
Zach Miller
Condor Project

Computer Sciences Department
University of Wisconsin-Madison

Lockdown of a Basic Pool

www.cs.wisc.edu/Condor

Basic Concepts

›  You have a Condor pool
h Personal Condor (1 node)
h 1000 node cluster

› Who can use your pool?

www.cs.wisc.edu/Condor

Basic Concepts

›  “Who can use it” is really two
concepts:

›  The “Who” is authentication

›  The “can” is authorization

www.cs.wisc.edu/Condor

Basic Concepts

›  Authentication is finding out WHO
some entity is.

› How is this done?
h Common methods:

•  Present a secret that only that only you
should know

•  Perform some action that only you can do
•  Present a credential that only you could have

www.cs.wisc.edu/Condor

Basic Concepts

›  Authorization is deciding what
someone is allowed to do.

›  You must know who they are before
you can decide this!

www.cs.wisc.edu/Condor

Basic Concepts

›  I’m using “they” pretty loosely here.

›  “They” could be:
h A user
h A machine
h An agent/daemon/service

www.cs.wisc.edu/Condor

Basic Concepts

›  In the context of a Condor pool:
h You want only machines that you know to

be in the pool
h You want only people you know to submit

jobs

www.cs.wisc.edu/Condor

Authentication

› When users submit jobs, Condor
authenticates them:
h FS on Unix
h NTSSPI on Windows

›  The Condor SCHEDD daemon now
“owns” the jobs, and acts on their
behalf.

www.cs.wisc.edu/Condor

Authentication

›  So how can we trust the SCHEDD?

›  Daemon-to-daemon authentication

www.cs.wisc.edu/Condor

Authentication

›  A Condor daemon must prove to other
Condor daemons that it is authentic.

› Quick and Easy: Pool Password

www.cs.wisc.edu/Condor

Pool Password

›  All daemons know a “password”
›  This password (hash) is stored:

h In a permissions-protected file on UNIX
h In the encrypted part of the registry on

Windows

www.cs.wisc.edu/Condor

Pool Password

›  To set it:

% condor_store_cred -c add

Account: condor_pool@cs.wisc.edu

Enter password:

Operation succeeded.

www.cs.wisc.edu/Condor

Pool Password

›  This is typically done locally on each
machine that will use the password

› On UNIX, you can copy the file
containing the hash to each machine
h COPY IT SECURELY!
h CHECK THE PERMISSIONS!

www.cs.wisc.edu/Condor

Pool Password

›  Configure Condor to use it

›  Set your condor_config:

 SEC_DAEMON_AUTHENTICATION = REQUIRED

 SEC_DAEMON_AUTHENTICATION_METHODS = PASSWORD

www.cs.wisc.edu/Condor

Pool Password

›  So, are we “All Good”?

› What about flocking to other pools?

›  Condor-C?

www.cs.wisc.edu/Condor

Pool Password

›  Password must be the same for
everyone – are you prepared to give it
to another administrator?

› What if they also flock with other
pools, are you prepared for them to
give it to their flocking friends?

›  And so on?

www.cs.wisc.edu/Condor

Flexibility

›  It would be nice if each pool could
have its own credential

› Well, you can! Use the SSL
authentication method.

www.cs.wisc.edu/Condor

Why use SSL?

› Widely used and deployed
›  Flexible enough for securing

communications between Condor
daemons and also for authenticating
users

www.cs.wisc.edu/Condor

Basics: OpenSSL

› OpenSSL is typically already installed
on modern Linux systems

› On more obscure flavors of Unix, and
on Windows, you will likely need to
install it yourself

›  Can be obtained here:
 http://www.openssl.org/

www.cs.wisc.edu/Condor

Basics: OpenSSL

› Or, instead of installing OpenSSL
everywhere, you can create your
credentials on a Linux machine and
securely move them to another
machine where they will be used

› Make sure the permissions are such
that only the proper people can read
the key!

www.cs.wisc.edu/Condor

Basics: SSL config
›  You can use the default from the openssl package or

start with my simplified version here:
›  http://www.cs.wisc.edu/~zmiller/cw2012/openssl.cnf
›  Find the section [req_distinguished_name] and

customize it:

[req_distinguished_name]

stateOrProvinceName_default = Wisconsin

localityName_default = Madison

0.organizationName_default = University of Wisconsin -- Madison

1.organizationName_default = Computer Sciences Department

organizationalUnitName_default = Condor Project

www.cs.wisc.edu/Condor

Single Credential

›  In this example, we will create a
single key/certificate pair and use
that to secure communications
between Condor daemons

›  This is roughly equivalent to the pool
password method – it is a shared
secret stored in a file

www.cs.wisc.edu/Condor

Single Credentials

›  First, create the private key file:

 openssl genrsa -out cndrsrvc.key 1024
 Generating RSA private key, 1024 bit long modulus

++++++

 ...++++++

 e is 65537 (0x10001)

 chmod 600 cndrsrvc.key

www.cs.wisc.edu/Condor

Single Credential

› Now, create a self-signed certificate
openssl req -new -x509 -days 3650 -key cndrsrvc.key \
 -out cndrsrvc.crt -config openssl.cnf

You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [US]:
State or Province Name (full name) [Wisconsin]:

Locality Name (eg, city) [Madison]:
Organization Name (eg, company) [University of Wisconsin -- Madison]:
Second Organization Name (eg, company) [Computer Sciences Department]:

Organizational Unit Name (eg, section) [Condor Project]:

Common Name (eg, YOUR name) []:Service
Email Address []:

www.cs.wisc.edu/Condor

Single Credential

›  Inspect the certificate we made:
openssl x509 -noout -text -in cndrsrvc.crt
Certificate:
 Data:

 Version: 3 (0x2)
 Serial Number:
 8c:94:7b:b1:f9:6a:bd:72
 Signature Algorithm: sha1WithRSAEncryption

 Issuer: C=US, ST=Wisconsin, L=Madison, O=University of Wisconsin -- \
 Madison, O=Computer Sciences Department, OU=Condor Project, CN=Service

 Validity
 Not Before: May 1 14:31:09 2012 GMT

 Not After : Apr 28 14:31:09 2022 GMT
 Subject: C=US, ST=Wisconsin, L=Madison, O=University of Wisconsin -- \

 Madison, O=Computer Sciences Department, OU=Condor Project, CN=Service

…

www.cs.wisc.edu/Condor

Single Credential

›  Great! Now what?
›  Create a map file

h Condor needs to know how to map the
distinguished name to an actual
username. For example:
 /C=US/ST=Wisconsin/L=Madison/O=University of Wisconsin -- Madison/
O=Computer Sciences Department/OU=Condor Project/CN=Service

 Should map to:
 condor

›  Configure the Condor daemons

www.cs.wisc.edu/Condor

Condor Mapfile

›  Simple format
›  Three fields (on one line)

h  Authentication method (SSL in this case)
h  Source DN
h  Mapped user

SSL

 "/C=US/ST=Wisconsin/L=Madison/O=University of Wisconsin -- Madison/
O=Computer Sciences Department/OU=Condor Project/CN=Service“

 condor

www.cs.wisc.edu/Condor

condor_config

›  Add the following entries:
AUTH_SSL_CLIENT_CAFILE = /path/to/cndrsrvc.crt

AUTH_SSL_CLIENT_CERTFILE = /path/to/cndrsrvc.crt

AUTH_SSL_CLIENT_KEYFILE = /path/to/cndrsrvc.key

AUTH_SSL_SERVER_CAFILE = /path/to/cndrsrvc.crt

AUTH_SSL_SERVER_CERTFILE = /path/to/cndrsrvc.crt

AUTH_SSL_SERVER_KEYFILE = /path/to/cndrsrvc.key

›  And the map file:
CERTIFICATE_MAPFILE = /path/to/condor_mapfile

www.cs.wisc.edu/Condor

condor_config

›  Tell condor to use SSL:
SEC_DAEMON_AUTHENTICATION = REQUIRED
SEC_DAEMON_AUTHENTICATION_METHODS = SSL

www.cs.wisc.edu/Condor

That’s (mostly) It!

›  You have now enabled SSL
authentication between all your
Condor daemons

›  But at this point, it isn’t much
different than using a Pool Password

www.cs.wisc.edu/Condor

Creating a CA

›  The solution is to issue separate
credentials for each entity that will
be involved in authenticating

›  Can’t do this with Pool Password, but
you can with SSL

www.cs.wisc.edu/Condor

Creating a CA

›  This involves creating a Certificate
Authority which is trusted by Condor

›  All certificates issued by the CA are
then trusted

›  Certs can be easily issued for hosts
and users

www.cs.wisc.edu/Condor

Creating a CA

›  Create the root key and cert which
will be used to sign all other
certificates

›  This key should be protected with a
password (don’t forget it!!)

www.cs.wisc.edu/Condor

Creating a CA

›  Generate a key:

openssl genrsa -des3 -out root-ca.key 1024
Generating RSA private key, 1024 bit long modulus

...................++++++

...........................++++++

e is 65537 (0x10001)

Enter pass phrase for root-ca.key:
Verifying - Enter pass phrase for root-ca.key:

www.cs.wisc.edu/Condor

Creating a CA

› Now create a self signed certificate
openssl req -new -x509 -days 3650 -key root-ca.key -out root-ca.crt -config openssl.cnf
Enter pass phrase for root-ca.key: CA PASSWORD HERE
You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [US]:

State or Province Name (full name) [Wisconsin]:

Locality Name (eg, city) [Madison]:

Organization Name (eg, company) [University of Wisconsin -- Madison]:

Second Organization Name (eg, company) [Computer Sciences Department]:

Organizational Unit Name (eg, section) [Condor Project]:

Common Name (eg, YOUR name) []:ROOT CA
Email Address []:

www.cs.wisc.edu/Condor

Creating a CA

›  Again, you can inspect the certificate

openssl x509 -noout -text -in root-ca.crt
Certificate:
 Data:

 Version: 3 (0x2)
 Serial Number:
 c7:99:e5:f7:c6:54:00:7a
 Signature Algorithm: sha1WithRSAEncryption

 Issuer: C=US, ST=Wisconsin, L=Madison, O=University of Wisconsin –
 Madison, O=Computer Sciences Department, OU=Condor Project, CN=ROOT CA

…

www.cs.wisc.edu/Condor

Creating a CA

›  In the directory with the Root CA
and openssl.cnf file, run these
commands:

touch ca.db.index

echo 01 > ca.db.serial

www.cs.wisc.edu/Condor

Creating a Host Credential

›  Create the key and a signing request

openssl req -newkey rsa:1024 -keyout \
 host_omega.key -nodes -config \
 openssl.cnf -out host_omega.req

www.cs.wisc.edu/Condor

Creating a Host Certificate
Generating a 1024 bit RSA private key

..++++++

..........++++++
writing new private key to 'host_omega.key'

You are about to be asked to enter information that will be incorporated

into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [US]:
State or Province Name (full name) [Wisconsin]:

Locality Name (eg, city) [Madison]:
Organization Name (eg, company) [University of Wisconsin -- Madison]:
Second Organization Name (eg, company) [Computer Sciences Department]:

Organizational Unit Name (eg, section) [Condor Project]:

Common Name (eg, YOUR name) []:omega.cs.wisc.edu
Email Address []:

www.cs.wisc.edu/Condor

Creating a Host Credential
openssl ca -config openssl.cnf -out \
 host_omega.crt -infiles host_omega.req

Using configuration from openssl.cnf

Enter pass phrase for ./root-ca.key:

Check that the request matches the signature

Signature ok

Certificate Details:
…

Certificate is to be certified until May 01 14:31:09
2013 GMT (365 days)

Sign the certificate? [y/n]:y

www.cs.wisc.edu/Condor

Configuring Condor

›  Each host can now use it’s own
credential (example for
omega.cs.wisc.edu)

AUTH_SSL_CLIENT_CAFILE = /path/to/root-ca.crt

AUTH_SSL_CLIENT_CERTFILE = /path/to/host_omega.crt
AUTH_SSL_CLIENT_KEYFILE = /path/to/host_omega.key

AUTH_SSL_SERVER_CAFILE = /path/to/root-ca.crt

AUTH_SSL_SERVER_CERTFILE = /path/to/host_omega.crt

AUTH_SSL_SERVER_KEYFILE = /path/to/host_omega.key

www.cs.wisc.edu/Condor

Creating a User Credential
openssl req -newkey rsa:1024 -keyout zmiller.key -config openssl.cnf -out zmiller.req
Generating a 1024 bit RSA private key
.....................++++++

..++++++
writing new private key to 'zmiller.key'

Enter PEM pass phrase:

Verifying - Enter PEM pass phrase: USER PASSWORD HERE

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank
For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [US]:

State or Province Name (full name) [Wisconsin]:
Locality Name (eg, city) [Madison]:

Organization Name (eg, company) [University of Wisconsin -- Madison]:
Second Organization Name (eg, company) [Computer Sciences Department]:
Organizational Unit Name (eg, section) [Condor Project]:

Common Name (eg, YOUR name) []:Zach Miller
Email Address []:zmiller@cs.wisc.edu

www.cs.wisc.edu/Condor

Creating a User Credential
openssl ca -config openssl.cnf -out zmiller.crt -infiles zmiller.req
Using configuration from openssl.cnf

Enter pass phrase for ./root-ca.key: CA PASSWORD
Check that the request matches the signature

Signature ok

Certificate Details:

…

Certificate is to be certified until May 1 14:31:09 2013 GMT (365
days)

Sign the certificate? [y/n]:y

www.cs.wisc.edu/Condor

Mapping Users

›  You could have one entry per user:
SSL

 “C=US/ST=Wisconsin/L=Madison, O=University of Wisconsin – Madison/
O=Computer Sciences Department/OU=Condor Project/CN=Zach Miller/
emailAddress=zmiller@cs.wisc.edu”

 zmiller

SSL

 “C=US/ST=Wisconsin/L=Madison, O=University of Wisconsin – Madison/
O=Computer Sciences Department/OU=Condor Project/CN=Todd
Tannenbaum/emailAddress=tannenba@cs.wisc.edu”

 tannenba

…

Etc.

www.cs.wisc.edu/Condor

Mapping Users

›  In the CERTIFICATE_MAPFILE, you
can now add a rule to map all users by
extracting the username from their
email address:

SSL emailAddress=(.*)@cs.wisc.edu \1

www.cs.wisc.edu/Condor

Securing Everything

›  If all hosts and users have
credentials, you can then enable SSL
authentication for ALL
communication, not just daemon-to-
daemon. In the condor_config:

SEC_DEFAULT_AUTHENTICATION = REQUIRED

SEC_DEFAULT_AUTHENTICATION_METHODS = SSL

www.cs.wisc.edu/Condor

More Information

›  Ask me during this week!
›  You can find more detailed

information, and examples using
multi-level CAs here:

 http://pages.cs.wisc.edu/~zmiller/ca-howto/

