen. The graph 
layout problem is non-trivial. In fact, it is very difficult. 
Fortunately, Daniel Tunkelang made his Jiggle Java code [11] 
available, and Jiggle has done an excellent job of laying out  
graphs evolved by JavaGenes. Integration of the two packages 
was quick and easy. Only one bug was found in Jiggle (1615 
lines of source). That bug was an infinite loop, which was 
found and fixed in a little over an hour. 

2 . 3  D e v e l o p m e n t  Environment 
JavaGenes was developed on a Compaq laptop runn ing  
Windows 95. Windows was used because the main developer 
cannot type for significant lengths of time and uses a voice 
recognition system. The first development environment was 
Visual Cafe. This was abandoned because the debugger was 
quite buggy. The second development environment was 
Supercede. Various problems required periodic re-installation, 
which in turn caused serious problems with Windows 95. 
Finally, Borland JBuilder was tried and there have been 
relatively few problems. CodeWarrior was used occasionally 
for specific debugging problems. Although some compilers 
are a bit pickier than others, no significant problems were 
encountered moving the code from one development  
environment to another; or moving the source or class files to  
the SGI version of the JDK to run experiments. 

2 . 4  C o n d o r  S u p p o r t  f o r  J a v a  
Condor runs each job in an environment called a "universe." 
The two most important universes are called "Standard" and 
"Vanilla." Standard jobs are programs that have been l inked 
with a special Condor version of the C runtime library that  
mimics the effects of most UNIX system calls and adds two 
kinds of  enhanced functionality: remote system calls and 
checkpointing.  

Remote system calls provide a uniform environment to a j o b  
running on any workstation on a network. The Condor runtime 
library replaces system calls with remote procedure calls to a 
shadow process running on the workstation that submitted the 
job. The shadow makes the system call on behalf of the remote 
process and returns the results. For example, the open system 
call sends the name of the desired file to the shadow, which 
searches for it on the submitter's home workstation. 
Subsequent r e a d  and w r i t e  calls access that file over the 
network. The result is that the job sees the same file-system 
environment regardless of  where it runs, and all file output is 
captured in files on the submitting workstation. 

Checkpointing is also implemented by the Condor runtime 
library. Each Condor job is run under the control of a starter 
process. When a workstation needs to be appropriated for 
another purpose, the starter sends a terminate signal to the 
application process. The Condor library catches this signal 
and sends a complete dump of  the state of the process back to 
the submitting machine, where it awaits its turn to be restarted 
on another worker machine. This checkpoint file includes a 
binary dump of the entire virtual memory image of the process. 
It also includes a record (collected by the remote system calls) 
of the current state of the process' interaction with the 
operating system kernel. For example, for each file opened by  
the job, the checkpoint file records the name of the file and the 
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current offset within the file (the "seek pointer"). Condor can 
also be instructed to send a "checkpoint" signal to the starter 
at periodic intervals. The starter responds to this signal by  
suspending the application, checkpointing it, and then 
allowing it to continue. Under some circumstances, Condor 
may send other signals to the starter, asking it to suspend the 
application, resume it, or kill it without giving it a chance to 
checkpoint. 

Neither remote system calls nor checkpointing require any 
source-level modifications to the application program, but  
they do require it to be re-linked with a special version of the 
system libraries. They also impose some restrictions on the set 
of system services available to the job. In particular, Condor 
does not currently support Standard jobs that use kernel-level 
threads. Programs that cannot be re-linked or that do not meet 
these requirements must be run in the Vanilla universe. An 
arbitrary executable program can be run as a Vanilla job, bu t  
any I/O operations will access the file system of whatever 
machine the job happens to be running on, and if  the 
workstation is pre-empted (for example, by an interactive 
user), the job is simply killed and restarted from the beg inn ing  
on another workstation. At NAS, in general, Condor jobs do 
not have permission to use the local disk on the worker 
workstation. 

Most of the JavaGenes runs described in this paper used the 
Vanilla universe. The Java Virtual Machine (JVM) from SGI 
and Sun was available to us only in binary (pre-linked) form. 
We tried the Kaffe open-source JVM, but found that it had 
bugs that prevented us from running JavaGenes correctly for 
more than a few generations. Moreover, both JVM's use certain 
facilities - - n o t a b l y  kernel-level threads -- that are not  
supported in Condor Standard jobs. Fortunately, the remote 
system call facility was not necessary in our environment,  
since we use the Network File System (NFS), which provides a 
uniform interface to files from all workstations. In th is  
environment, the "job" submitted to Condor is a tel script that  
calls the JVM, with the name of  the application class supplied 
as a command-line argument. From the point or" view of the 
JVM, the class files that constitute the application are s imply 
data files that appear to be on the local disk of  the worker 
machine through the magic of NFS. Similarly, NFS is used to 
create output files on the submitting workstation. 

The lack of automatic checkpointing was a more serious 
problem. As mentioned earlier, we tried two different 
application-specific checkpointing strategies. Both involved  
periodically invoking a checkpoint method that saves the 
state of the computation into a file. JavaGenes invokes this  
method after each new child is created. If  a workstation is 
preempted before the program finishes, it is killed and 
restarted "from the beginning." However, at startup, JavaGenes 
jobs look for a checkpoint file (via NFS) so they can initialize 
state and continue from the last checkpoint. Thus, a job that is 
killed and restarted loses only the work it did between its most  
recent checkpoint and the time it was killed. 

To provide better support for JavaGenes and other Java Grande 
applications, the Condor project has been developing a Java 
universe. To run under this universe, a Java program must  
implement the Checkpointable interface: 

public interface Checkpointable extends 
Serializable { 
void start (String[] arguments) ; 
void restart () ; 

void beforeCheckpoint () ; 
void afterCheckpoint () ; 
void setCheckpointer(Checkpointer c); 

} 

Each universe has its own kind of  starter. The starter for the 
Java universe . is written in Java and extends 
j a v a .  l a n g .  C l a s s L o a d e r .  A "job" in the Java universe 
is a class file. We assume that each worker machine has a JVM 
installed locally, but otherwise do not require any network file 
system or uniform file environment. The Java starter loads all 
required classes over the network by communicating with a 
Java version of the shadow using the Java RMI (Remote 
Method Invocation) interface. The Java starter creates an 
instance p r o g  of the application program class and calls 
either prog.start() orprog.restart(),depending 
on whether there is an existing checkpoint file from an earlier 
run of  this job. The starter also creates an instance c p  of a 
Checkpointer object, passing p r o g  to its constructor, and 
calling prog.setCheckpointer(cp) so that prog 
and cp can refer to each other. Prog can also access cp 
through static methods in Checkpointer as long as there is 
only one instance of Checkpointer. When the starter receives a 
terminate or checkpoint signal, it calls 
cp. checkpointWhenPossible (), which sets a flag 
indicating that a checkpoint has been requested. It does not  
force an immediate checkpoint because the application object 
may not be in a "quiescent" state in which checkpointing is 
convenient. The application itself is expected to call 
c p .  o k  () periodically, If no checkpoint has been requested, 
this method simply returns without doing anything. However, 
if  a checkpoint request is pending, the checkpointer uses Java 
serialization to save the state of the object by calling 
writeObj ect (prog). It also calls 
p r o g .  b e f o r e C h e c k p o i n t  () before the checkpoint and 
prog. afterCheckpoint ( ) after. 

The w r i t e Ob j e c t method saves all of the non-transient 
fields of  the object, as well as all objects pointed to by those 
fields, all fields of those objects, etc. It does not, however, save 
anything from the runtime stack -- that is, the values of local 
variables. It is the responsibility of  the application to update 
the non-transient fields of the application object to reflect the 
complete state of  the application either before calling c p .  o k 
or in the method b e  f o r e C h e c k p o i n t .  I f  these updates are 
costly, they should be in b e  f o r e C h e c k p o i n t  because 
this method is only called if  the checkpoint is actually 
performed. The beforeCheckpoint and 
afterCheckpoint methods also provide hooks for 
application-specific performance monitoring, such as 
determining the amount of time spent checkpointing 

The Java universe provides several advantages over the 
Vanilla universe for Java applications: 

• It supports remote system calls, so that it does not depend 
on the availability of a network file system (and uniform 
conventions for mount points). 

• It automates more of the tasks necessary for 
checkpointing and recovery. 

• It allows Condor to decide when to checkpoint a job, only  
requiring the application code to indicate when a checkpoint  
is safe. 
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• It allows a job to migrate among hardware platforms 
during its lifetime. A job in the Java universe is comprised 
of class files and a checkpoint file, all of which are platform- 
independent. 

A prototype version of the Java universe successfully ran 
JavaGenes but it was not stable enough for production use at 
the time the experiments described in this paper were run. 
Also, the Java universe uses Java serialization to checkpoint  
jobs. Our experience indicates that standard Java serialization 
is too slow for JavaGenes to use. 

3. RESULTS 
The bottom line for JavaGenes on Condor was to run many 
jobs to conduct the experiments necessary to start 
understanding the application of genetic algorithms to graphs. 
In this, we were successful. Thousands of  jobs were 
successfully run, one genetic algorithm paper was pub l i shed  
[3], and another is in preparation [4]. JavaGenes does a fairly 
good job of  evolving pharmaceutical drug molecules, but can 
only evolve trivial circuits so far. We now examine the pros 
and cons of  using Java for our application. 

3.1 Java Con 
3.1.1 Java Serialization Performance 
It was discovered that creating serialization files and reading 
them to implement checkpoint/restart could take as much as 
three hours wall clock time. Although Java serialization is 
extremely general-purpose, any object can be serialized and 
the format is CPU independent, it is difficult to unders tand 
why three hours is needed to serialize a few htindred graphs, 
some ancillary objects, and a few thousand real numbers (the 
data). In any ease, jobs under these conditions made no  
progress. In addition, the serialization files were around 25 
MB and there were often two files per job. Because jobs could 
be interrupted in the middle of serialization, JavaGenes wrote 
state information into a temporary file and, when finished, 
moved it to the permanent location. With long serialization 
times, most jobs were interrupted in the middle of writing the 
serialization file. Thus, the full checkpoint file and a partial 
checkpoint file were on disk most of  the time. With hundreds  
of jobs, disk usage became substantial. To solve the 
performance problem, Java serialization was abandoned and 
new code written to save the state of the computation and read 
it back from disk. Development took approximately two days 
and one bug was found and fixed a few days after development  
was "complete." Most checkpoint files are now less than 1 MB. 
Checkpoint write and read usually take around 10 seconds, bu t  
can require up to about five minutes (including network 
delays). This was the only performance problem that required 
changes to the code. 

3.1.2 Checkpointing with Serialization 
Besides having performance problems, checkpointing with 
serialization must be handled with care. In particular, it is 
sometimes error prone. It is essential to make sure that all of  
the necessary program state is saved. In the case of genetic 
algorithms, nearly all the state that must be saved is contained 
in the population. However, i f  checkpointing is allowed in the 
middle of constructing a new generation, then the loop index 
indicating how much of  the next generation has been 
constructed must also be saved. Also, it is difficult to write 
code that can be interrupted at any time and saved to disk. 
Therefore, checkpointing is restricted to those points in the 

code where analysis can prove that saving and restoring will 
not cause problems. 

One other fairly serious problem arose. In the ini t ia l  
implementation, JavaGenes started a new random number  
generator after restart. Because of this, evolution did not  
follow the same path taken after the last chzckpoint. In other 
words, the genetic algorithm was controlled by different 
random numbers and therefore searched a different part of  the 
search space. That made the algorithm appear more efficient 
than it was, because the number of generations to find a 
specific target was used as the efficiency measure. Consider the 
case where a job ran for 100 generations up to a checkpoint  
and 20 more generations before being killed. When the job was 
restarted, 20 different generations would be constructed and 
one of  the new generations, say the 10th, might find the target. 
Therefore, it would appear as i f  the target was found in 110 
generations, but actually 130 were tried. Thus, jobs migh t  
repeatedly search the region around the last checkpoint and 
stop if  a solution were found, reporting an inaccurately small  
number of  generations to completion. It was therefore 
necessary, at job restart time, to restart the random number  
generator with the same seed and then execute the random 
number generator the number of  times it was executed up to 
the last checkpoint. This should have insured that a job would 
follow the same evolutionary path regardless of  checkpoint  
history. Unfortunately, although this fix worked properly 
when a job was restarted on the same machine, different results  
were observed in normal execution on the Condor pool, where 
jobs frequently move between machines. These changing  
evolutionary paths were presumably caused by differences in  
the Java libraries on different versions of the SGI operat ing 
system. This may change the order of certain lists in JavaGenes 
and cause the same random number to pick different i tems 
from these lists. Fortunately, only about 6% of the generat ions 
were repeated once checkpointing performance was improved, 
suggesting that the effect was fairly minor. Because 
checkpointing was fast, computations would usually proceed 
to the next checkpoint before being restarted. 

3.1.3 JIT Essential 
Some very simple tests indicated that jobs run under the SGI 
just-in-time compiler were approximately 20 times faster than 
when the JIT was disabled. 

3.1.4 Double Read/Write Java Libraries Bug 
It was discovered that the standard Java libraries will write ou t  
certain double numbers in an ASCII form that is not tolerated 
as input by the same libraries. In particular, 
System.out.write ( .... + aDouble) will write out 

values such as NaN and Infinity, bu t  
D o u b l e  ( S t r i n g )  will throw an exception if  these s t r ings 
are passed as the argument. 

3.2 Java Pro 
3.2.1 Porting 
We never had any problems porting the source or class files 
between Java environments. 

3.2.2 Bugs 
Compared to developing in C or C++, there were few bugs and 
they were easy to find and fix. Basically, almost all the bugs  
were logic problems, most of  which were found and fixed while 

-single stepping through the code with the graphical debuggers  
provided by the IDEs. The uncontrolled pointers, index out of  
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range, memory management, and similar bugs extremely 
common in the primary programmer's 20 year C and C++ 
development experience almost never occurred. These bugs are 
also, usually, quite difficult to find. Reducing the number of  
bugs dramatically lowered development time, at least 
subjectively. 

3.2.3 Memory Management 
Memory management was trivial. Only one bug was 
encountered when we neglected to create a new xyz array in 
class Vertex during cloning. Before the bug was fixed, 
after graph layout, all the atoms were displayed at a single 
point. 

3.2.4 Performance 
Other than the serialization problem, performance was not a 
major issue. This was, in part, because Condor supplies us with 
lots of nearly free CPU cycles, but also because Java 
performance has been reasonable (although certainly not  
exceptional). 

In short, we were happy with Java for this application. While 
there is some run-time penalty, more rapid code development 
and more reliable end-product software is well worth the extra 
CPU cycles. Since cycles are always getting cheaper, and 
programmers and support staff seem to be getting more 
expensive, we expect Java to do well in the coming years. 

4. FUTURE WORK 
The main task before JavaGenes is to incorporate more 
chemical knowledge into the fitness functions, because 
JavaGenes usually evolves molecules that are not  
physiologically stable and that would be difficult, or perhaps 
impossible, to synthesize. To support more Java applications 
under Condor and more diverse environments, the prototype 
Condor Java universe described in the section on Condor 
Support for Java needs to be brought up to production status. 
The performance problem with Java serialization needs to be 
solved more generally, or applications must reimplement 
serialization. An alternative approach would be to rebuild a 
Java Virtual Machine as a Standard universe job. This 
approach has the advantage of requiring less hand- 
modification of Java applications, but requires resolution of  
certain technical and licensing issues. 
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