
S U C C E S S E S , FA I L U R E S , N E W F E AT U R E S , A N D P L A N S

F O R T H E F U T U R E .

W I L L I A M S T R E C K E R - K E L L O G G

Condor at the RACF
1

Upgrade to 7.6.x

 Move to 7.6.4 done in October time-frame for RHIC

experiments

 Everything went better than expected

 7.6.6 for ATLAS done in February, also went

smoothly

 Small experiments done with RHIC upgrade

 A few hiccups—caused LSST (ASTRO) to abandon

Condor in favor of a homegrown batch system

2

Repackage

 Why? Easy upgrades, configuration management

 One pitfall—CMake silently failing to find globus-

libs at build time and building without support

 Requires:

 Most have one library and a README

 Instead build new condor-libs package

 Out of standard library search paths & set RPATH

globus-callout globus-common globus-ftp-client globus-ftp-control globus-gass-transfer

globus-gram-client globus-gram-protocol globus-gsi-callback globus-gsi-cert-utils

globus-gsi-credential globus-gsi-openssl-error globus-gsi-proxy-core globus-gsi-proxy-

ssl globus-gsi-sysconfig globus-gssapi-error globus-gssapi-gsi globus-gss-assist

globus-io globus-libtool globus-openssl globus-openssl-module globus-rsl globus-xio

globus-xio-gsi-driver globus-xio-popen-driver

3

Repackage

 Move away from old way:

 (tarball + path-twiddling) = new RPM

 New package buildable from any git snapshot of

Condor repository—verified in SL5 & 6.

 CMake works (almost) perfectly—would not have

been possible with previous build system

 Dynamic linking a huge plus

 Size reduced from 177Mb44Mb compressed!

4

ASTRO (LSST) Condor Move

 Two problems—eventually caused a move away

from Condor to home-grown batch system (for now).

 First, wanted parallel universe with dynamic slots.

Broken in 7.4.2 [#968]

 Considered special whole-machine slot queue

 $(DETECTED_CORES) + 1 Slots, one weighted differently

 Drawbacks incl. complexity and resource starvation in

on relatively small farm (34 nodes)

5

ASTRO (LSST) Condor Move

 Move to 7.6 brought promised change with dynamic

slots and the parallel universe.

 In 7.6.3—chirp bug, missing leading “/” in path

names, caused MPI jobs to fail [#2630]

 Found workaround involving different MPI setup script

and some software changes

 Fixed in 7.6.4(5?)—too late for them:

 Eventually gave up and wrote own system…

6

New Scales

 Single largest pool is ATLAS farm, ~13.5k slots!

 Negotiation cycle only 1 or 2 minutes

 condor_status takes a whole second!

 Group quotas help with negotiation cycle speed

 More small experiments in common pool:
 DAYABAY, LBNE, BRAHMS, PHOBOS, EIC, (formerly)

ASTRO—totals a few hundred CPUs.

 WISC machines and dedicated OSG slots are still in
the ATLAS pool

7

New Scales

 STAR pool has most user
diversity, ~40 active users
with lots of short running jobs

 Negotiation cycle still only
O(5min) without any limiting
time per-user

 Worst case many different
Requirements

 PHENIX pool mostly runs with
a few special users
(reconstruction, simulation, and
analysis-train).

 Wish for FIFO/Deadline
option for reconstruction jobs

8

Hierarchical Group Quotas

 After upgrade to 7.6.6 moved ATLAS to HGQ

 More success had using ACCEPT_SURPLUS flag than

was had with AUTO_REGROUP

 Behavior more stable, no unexplained jumps:

Even with queues supplied

with ample Idle jobs, this

sometimes happened with

AUTO_REGROUP.

9

Hierarchical Group Quotas

 Nice organization and viewing of totals of each

sub-group running; groups structured thus:

atlas

software analysis prod

test cvmfs mp8 short long

10

ATLAS Multicore

 New queue (mp8) has hard-coded 8-core slots

 Just in testing, but some new requirements

 Overhaul of monitoring scripts needed

 Number of jobs running becomes weighted sum

 Tested interplay with group quotas—some hiccups

 Will likely move to use dynamic slots if someday

more than just 8-core jobs are desired

 Interested in anyone’s experience with this

11

Configuration Management

 Done with a combination of Puppet, git, and
homegrown scripts

 Problems encountered on compute farm:

 Certificate management

 Node classification

 Puppet master load

 QA process

 Ultimate goal: use exported resources to configure
location of each experiment's central manager

 Config files, monitoring all updated automatically

 Bring up a new pool with push-button ease

12

Poor Man’s Cloud

 Problem

 We want users to be able to run old OS's after entire
farm goes to SL6

 Not to have to support one or two real machines of
each old OS as legacy.

 Keep It Simple (Stupid)

 With current hardware, nothing extra

 Avoid using Open* etc...

 Not an official cloud investigation, just a way to use
virtualization to ease maintenance of legacy OS’s

13

Poor Man’s Cloud—Requirements

 Users cannot run images they provide in a NAT

environment that does not map ports < 1024 to

high ports—could edit our NFS(v3)!

 Anything that uses UID-based authentication is at risk if

users can bring up their own VM's

 Need access to NFS for data, user home directories,

and AFS for software releases, etc…

 Cannot handle network traffic of transferring

images without extra hardware (SAN, etc...)

14

Poor Man’s Cloud—Distribution

 Distribution done through a simple script that

fetches/decompresses from webserver

 Allowed images listed in checksum file on webserver

 Automatically downloads new images if out of date

and re-computes the checksums.

 QCOW2 image created for each job with read-only

backing store of local image copy

 Diffs get written in condor’s scratch area (or we setup read-

only-root in our images)

15

Poor Man’s Cloud—Instantiation

 Instantiation done by same setuid-wrapper after

potential image-refresh.

 Wrapper execs program that uses libvirt/qemu to

boot an image

 First guest-fish writes a file with the user to become and

a path to execute

 Information comes from job description

 Wrapper has rc.local that becomes user and executes the

script as passed into the job

16

Poor Man’s Cloud—Getting Output

 Most likely place is NFS—users can run the same

code and write to the same areas as the would in a

non-virtual job

 Wrapper can optionally mount a data-disk (in

scratch area) that is declared as condor job output

 Future extension to untrusted VM’s would require port-

redirection and only allow output this way

 Input provided in similar manner or via file-transfer-hooks

and guest-fs injection

17

Poor Man’s Cloud—VM Universe

 With addition of LIBVIRT_XML_SCRIPT option using

the VM universe for instantiation becomes possible

 Use of guest-fs to inject user code and actual

instantiation can be done by Condor now

 Restrictions on which VM’s are trusted can be managed

in this script

 Still need setuid wrapper to do image-refresh

 Use a pre-job-wrapper or just require it of the users

18

Thanks!

End 19

