

Cloud-hosted Data Transfer & Optimization: Stork for the Cloud

Tevfik Kosar University at Buffalo (SUNY)

> May 2, 2012 Condor Week, Madison, WI

Big Data

<u>Science</u>

- 1 PB is now considered "small" for many science applications today

- For most, their data is distributed across several sites

A survey among 106 organizations operating two or more data centers:

- 77% run replication among three or more sites

- 50% has more than 1 PB in their primary data center

Big Data

<u>Science</u>

- 1 PB is now considered "small" for many science applications today

- For most, their data is distributed across several sites

A survey among 106 organizations operating two or more data centers:

- 77% run replication among three or more sites

- 50% has more than 1 PB in their primary data center

• Sending **1 PB** of data over 10 Gbps link would take **nine days** (assuming 100% efficiency) -- too optimistic!

- Sending 1 PB of data over 10 Gbps link would take nine days (assuming 100% efficiency) -- too optimistic!
- Sending **1 TB** Forensics dataset from Boston to Amazon S3 cost \$100 and took **several weeks** [Garfinkel 2007]

- Sending 1 PB of data over 10 Gbps link would take nine days (assuming 100% efficiency) -- too optimistic!
- Sending **1 TB** Forensics dataset from Boston to Amazon S3 cost \$100 and took **several weeks** [Garfinkel 2007]
- Visualization scientists at LANL dumping data to tapes and sending them to Sandia Lab via **Fedex** [Feng 2003]

- Sending 1 PB of data over 10 Gbps link would take nine days (assuming 100% efficiency) -- too optimistic!
- Sending **1 TB** Forensics dataset from Boston to Amazon S3 cost \$100 and took **several weeks** [Garfinkel 2007]
- Visualization scientists at LANL dumping data to tapes and sending them to Sandia Lab via **Fedex** [Feng 2003]
- Collaborators have the option of moving their data into disks, and sending them as packages through UPS or FedEx [Cho et al 2011].

- Sending 1 PB of data over 10 Gbps link would take nine days (assuming 100% efficiency) -- too optimistic!
- Sending **1 TB** Forensics dataset from Boston to Amazon S3 cost \$100 and took **several weeks** [Garfinkel 2007]
- Visualization scientists at LANL dumping data to tapes and sending them to Sandia Lab via **Fedex** [Feng 2003]
- Collaborators have the option of moving their data into disks, and sending them as packages through UPS or FedEx [Cho et al 2011].
- Will **100 Gbps** networks change anything?

Stork Data Scheduler

- Implements state-of-the art models and algorithms for data scheduling & optimization
- Started as part of the Condor Project (was my PhD work)
- Currently developed at University at Buffalo and funded by NSF (CAREER, STCI, CiC)
- Based on the Condor code, uses Condor libraries (DaemonCore, ClassAds)
- Compatible with Condor products (i.e. DAGMan)

Stork Data Scheduler

- Built & tested on Condor NMI (Metronome)
- Supports more than 20 platforms
- Futures include:
 - support for multiple transfer protocols
 - dynamic protocol tuning & optimization
 - end-to-end throughput prediction services
 - data aggregation & connection caching
 - early error detection and classification & recovery

number of streams

End-to-end Optimization

- CPU nodes are considered as nodes of a maximum flow problem
- Memory-to-memory transfers are simulated with dummy source and sink nodes
- The capacities of disk and network is found by applying parallel stream model by taking into consideration of resource capacities (NIC & CPU)

Optimize:

- concurrency
- parallelism
- pipelining
- conn. caching
- buffer size
- block size
- disk striping
- threading
- •

Optimize:

- concurrency
- parallelism
- pipelining
- conn. caching
- buffer size
- block size
- disk striping
- threading

512 x 8 MB files

Optimize:

- concurrency
- parallelism
- pipelining
- conn. caching
- buffer size
- block size
- disk striping
- threading

512 x 8 MB files

Optimize:

- concurrency
- parallelism
- pipelining
- conn. caching
- buffer size
- block size
- disk striping
- threading

512 x 8 MB files

Optimize:

- concurrency
- parallelism
- pipelining
- conn. caching
- buffer size
- block size
- disk striping
- threading

512 x I MB files

Optimize:

- concurrency
- parallelism
- pipelining
- conn. caching
- buffer size
- block size
- disk striping
- threading

512 x I MB files

Optimize:

- concurrency
- parallelism
- pipelining
- conn. caching
- buffer size
- block size
- disk striping
- threading

512×32 MB files

Optimize:

- concurrency
- parallelism
- pipelining
- conn. caching
- buffer size
- block size
- disk striping
- threading

 512×32 MB files

Kosar et al Models

Kosar et al Models

- Details in 2 TPDS 2011 papers
- Implemented in the latest version of Stork (v.2.0.1)
- Provides throughput optimization as well as estimation

Stork for the Cloud

Ŷ ∰ M	₹. 29:56	
tg-login.spur.tacc.teragrid.org		
•		
earslan	• • • • • • • • •	
gsiftp		
Login		

Ý 🖗 M			
tg-login.spur.tacc.teragrid.org			
earslan	•••••		
gsiftp			
Qogin			

₩ 365 ↓ ∲ M	👽 💈 11:29			
login1.ls4. <u>tacc.utexas.edu</u>				
•				
earslan	•••••			
sftp	22			
Login				

🔤 🖞 👘 🖿	👽 💈 11:29
login1.ls4. <u>tacc.utexas.edu</u>	
earslan	•••••
sftp	22
Cogin	

Stork Client	👽 💈 11:29
tg-login.spur.tacc. teragrid.org	login1.ls4.tacc. utexas.edu root
globus	globus
Imod.d	Imod.d
ssh	ssh
сору	externals

	👽 💈 11:29
tg-login.spur.tacc. teragrid.org	login1.ls4.tacc. utexas.edu
globus	globus
Imod.d	Imod.d
ssh	ssh
сору	externals

🔤 🖞 👘 M	👽 💆 11:30
Stork Client	
tg-login.spur.tacc. teragrid.org	login1.ls4.tacc. utexas.edu root
gt5.0.4-all- source-installer	.globus
st k-2.0.1	Imod.d
.Xauthority	ssh 📃
📄 .cshrc	externals

₽		😴 🖉 10:29	
Job Progress			
1	7%	ftp:/didc-ws2.buffalo.edu/certificates/github.pem ftp:/didc-ws3.buffalo.edu/.ssh/	
2	Finished	ftp:/didc-ws8.buffalo.edu irods:/didc-ws7.buffalo.edu	
3	98%	gsiftp:/tg-login.spur.tacc.teragrid.org/etc/1.dat gsiftp:/nbirn.org	
5	Queued	gsiftp:/loni.org gsiftp:/dest.dsl-stork.org/home/sivahpc/test/dest	
6	95%	gsiftp:/dest.dsl-stork.org/home/sivahpc/test/dest gsiftp:/loni.org	
		sftn·/earslan@ta-loain snur tacc teraarid ora/	

LIVE 365	Ŷ	ö M			📚 🚺 6:55
Job	Prog	ress			
1			1	Job ID : 1	
2		F	ini	Job Details	agrid.org id.org
3			5	Cancel Job	ragrid.org
5			6.5		ome/sivahpc/
5		(Que	Remove From List	ome/sivahpc/
				srb:/enes@lonestar.tacc.teragrid	ora

Stork for the Cloud

- Prototype implementation complete, testing stage
- Will be deployed as hosted service
- Allow deployment on private clouds as well
- Available on Amazon EC2 and Windows Azure
- More optimizations coming

100 Gbit Performance

Summary

- Scientific and commercial applications are getting more and more data intensive
- Data sharing and bulk data transfers are still a major bottleneck in front of multiinstitutional and inter-disciplinary collaborative science
- Stork for the Cloud provides end-to-end throughput optimization in hosted environment accessible through ultra-thin clients

The FOURTH PARADIGM DATA-INTENSIVE SCIENTIFIC DISCOVERY

This work has been sponsored by: NSF, DOE, ONR, NOAA

For more information: **Stork web page**: <u>http://www.storkproject.org</u>

This work has been sponsored by: NSF, DOE, ONR, NOAA

Questions?

For more information:

Stork web page: http://www.storkproject.org

