
JavaGenes and Condor: Cycle-Scavenging Genetic
Algorithms

AI Globus
MRJ Technology Solutions, Inc. at

NASA Ames Research Center
MS T27A

Moffett Field, CA 94035
(650) 604-4404

globus @ nas.nasa.gov

Eric Langhirt
Sterling Software, Inc. at NASA Ames

Research Center
MS 258-6

Moffett Field, CA 94035
(650) 604-1843

langhirt@ nas.nasa.gov

Miron Livny
Computer Sciences Department

University of Wisconsin

1210 West Dayton St.
Madison, Wl 53706

(608) 262-0856
miron@cs.wisc.edu

Ravishankar Ramamurthy
Computer Sciences Department

University of Wisconsin

1210 West Dayton St.
Madison, Wl 53706

(608) 262-2252
ravi @ cs.wisc.edu

Marvin Solomon
Computer Sciences Department

University of Wisconsin

1210 West Dayton St.
Madison, Wl 53706

(608) 262-1204
solomon @ cs.wisc.edu

Steve Traugott
Sterling Software Inc., at NASA Ames

Research Center
MS 258-6

Moffett Field, CA 94035
(650) 604-4324

stevegt @ nas.nasa.gov

ABSTRACT
A genetic algorithm code, JavaGenes, was written in Java and
used to evolve pharmaceutical drug molecules and digital
circuits. JavaGenes was run under the Condor cycle-
scavenging batch system managing 100-170 desktop, desk-
side, and rack-mounted SGI workstations. Genetic algorithms
mimic biological evolution by evolving solutions to
problems using crossover and mutation. While most genetic
algorithms evolve strings or trees, JavaGenes evolves graphs
representing (currently) molecules and circuits. Java was
chosen as the implementation language because the genetic
algorithm requires random splitting and recombining of
graphs, a complex data structure manipulation with ample
opportunities for memory leaks, loose pointers, out-of-bound
indices, and other hard to find bugs. Java garbage-collection
memory management, lack of pointer arithmetic, and array-
bounds index checking reduces the frequency of these bugs,
substantially reducing development time. While a run-time
performance penalty must be paid, the only unacceptable
performance we encountered was using standard Java
serialization to checkpoint and restart the code. This was fixed
by a two-day implementation of custom checkpointing.
JavaGenes is minimally integrated with Condor; in other

Permission to make digital or hard copies of all or part of this work Ibr
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the lull citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Java 2000 San Francisco CA USA
Copyright ACM 2000 1-58113-288-3/00/6...$5.00

words, JavaGenes must do its own checkpointing and I/O
redirection. A prototype Java-aware version of Condor was
developed using standard Java serialization for
checkpointing. For the prototype to be useful, standard Java
serialization must be significantly optimized. JavaGenes is
approximately 8700' lines of code and a few thousand
JavaGenes jobs have been run. Most jobs ran for a few days.
Results include proof that genetic algorithms can evolve
directed and undirected graphs, development of a novel
crossover operator for graphs, a paper in the journal
Nanotechnology [3], and another paper in preparation.

Keywords
Java, Condor, genetic algorithms.

1. INTRODUCTION
This paper is a case study of running genetic a lgori thms
written in Java under Condor. To understand the experience
and results, it is necessary to have some understanding of bo th
genetic algorithms and Condor. Since this paper is written for
the Java Grande 2000 conference, we expect readers to
understand the Java programming language and run-time
environment.

1.1 Genetic Algorithms
Genetic algorithms seek to mimic natural evolution's abi l i ty
to produce highly functional objects. Natural evolut ion
produces organisms. Genetic algorithms produce sets of
parameters, programs, molecular designs, and many other
structures. Genetic algorithms usually solve problems by:
• Randomly generating a population of indiv idual

potential solutions.

• For each new generation, repeatedly selecting parent
individuals at random with a bias towards better ind iv idua ls

134

and applying transmission operators to produce children.
Transmission operators include:

1. Crossover: each of two parents is divided into
two parts and one part from each parent is
combined into a child.

2 . Mutation: a single "parent" is randomly
modified to generate a child.

3. Reproduction: a single "parent" is copied into
the new generation.

• Continuing until an acceptable solution is found or
exhaustion sets in.

A key issue is what constitutes "better individuals." This is
determined by a "fitness function." The fitness function takes
individuals (strings, trees, or graphs) as input and returns a
number representing the fitness of that individual.

Genetic algorithms differ in their representation of solut ions.
Bit string representations were used in the first genetic
algorithms [5], but arrays of floating point numbers, special
symbols that generate circuits [9], robot commands [13], and
many other symbols may be found in the literature. Strings
may be of fixed or variable length. Trees can also be evolved
[6]. This is usually called genetic programming, because trees
are particularly useful for representing computer programs.
Many molecules contain cycles, which chemists call rings, and
strings and trees don't contain cycles. Therefore, we took the
unusual approach of evolving graphs. Graphs are a set of
vertices (for example, atoms) and a set of edges (for example,
bonds), each of which connects two vertices. In this paper, the
term graph does not refer to a two dimensional image used for
data presentation.

Evolving graphs involves randomly splitting arbitrary graphs
into two fragments and then combining fragments. Splitting a
complex graph, such as morphine involves data structure
manipulations that can easily result in various bugs. Java was
chosen as the implementation language to minimize these
problems.

Morphine

0

O

O

JavaGenes has been used for pharmaceutical drug and digital
circuit design. One approach to drug design is to find
molecules similar to good drugs. Ideally, a candidate
replacement drug is sufficiently similar to have the same
beneficial effect, but is different enough to avoid negative side
effects. To use JavaGenes for similarity-based drug discovery

we need a good similarity measure that can score any molecule.
[2] defined such a similarity measure, all-atom-pairs-shortest-
path, and searched a large database for molecules similar to
diazepam. We use a closely related similarity technique to
evolve a population of molecules towards a target drug
molecule.

For an excellent review of genetic algorithms and related
techniques as of Spring 1997, see [1].

1.2 Condor
Genetic algorithms have the fortunate property of be ing
embarrassingly parallel, because fitness function evaluation is
usually the most time-consuming step in the genetic
algorithm, and there is no dependency between fitness
function evaluations. Not only can many fitness funct ion
evaluations be conducted in parallel, but since genetic
algorithms are statistical, it is usually necessary to make many
runs to support a hypothesis. In our work, we usually run 31
jobs with the same input parameters, each job differing only in
the random number seed. This provides completely trivial 3 1
way parallelism. Furthermore, we are usually running several
experiments at the same time. Thus, it is not uncommon for our
project to run 100-200 jobs simultaneously. It's also quite
easy to implement parallel fitness function evaluation within a
single job, although we haven't found that to be necessary yet.

Embarrassingly parallel programs are a natural match for
Condor [7]. Condor is a software system that creates a High
Throughput Computing [8] environment by effectively
harnessing the power of a cluster of UNIX workstations on a
network. Although Condor can manage a dedicated cluster of
workstations, a key appeal of Condor is its ability to
effectively harness non-dedicated, preexisting resources in a
distributed ownership setting such as machines sitting on
people's desks in offices and labs. We ran JavaGenes on the
NAS Condor PO01. NAS is the primary NASA supercomputer
center [10]. Approximately 200 workstations, purchased and
used for software development, visualization, email, document
preparation, etc., are available for batch processing during idle
times. The Condor daemons watch these 200 workstations.
When a workstation has been idle for 2 hours, a job from the
batch queue is assigned to the workstation and will run unt i l
the workstation detects a keystroke, mouse motion, or
relatively high non-Condor CPU usage. At that point, the j ob
will be removed from the workstation and placed back on the
batch queue. As mentioned before, it's not uncommon to have
a few hundred JavaGenes jobs in the queue.

Because a JavaGenes job running under Condor may be
vacated (removed from the workstation) at any time, the j o b
must save state (checkpoint) periodically. Condor provides a
generic checkpoint/restart facility, but for reasons discussed
below, we could not use this facility for JavaGenes.
Checkpointing was initially implemented using standard Java
serialization. Conceptually, this is relatively simple since the
state of a genetic algorithm is simply the current population.
However, standard Java serialization turned out to be a serious,
but fixable, performance problem, as others have [12]. See the
section below on serialization oerformance.

2. APPROACH
JavaGenes was written in 100% pure Java, version 1.1. There
were approximately 8670 lines of source, not including the
graph layout code (Jiggle) provided by Daniel [11]. The graph
layout code was used to arrange graph vertices in three

135

dimensions for viewing. We will now discuss some of the
objects implemented in JavaGenes. .

2 .1 O b j e c t s
The nouns used to describe genetic algorithms all became
classes, including the following:

• Population -- an array of Individuals.

• Individual -- an Evolvable and its fitness.

• Evolvable (nonstandard terminology) -- a data structure
capable of being evolved by ChildMaker objects. Currently,
only Graph plus subclasses Molecule and
DigitalLogicGraph are implemented, but plans for arrays and
trees exist.

• FitnessFunction - these objects have a 'double
evaluate(Evolvable)' method that implements the desired
fitness function. General purpose Fi tnessFunct ion
subclasses included weighted sum (of other
FitnessFunctions) and MultiplyBy.

• Breeder (nonstandard terminology) -- a class with a
'Population breed(Population)' method that evolves one
population into another.

• ChildMaker (nonstandard terminology) - - t hese objects
tell a Breeder how many parents they want (two for
crossover, one for mutation), then take an array of parents
and produce an array of children.

Another set of classes are responsible for creating,
manipulating, and managing graphs:

• Graph, along with subclasses Molecule and
DigitalLogicGraph.

• Vertex, along with subclasses Atom, Digitallnput,
DigitalOutput, and DigitalDevice (or, and, xor, etc.).

• Edge, along with subclasses Bond and DigitalWire.

• BrokenGraph -- responsible for a graph fragment after
crossover splits a graph.

• BrokenEdge -- responsible for an edge broken dur ing
spli t t ing.

• VertexProvider and EdgeProvider -- these classes are used
during graph generation and mutation to provide random
vertices and edges of various types.

In addition, there are several convenience classes:

• Parameters, along with subclasses MoleculeParameters
and DigitalLogicParameters. These objects hold all the
values that are typically varied from job to job; for example:
population size, maximum number of generations, f i tness
function, etc. Most of the JavaGenes class files are kept in a
jar file, but the parameter files are compiled for each set o f
jobs and placed earlier in the CLASSPATH. This provides a
flexible mechanism (taking advantage of Java dynamic
loading) to set input parameters without writing an inpu t
file parser.

• InputTokenizer and OutputTokenizer -- these are used to
save and restore state. They can read and write integers,
doubles, etc.

2 . 2 F r e e C o d e
A certain amount of Java code is available for free on the Web.
We took advantage of this in two cases. First, the Student T-
Test code used in the statistics class was supplied by NWP

Associates, Inc. This was a minor, but helpful, convenience.
Second, and more important, one must examine the evolved
graphs to understand the results. To examine a graph, it must
be laid out in two or three dimensions for viewing. In other
words, xyz locations for each vertex must be chosen. The graph
layout problem is non-trivial. In fact, it is very difficult.
Fortunately, Daniel Tunkelang made his Jiggle Java code [11]
available, and Jiggle has done an excellent job of laying out
graphs evolved by JavaGenes. Integration of the two packages
was quick and easy. Only one bug was found in Jiggle (1615
lines of source). That bug was an infinite loop, which was
found and fixed in a little over an hour.

2 . 3 D e v e l o p m e n t Environment
JavaGenes was developed on a Compaq laptop runn ing
Windows 95. Windows was used because the main developer
cannot type for significant lengths of time and uses a voice
recognition system. The first development environment was
Visual Cafe. This was abandoned because the debugger was
quite buggy. The second development environment was
Supercede. Various problems required periodic re-installation,
which in turn caused serious problems with Windows 95.
Finally, Borland JBuilder was tried and there have been
relatively few problems. CodeWarrior was used occasionally
for specific debugging problems. Although some compilers
are a bit pickier than others, no significant problems were
encountered moving the code from one development
environment to another; or moving the source or class files to
the SGI version of the JDK to run experiments.

2 . 4 C o n d o r S u p p o r t f o r J a v a
Condor runs each job in an environment called a "universe."
The two most important universes are called "Standard" and
"Vanilla." Standard jobs are programs that have been l inked
with a special Condor version of the C runtime library that
mimics the effects of most UNIX system calls and adds two
kinds of enhanced functionality: remote system calls and
checkpointing.

Remote system calls provide a uniform environment to a j o b
running on any workstation on a network. The Condor runtime
library replaces system calls with remote procedure calls to a
shadow process running on the workstation that submitted the
job. The shadow makes the system call on behalf of the remote
process and returns the results. For example, the open system
call sends the name of the desired file to the shadow, which
searches for it on the submitter's home workstation.
Subsequent r e a d and w r i t e calls access that file over the
network. The result is that the job sees the same file-system
environment regardless of where it runs, and all file output is
captured in files on the submitting workstation.

Checkpointing is also implemented by the Condor runtime
library. Each Condor job is run under the control of a starter
process. When a workstation needs to be appropriated for
another purpose, the starter sends a terminate signal to the
application process. The Condor library catches this signal
and sends a complete dump of the state of the process back to
the submitting machine, where it awaits its turn to be restarted
on another worker machine. This checkpoint file includes a
binary dump of the entire virtual memory image of the process.
It also includes a record (collected by the remote system calls)
of the current state of the process' interaction with the
operating system kernel. For example, for each file opened by
the job, the checkpoint file records the name of the file and the

136

current offset within the file (the "seek pointer"). Condor can
also be instructed to send a "checkpoint" signal to the starter
at periodic intervals. The starter responds to this signal by
suspending the application, checkpointing it, and then
allowing it to continue. Under some circumstances, Condor
may send other signals to the starter, asking it to suspend the
application, resume it, or kill it without giving it a chance to
checkpoint.

Neither remote system calls nor checkpointing require any
source-level modifications to the application program, but
they do require it to be re-linked with a special version of the
system libraries. They also impose some restrictions on the set
of system services available to the job. In particular, Condor
does not currently support Standard jobs that use kernel-level
threads. Programs that cannot be re-linked or that do not meet
these requirements must be run in the Vanilla universe. An
arbitrary executable program can be run as a Vanilla job, bu t
any I/O operations will access the file system of whatever
machine the job happens to be running on, and if the
workstation is pre-empted (for example, by an interactive
user), the job is simply killed and restarted from the beg inn ing
on another workstation. At NAS, in general, Condor jobs do
not have permission to use the local disk on the worker
workstation.

Most of the JavaGenes runs described in this paper used the
Vanilla universe. The Java Virtual Machine (JVM) from SGI
and Sun was available to us only in binary (pre-linked) form.
We tried the Kaffe open-source JVM, but found that it had
bugs that prevented us from running JavaGenes correctly for
more than a few generations. Moreover, both JVM's use certain
facilities - - n o t a b l y kernel-level threads -- that are not
supported in Condor Standard jobs. Fortunately, the remote
system call facility was not necessary in our environment,
since we use the Network File System (NFS), which provides a
uniform interface to files from all workstations. In th is
environment, the "job" submitted to Condor is a tel script that
calls the JVM, with the name of the application class supplied
as a command-line argument. From the point or" view of the
JVM, the class files that constitute the application are s imply
data files that appear to be on the local disk of the worker
machine through the magic of NFS. Similarly, NFS is used to
create output files on the submitting workstation.

The lack of automatic checkpointing was a more serious
problem. As mentioned earlier, we tried two different
application-specific checkpointing strategies. Both involved
periodically invoking a checkpoint method that saves the
state of the computation into a file. JavaGenes invokes this
method after each new child is created. If a workstation is
preempted before the program finishes, it is killed and
restarted "from the beginning." However, at startup, JavaGenes
jobs look for a checkpoint file (via NFS) so they can initialize
state and continue from the last checkpoint. Thus, a job that is
killed and restarted loses only the work it did between its most
recent checkpoint and the time it was killed.

To provide better support for JavaGenes and other Java Grande
applications, the Condor project has been developing a Java
universe. To run under this universe, a Java program must
implement the Checkpointable interface:

public interface Checkpointable extends
Serializable {
void start (String[] arguments) ;
void restart () ;

void beforeCheckpoint () ;
void afterCheckpoint () ;
void setCheckpointer(Checkpointer c);

}

Each universe has its own kind of starter. The starter for the
Java universe . is written in Java and extends
j a v a . l a n g . C l a s s L o a d e r . A "job" in the Java universe
is a class file. We assume that each worker machine has a JVM
installed locally, but otherwise do not require any network file
system or uniform file environment. The Java starter loads all
required classes over the network by communicating with a
Java version of the shadow using the Java RMI (Remote
Method Invocation) interface. The Java starter creates an
instance p r o g of the application program class and calls
either prog.start() orprog.restart(),depending
on whether there is an existing checkpoint file from an earlier
run of this job. The starter also creates an instance c p of a
Checkpointer object, passing p r o g to its constructor, and
calling prog.setCheckpointer(cp) so that prog
and cp can refer to each other. Prog can also access cp
through static methods in Checkpointer as long as there is
only one instance of Checkpointer. When the starter receives a
terminate or checkpoint signal, it calls
cp. checkpointWhenPossible (), which sets a flag
indicating that a checkpoint has been requested. It does not
force an immediate checkpoint because the application object
may not be in a "quiescent" state in which checkpointing is
convenient. The application itself is expected to call
c p . o k () periodically, If no checkpoint has been requested,
this method simply returns without doing anything. However,
if a checkpoint request is pending, the checkpointer uses Java
serialization to save the state of the object by calling
writeObj ect (prog). It also calls
p r o g . b e f o r e C h e c k p o i n t () before the checkpoint and
prog. afterCheckpoint () after.

The w r i t e Ob j e c t method saves all of the non-transient
fields of the object, as well as all objects pointed to by those
fields, all fields of those objects, etc. It does not, however, save
anything from the runtime stack -- that is, the values of local
variables. It is the responsibility of the application to update
the non-transient fields of the application object to reflect the
complete state of the application either before calling c p . o k
or in the method b e f o r e C h e c k p o i n t . I f these updates are
costly, they should be in b e f o r e C h e c k p o i n t because
this method is only called if the checkpoint is actually
performed. The beforeCheckpoint and
afterCheckpoint methods also provide hooks for
application-specific performance monitoring, such as
determining the amount of time spent checkpointing

The Java universe provides several advantages over the
Vanilla universe for Java applications:

• It supports remote system calls, so that it does not depend
on the availability of a network file system (and uniform
conventions for mount points).

• It automates more of the tasks necessary for
checkpointing and recovery.

• It allows Condor to decide when to checkpoint a job, only
requiring the application code to indicate when a checkpoint
is safe.

137

• It allows a job to migrate among hardware platforms
during its lifetime. A job in the Java universe is comprised
of class files and a checkpoint file, all of which are platform-
independent.

A prototype version of the Java universe successfully ran
JavaGenes but it was not stable enough for production use at
the time the experiments described in this paper were run.
Also, the Java universe uses Java serialization to checkpoint
jobs. Our experience indicates that standard Java serialization
is too slow for JavaGenes to use.

3. RESULTS
The bottom line for JavaGenes on Condor was to run many
jobs to conduct the experiments necessary to start
understanding the application of genetic algorithms to graphs.
In this, we were successful. Thousands of jobs were
successfully run, one genetic algorithm paper was pub l i shed
[3], and another is in preparation [4]. JavaGenes does a fairly
good job of evolving pharmaceutical drug molecules, but can
only evolve trivial circuits so far. We now examine the pros
and cons of using Java for our application.

3.1 Java Con
3.1.1 Java Serialization Performance
It was discovered that creating serialization files and reading
them to implement checkpoint/restart could take as much as
three hours wall clock time. Although Java serialization is
extremely general-purpose, any object can be serialized and
the format is CPU independent, it is difficult to unders tand
why three hours is needed to serialize a few htindred graphs,
some ancillary objects, and a few thousand real numbers (the
data). In any ease, jobs under these conditions made no
progress. In addition, the serialization files were around 25
MB and there were often two files per job. Because jobs could
be interrupted in the middle of serialization, JavaGenes wrote
state information into a temporary file and, when finished,
moved it to the permanent location. With long serialization
times, most jobs were interrupted in the middle of writing the
serialization file. Thus, the full checkpoint file and a partial
checkpoint file were on disk most of the time. With hundreds
of jobs, disk usage became substantial. To solve the
performance problem, Java serialization was abandoned and
new code written to save the state of the computation and read
it back from disk. Development took approximately two days
and one bug was found and fixed a few days after development
was "complete." Most checkpoint files are now less than 1 MB.
Checkpoint write and read usually take around 10 seconds, bu t
can require up to about five minutes (including network
delays). This was the only performance problem that required
changes to the code.

3.1.2 Checkpointing with Serialization
Besides having performance problems, checkpointing with
serialization must be handled with care. In particular, it is
sometimes error prone. It is essential to make sure that all of
the necessary program state is saved. In the case of genetic
algorithms, nearly all the state that must be saved is contained
in the population. However, i f checkpointing is allowed in the
middle of constructing a new generation, then the loop index
indicating how much of the next generation has been
constructed must also be saved. Also, it is difficult to write
code that can be interrupted at any time and saved to disk.
Therefore, checkpointing is restricted to those points in the

code where analysis can prove that saving and restoring will
not cause problems.

One other fairly serious problem arose. In the ini t ia l
implementation, JavaGenes started a new random number
generator after restart. Because of this, evolution did not
follow the same path taken after the last chzckpoint. In other
words, the genetic algorithm was controlled by different
random numbers and therefore searched a different part of the
search space. That made the algorithm appear more efficient
than it was, because the number of generations to find a
specific target was used as the efficiency measure. Consider the
case where a job ran for 100 generations up to a checkpoint
and 20 more generations before being killed. When the job was
restarted, 20 different generations would be constructed and
one of the new generations, say the 10th, might find the target.
Therefore, it would appear as i f the target was found in 110
generations, but actually 130 were tried. Thus, jobs migh t
repeatedly search the region around the last checkpoint and
stop if a solution were found, reporting an inaccurately small
number of generations to completion. It was therefore
necessary, at job restart time, to restart the random number
generator with the same seed and then execute the random
number generator the number of times it was executed up to
the last checkpoint. This should have insured that a job would
follow the same evolutionary path regardless of checkpoint
history. Unfortunately, although this fix worked properly
when a job was restarted on the same machine, different results
were observed in normal execution on the Condor pool, where
jobs frequently move between machines. These changing
evolutionary paths were presumably caused by differences in
the Java libraries on different versions of the SGI operat ing
system. This may change the order of certain lists in JavaGenes
and cause the same random number to pick different i tems
from these lists. Fortunately, only about 6% of the generat ions
were repeated once checkpointing performance was improved,
suggesting that the effect was fairly minor. Because
checkpointing was fast, computations would usually proceed
to the next checkpoint before being restarted.

3.1.3 JIT Essential
Some very simple tests indicated that jobs run under the SGI
just-in-time compiler were approximately 20 times faster than
when the JIT was disabled.

3.1.4 Double Read/Write Java Libraries Bug
It was discovered that the standard Java libraries will write ou t
certain double numbers in an ASCII form that is not tolerated
as input by the same libraries. In particular,
System.out.write (.... + aDouble) will write out

values such as NaN and Infinity, bu t
D o u b l e (S t r i n g) will throw an exception if these s t r ings
are passed as the argument.

3.2 Java Pro
3.2.1 Porting
We never had any problems porting the source or class files
between Java environments.

3.2.2 Bugs
Compared to developing in C or C++, there were few bugs and
they were easy to find and fix. Basically, almost all the bugs
were logic problems, most of which were found and fixed while

-single stepping through the code with the graphical debuggers
provided by the IDEs. The uncontrolled pointers, index out of

138

range, memory management, and similar bugs extremely
common in the primary programmer's 20 year C and C++
development experience almost never occurred. These bugs are
also, usually, quite difficult to find. Reducing the number of
bugs dramatically lowered development time, at least
subjectively.

3.2.3 Memory Management
Memory management was trivial. Only one bug was
encountered when we neglected to create a new xyz array in
class Vertex during cloning. Before the bug was fixed,
after graph layout, all the atoms were displayed at a single
point.

3.2.4 Performance
Other than the serialization problem, performance was not a
major issue. This was, in part, because Condor supplies us with
lots of nearly free CPU cycles, but also because Java
performance has been reasonable (although certainly not
exceptional).

In short, we were happy with Java for this application. While
there is some run-time penalty, more rapid code development
and more reliable end-product software is well worth the extra
CPU cycles. Since cycles are always getting cheaper, and
programmers and support staff seem to be getting more
expensive, we expect Java to do well in the coming years.

4. FUTURE WORK
The main task before JavaGenes is to incorporate more
chemical knowledge into the fitness functions, because
JavaGenes usually evolves molecules that are not
physiologically stable and that would be difficult, or perhaps
impossible, to synthesize. To support more Java applications
under Condor and more diverse environments, the prototype
Condor Java universe described in the section on Condor
Support for Java needs to be brought up to production status.
The performance problem with Java serialization needs to be
solved more generally, or applications must reimplement
serialization. An alternative approach would be to rebuild a
Java Virtual Machine as a Standard universe job. This
approach has the advantage of requiring less hand-
modification of Java applications, but requires resolution of
certain technical and licensing issues.

5. ACKNOWLEDGEMENTS
Many thanks to Daniel Tunkelang, formerly of Carnegie
Mellon, for providing his graph layout code [11]. Thanks to
NWP Associates, Inc. for providing their Student T-Test code.
Thanks to Rich McClellan, University of California at Santa
Cruz, for providing the mol file reading and atomic element
code. Thanks to Gail Felchle for much of the graphics art work.
Thanks to the Condor team at the University of Wisconsin for
their support. Thanks to Chris Henze and Bonnie Klein for
reviewing this paper. This work was funded by NASA Ames
contract NAS 2-14303 and NASA-Ames Cooperative
Agreement No. NCC 2-5323.

6. REFERENCES
[!] Thomas Baeck, Ulrich Hammel, and Hans-Paul Schwefel,
"Evolutionary Computation: Comments on the History and
Current State," IEEE Transactions on Evolutionary
Computation, volume 1, number 1, pages 3-17, April 1997.

[2] Raymond Carhart, Dennis I-I. Smith, and 1L
Venkataraghavan, "Atom Pairs as Molecular Features in
Structure-Activity Studies: Definition and Application,"
Journal of Chemical Information and Computer Science,
volume 23, pages 64-73.

[3] AI Globus, John Lawton, and Todd Wipke, "Automatic
Molecular Design Using Evolutionary Techniques," Sixth
Foresight Conference on Molecular Nanotechnolo~,v.
Sunnyvale, California, November 1998 and Nanotechnology,
volume 10, number 3, September 1999, pages 290-299.

[4] AI Globus, Sean Atsatt, John Lawton, and Todd Wipke,
"JavaGenes: Evolving Graphs with Crossover," in preparation.

[5] John H. Holland, Adaptation in Natural and Artificial
Systems, University of Michigan Press.

[6] John R. Koza, Genetic Programming: on the Programming
of Computers by Means of Natural Selection, MIT Press,
Massachusetts.

[7] M. Litzkow, M. Livny, and M. W. Mutka, "Condor - a Hunter
of Idle Workstations," Proceedings of the 8th International
Conference of Distributed Computing Systems, pages 104-
111, June1988. See http//www.cs.wisc.cdu/condor/.

[8] M. Livny and 1L Raman, "High Throughput Resource
Management," Computational Grids." The Future of High-
Performance Distributed Computing, edited by Ian Foster and
Carl Kesselman, published by Morgan Kaufmann, 1999.

[9] Jason D. Lohn and Silvano P. Colombano, "Automated
Analog Circuit Synthesis Using a Linear Representation,"
Second International Conference on Evolvable Systems: From
Biology to Hardware, Springer-Verlag, 23-25 September 1998.

[10] Numerical Aerospace Systems Division, NASA Ames
Research Center, http://www.nas,nasa,gov/home.html.

[11] Daniel Tunkelang, A Ncmerical Ontimization Annroach
to Granh Drawing, Dissertation, Carnegie Mellon University,
School of Computer Science, December 1998.

[12] Brian Wims and Cheng-Zhong Xu, "Traveler: A Mobile
Agent Infrastructure for Wide Area Parallel Computing," ACM
1999 Java Grande Conference. San Francisco, California, 12-
14 June 1999.

[13] Jiang Xiao, Zbigniew Michalewicz, Lixin Zhang, and
Krzysztof Trojanowski, "Adaptive Evolutionary
Planner/Navigator for Mobile Robots," IEEE Transactions on
Evolutionary Computation, volume 1, number 1, pages 18-28,
April 1997.

139

