
Building a Virtualized
Desktop Grid
Eric Sedore
essedore@syr.edu

Why create a desktop grid?
§ One prong of an three pronged strategy to enhance research

infrastructure on campus (physical hosting, HTC grid, private
research cloud)

§ Create a common, no cost (to them), resource pool for
research community - especially beneficial for researchers
with limited access to compute resources

§ Attract faculty/researchers
§ Leverage an existing resource
§ Use as a seed to work toward critical mass in the research

community

Goals
§ Create Condor pool sizeable enough for “significant”

computational work (initial success = 2000 concurrent cores)
§ Create and deploy grid infrastructure rapidly (6 months)
§ Secure and low impact enough to run on any machine on

campus
§ Create a adaptive research environment (virtualization)
§ Simple for distributed desktop administrators to add

computers to grid
§  Automated methods for detecting/enabling Intel-VT (for

hypervisor)
§  Automated hypervisor deployment

Integration of Existing Components
§ Condor
§ VirtualBox
§ Windows 7 (64 bit)
§ TCL / FreeWrap – Condor VM Catapult (glue)
§ AD – Group Policy Preference

Typical Challenges introducing the
Grid (FUD)
§ Security

§  You want to use “my” computer?
§ Where does my research data go?

§ Technical
§ Hypervisor / VM Management
§  Scalability
§  After you put “the grid” on my computer…

§ Governance
§ Who gets access to “my” resources?
§ How does the scheduling work?

Security

Security on the client
§ Grid processes run as a non-privileged user
§ Virtualization to abstract research environment / interaction
§ VM’s on the local drive are encrypted at all times – (using

certificate of non-privileged user)
§  Local cached repository and when running in a slot
§ Utilize Windows 7 encrypted file system
§  Allows grid work on machines with end users as local

administrators
§ To-do – create a signature to ensure researcher (and

admins) that the VM started is “approved” and has not been
modified (i.e. not modified to be a botnet)

Securing/Protecting the
Infrastructure
§ Create an isolated private 10.x.x.x. network via VPN tunnels

(pfSense and OpenVPN)
§ Limit bandwidth for each research VM to protect against a

network DOS
§ Research VM’s NAT’d on desktops
§ Other standard protections – Firewalls, ACL’s

OpenVPN End-Point
(pfSense) / FW / Router

Condor
Infrastructure

Roles

Research VM’s

ITS-SL6-
LSCSOFT ITS-SL6-

LSCSOFT ITS-SL6-
LSCSOFT ITS-SL6-

LSCSOFT ITS-SL6-
LSCSOFT ITS-SL6-

LSCSOFT

Condor Submit
Server

10.x.x.x network

Public
Network

Bottleneck for higher
bandwidth jobs

Technical

Condor VM Coordinator (CMVC)
§ Condor’s VM “agent” on the desktop
§ Manage distribution of local virtual machine repository
§ Manage encryption of virtual machines
§ Runs as non-privileged user – reduces adoption barriers
§ Pseudo Scheduler

§ Rudimentary logic for when to allow grid activity
§ Windows specific – is there a user logged in?

Why did you write CVMC?
§ Runs as non-privileged user (and needs windows profile)
§ Mistrust in a 3rd party agent (condor client) on all campus

desktops – especially when turned over to the research
community – even with the strong sandbox controls in condor

§ Utilizes built-in MS Task Scheduler for idle detection – no
processes running in user’s context for activity detection

§ VM repository management
§ Encryption
§  It seemed so simple when I started…

Job Configuration
§ Requirements = (TARGET.vm_name == "its-u11-

boinc-20120415") && (TARGET.Arch == "X86_64") &&
(TARGET.OpSys == "LINUX") && (TARGET.Disk >=
DiskUsage) && ((TARGET.Memory * 1024) >= ImageSize)
&& ((RequestMemory * 1024) >= ImageSize) &&
(TARGET.HasFileTransfer)

§ ClassAd addition
§ vm_name = "its-u11-boinc-20120415”

§ CVMC Uses vm_name ClassAd to determine which VM to
launch

§  Jobs without vm_name can use running VM’s (assuming the
requirements match) – but they won’t startup new VM’s

Task
Scheduler

CVMC

VirtualBox

Web Server

Condor
Queue

Slot 1

Slot 2

Idle State

VM
Repo

Slot …

Win 7 Client

Condor Back -end

Technical Challenges
§ Host resource starvation

§  Leave memory for the host OS
§ Memory controls on jobs (within Condor)

§ Unique combination of approaches implementing Condor
§ CVMC / Web service
§  VM distribution
§  Build custom VM’s based on job needs vs. scavenging existing

operating system configurations
§ Hypervisor expects to have an interactive session

environment (windows profile)
§ Reinventing the wheel on occasion

How do you “ensure” low impact?
§ When no one is logged in CVMC will allow grid load

regardless of the time
§ When a user is logged in CVMC will kill grid load at 7 AM and

not allow it to run again until 5 PM (regardless if the machine
is idle)

§ Leave the OS memory (512MB-1GB) so it does not page out
key OS components (using a simple memory allocation
method)

§ Do not cache VM disks – will keep OS from filling its memory
cache with VM I/O traffic

Keep OS from
Caching VM I/O

Next Steps
§ Grow the research community – depth and diversity
§  Increase pool size – ~12,000 cores which are eligible
§  Infrastructure Scalability

§ Condor (tuning/sizing)
§ Network / Storage (NFS – Parrot / Chirp)

Solving	
 the	
 Data	
 Transfer	
 Problem	

¨  Born	
 from	
 an	
 unfinished	
 side-­‐project	
 7+	
 years	
 ago.	

¨  Goal:	
 maximize	
 the	
 compute	
 resources	
 available	
 to	
 LIGO’s	

search	
 for	
 gravitational	
 waves	

¤  More	
 cycles	
 ==	
 a	
 better	
 search.	

¨  Problem:	
 huge	
 input	
 data,	
 impractical	
 to	
 move	
 w/job.	

¨  How	
 to...	

¤  Run	
 on	
 other	
 LIGO	
 Data	
 Grid	
 sites	
 without	
 a	
 shared	
 filesystem?	

¤  Run	
 on	
 clusters	
 outside	
 the	
 LIGO	
 Data	
 Grid	
 lacking	
 LIGO	
 data?	

	

Tools	
 to	
 get	
 the	
 job	
 done:	
 ihope,	
 GLUE,	
 Pegasus,	
 Condor	

Checkpointing,	
 	
 and	
 Condor-­‐C.	

People:	
 Kayleigh	
 Bohémier,	
 Duncan	
 Brown,	
 Peter	
 Couvares.	
 	
 Help	

from	
 SU	
 ITS,	
 Pegasus	
 Team,	
 Condor	
 Team	

Idea:	
 Cross-­‐Pool	
 Checkpoint	
 Migration	

¨  Condor_compiled	
 (checkpointable)	
 jobs.	

¨  Jobs	
 start	
 on	
 a	
 LIGO	
 pool	
 with	
 local	
 data.	

¨  Jobs	
 read	
 in	
 data	
 and	
 pre-­‐process.	

¨  Jobs	
 call	
 checkpoint_and_exit().	

¨  Pegasus	
 workflow	
 treats	
 checkpoint	
 image	
 as	

output,	
 and	
 provides	
 it	
 as	
 “input”	
 to	
 a	
 second	

Condor-­‐C	
 job.	

¨  Condor-­‐C	
 job	
 transfers	
 and	
 executes	
 standalone	

checkpoint	
 on	
 remote	
 pool,	
 and	
 transfers	
 results	

back.	

Devil	
 in	
 the	
 Details	

¨  Condor	
 	
 checkpoint_and_exit()	
 caused	
 the	
 job	
 to	

exit	
 with	
 SIGUSR2,	
 so	
 we	
 needed	
 to	
 catch	
 that	
 and	

treat	
 it	
 as	
 success.	

¨  Standalone	
 checkpoint	
 images	
 didn’t	
 like	
 to	
 restart	

in	
 a	
 different	
 cwd,	
 even	
 if	
 they	
 shouldn’t	
 care,	
 so	

we	
 had	
 to	
 binary	
 edit	
 each	
 checkpoint	
 image	
 to	

replace	
 the	
 hard-­‐coded	
 /path/to/cwd	

with	
 .////////////!
¤ Will	
 be	
 fixed	
 in	
 Condor	
 7.8?	

¨  Pegasus	
 needed	
 minor	
 mods	
 to	
 support	
 Condor-­‐C	

“grid”	
 jobs	
 w/Condor	
 file	
 transfer	

¤  Fixed	
 for	
 next	
 Pegasus	
 release.	

Working	
 Solution	

Move	
 jobs	

that	
 do	
 not	

require	
 input	

files	
 on	
 the	

SUGAR	

cluster	
 to	
 the	

remote	

campus	

cluster.	

	

